UUttaahh SSttaattee UUnniivveerrssiittyy DDiiggiittaallCCoommmmoonnss@@UUSSUU All Graduate Theses and Dissertations Graduate Studies 8-2011 ZZeeoolliittee‐BBaasseedd AAllggaaee BBiioofifillmm RRoottaattiinngg PPhhoottoobbiioorreeaaccttoorr ffoorr AAllggaaee aanndd BBiioommaassss PPrroodduuccttiioonn Ashton M. Young Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Engineering Commons RReeccoommmmeennddeedd CCiittaattiioonn Young, Ashton M., "Zeolite‐Based Algae Biofilm Rotating Photobioreactor for Algae and Biomass Production" (2011). All Graduate Theses and Dissertations. 986. https://digitalcommons.usu.edu/etd/986 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ZEOLITE‐BASED ALGAE BIOFILM ROTATING PHOTOBIOREACTOR FOR ALGAE BIOMASS PRODUCTION by Ashton M. Young A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biological Engineering Approved: ________________________________ ________________________________ Dr. Ronald C. Sims Dr. Charles D. Miller Committee Chairman Committee Member ________________________________ ________________________________ Issa Hamud Dr. Mark R. McLellan Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2011 ii Copyright © Ashton Young 2011 All rights Reserved iii ABSTRACT Zeolite‐Based Algae Biofilm Rotating Photobioreactor for Algae and Biomass Production by Ashton M. Young, Master of Science Utah State University, 2011 Major Professor: Dr. Ronald C. Sims Department: Biological Engineering Alkaline conditions induced by algae growth in wastewater stabilization ponds create deprotonated ammonium ions that result in ammonia gas (NH ) volatilization. If algae are 3 utilized to remediate wastewater through uptake of phosphorus, the resulting nitrogen loss will hinder this process because algae generally require a stoichiometric molar ratio of N P . Lower 16 1 ratios of N/P due to loss of ammonia gas will limit the growth and yield of algae, and therefore will reduce phosphorus removal from the water phase into the algae phase. In order to reduce nitrogen loss through volatilization, an ammonium selective zeolite, clinoptilolite, can be used to sequester nitrogen from the water phase as ammonium ion and in a form that is bioavailable for uptake and growth of algae. A novel algae biofilm rotating photo bioreactor (RPB) with clinoptilolite integrated to the outermost surface as the substratum for algae biofilm attachment and growth has been designed, constructed, and tested for ammonium capture and iv algae biomass production, with simultaneous removal of the algal nutrient phosphorus from water. The clinoptilolite‐based RPB (cRPB) provides algal biomass that can serve as feedstock for biofuel production through uptake of zeolite‐based nitrogen and water phase phosphorus. (134 pages) v ACKNOWLEDGEMENTS I am appreciative of the support provided by several organizations, including the Biological Engineering Department, the Sustainable Waste‐to‐Bioproducts Engineering Center, the Utah Water Research Laboratory, the Biofuels Center, the Logan City Environmental Department, and the Huntsman Environmental Research Center at USU. Special thanks go to my committee members, Dr. Ronald Sims, Dr. Charles Miller, and Mr. Issa Hamud, for the input, technical support, and assistance. Special thanks go to my colleagues in action, Dr. Daniel Dye, Logan Christenson, Nathan Isrealson, Katie Glaittli, and Ally Schoessler, for their assistance throughout this research. Special thanks go to my wife, Meghan, for her support, and my parents for their encouragements and support to get a higher education. Ashton M. Young vi CONTENTS Page ABSTRACT ........................................................................................................................................ iii ACKNOWLEDGEMENTS .................................................................................................................... v LIST OF TABLES ................................................................................................................................ ix LIST OF FIGURES ............................................................................................................................... x LIST OF SYMBOLS, NOTATION, AND DEFINITIONS .........................................................................xiii CHAPTER 1. INTRODUCTION AND RESEARCH OBJECTIVES .............................................................................. 1 2. LITERATURE REVIEW .................................................................................................................... 6 2.1 Need for alternative energy .................................................................................................. 6 2.2 Logan lagoons ........................................................................................................................ 7 2.3 Nitrogen removal in WWSPs. ................................................................................................ 9 2.4 Phosphorus removal in WWSPs .......................................................................................... 12 2.5 Algae as a biofuel feedstock ................................................................................................ 13 2.6 Wastewater treatment with microalgae ............................................................................. 14 2.7 Natural Zeolite: Clinoptilolite .............................................................................................. 16 2.8 Algae biofilms ...................................................................................................................... 18 2.9 Rotating biological contactors (RBC) ................................................................................... 19 2.10 RBC vs. Rotating Photobioreactor ..................................................................................... 20 3. EXCHANGE CAPACITY AND BIOAVAILABILITY OF AMMONIUM ION EXCHANGED ONTO CLINOPTILOLITE FOR ALGAE BIOFILM GROWTH ....................................................................... 22 3.1 Introduction ......................................................................................................................... 22 3.2 Materials and Methods ....................................................................................................... 23 3.2.1 Granular clinoptilolite mechanical particle‐size analysis .............................................. 23 3.2.2 Synthetic wastewater formulation ............................................................................... 24 3.2.3 Granular clinoptilolite ammonium exchange isotherm ................................................ 