ebook img

Worlds Within Worlds The Story of Nuclear Energy Volume 2 Mass and Energy The Neutron The Structure of the Nucleus by Isaac Asimov PDF

36 Pages·2021·0.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Worlds Within Worlds The Story of Nuclear Energy Volume 2 Mass and Energy The Neutron The Structure of the Nucleus by Isaac Asimov

The Project Gutenberg EBook of Worlds Within Worlds: The Story of Nuclear Energy, Volume 2 (of 3), by Isaac Asimov This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you'll have to check the laws of the country where you are located before using this ebook. Title: Worlds Within Worlds: The Story of Nuclear Energy, Volume 2 (of 3) Mass and Energy; The Neutron; The Structure of the Nucleus Author: Isaac Asimov Release Date: August 30, 2015 [EBook #49820] Language: English Character set encoding: UTF-8 *** START OF THIS PROJECT GUTENBERG EBOOK WORLDS WITHIN WORLDS, VOL 2 *** Produced by Stephen Hutcheson, Dave Morgan and the Online Distributed Proofreading Team at http://www.pgdp.net Worlds Within Worlds: The Story of Nuclear Energy Volume 2 Mass and Energy · The Neutron · The Structure of the Nucleus by Isaac Asimov U. S. Energy Research and Development Administration Office of Public Affairs Washington, D.C. 20545 Library of Congress Catalog Card Number: 75-189477 1972 Nothing in the history of mankind has opened our eyes to the possibilities of science as has the development of atomic power. In the last 200 years, people have seen the coming of the steam engine, the steamboat, the railroad locomotive, the automobile, the airplane, radio, motion pictures, television, the machine age in general. Yet none of it seemed quite so fantastic, quite so unbelievable, as what man has done since 1939 with the atom ... there seem to be almost no limits to what may lie ahead: inexhaustible energy, new worlds, ever-widening knowledge of the physical universe. Isaac Asimov Photograph of night sky The U. S. Energy Research and Development Administration publishes a series of booklets for the general public. Please write to the following address for a title list or for information on a specific subject: USERDA—Technical Information Center P. O. Box 62 Oak Ridge, Tennessee 37830 Isaac Asimov ISAAC ASIMOV received his academic degrees from Columbia University and is Associate Professor of Biochemistry at the Boston University School of Medicine. He is a prolific author who has written over 150 books in the past 20 years, including about 20 science fiction works, and books for children. His many excellent science books for the public cover subjects in mathematics, physics, astronomy, chemistry, and biology, such as The Genetic Code, Inside the Atom, Building Blocks of the Universe, Understanding Physics, The New Intelligent Man’s Guide to Science, and Asimov’s Biographical Encyclopedia of Science and Technology. In 1965 Dr. Asimov received the James T. Grady Award of the American Chemical Society for his major contribution in reporting science