26 3.2.4 Bio‐availability of exchanged ammonium for algae biofilm growth ............................. 28 3.3 Results and Discussion ......................................................................................................... 31 vii 3.3.1 Granular clinoptilolite mechanical particle‐size analysis .............................................. 31 3.3.2 Granular clinoptilolite ammonium exchange isotherm ................................................ 32 3.3.3 Bio‐availability of exchanged ammonium for algae biofilm growth ............................. 38 3.4 Conclusion ........................................................................................................................... 40 4. FABRICATION OF A ROTATING PHOTOBIOREACTOR WITH CLINOPTILOLITE AS ITS SUBSTRATUM ............................................................................................................................ 42 4.1 Introduction ......................................................................................................................... 42 4.2 Materials and Methods ....................................................................................................... 45 4.2.1 cRPB Fabrication ........................................................................................................... 45 4.2.2 cRPB surface characteristics ......................................................................................... 47 4.3 Results and Discussion ......................................................................................................... 49 4.3.1 cRPB Fabrication ........................................................................................................... 49 4.3.2 Ammonium exchange of the cRPB ................................................................................ 52 4.4 Conclusion ........................................................................................................................... 55 5. ALGAE BIOFILM BIOMASS PRODUCTION ON THE CLINOPTILOLITE ROTATING PHOTOBIOREACTOR .................................................................................................................. 58 5.1 Introduction ......................................................................................................................... 58 5.2 Materials and Methods ....................................................................................................... 62 5.2.1 Reactor Design/Layout .................................................................................................. 62 5.2.2 Nitrogen balance ........................................................................................................... 66 5.2.3 Energy balance .............................................................................................................. 67 5.2.4 Statistical design ........................................................................................................... 70 5.3 Results and Discussion ......................................................................................................... 71 5.3.1 Reactor algae biomass performance ............................................................................ 72 5.3.2 Nitrogen balance ........................................................................................................... 75 5.3.3 Energy balance .............................................................................................................. 77 5.4 Conclusion ........................................................................................................................... 77 6. FUTURE RESEARCH NEEDS ......................................................................................................... 80 7. CONCLUSIONS ............................................................................................................................ 83 REFERENCES ................................................................................................................................... 85 viii APPENDICES ................................................................................................................................... 94 APPENDIX A. CALCULATIONS .................................................................................................... 95 APPENDIX B: PAPER TO BE SUBMITTED TO JOURNAL .............................................................. 98 ix LIST OF TABLES Table Page 1 ‐ Wastewater characteristics of the Logan City treatment facility. ............................................ 12 2 ‐ Phosphorus concentration of the wastewater with and without nitrogen loss. .................... 16 3 ‐ Comparisons between the Clinoptilolite Rotating Photobioreactor (cRPB) and the Rotating Biological Contactor (RBC). ....................................................................................................... 21 4 ‐ Hourly 24 hour composite sample of competing cations from the influent and effluent wastewater used to formulate synthetic wastewater exchange media. ................................. 24 5 ‐ Synthetic wastewater media.. .................................................................................................. 25 6 ‐ Clinoptilolite mechanical particle size analysis.. ................................................................ 31 7 ‐ Values for the Langmuir and Freundlich coefficients for the clinoptilolite in synthetic wastewater. .............................................................................................................................. 36 8 ‐ Values for the Linear, Freundlich and Langmuir coefficients for the cRPB in synthetic wastewater. .............................................................................................................................. 54 9 ‐ Phosphorus concentration of the wastewater without nitrogen loss and with nitrogen loss assuming a C H O N P algae stoichiometry. ..................................................................... 61 106 181 45 16 10 ‐ Macro‐nutrient removal rates of cRPB, sRPB, and eRPB over time ± standard deviation. .... 73 11 ‐ Energy Input and Output comparison of algae biofilm and suspended algae growth using RPB and raceway growth technologies ..................................................................................... 77 12 ‐ Fatty Acid Methyl Ester (FAME) composition of biofilm algae biomass grown in wastewater, % of total FAME ± standard deviation .................................................................................... 115 13 ‐ Algae wastewater technologies compared with the cRPB ................................................... 117
Description: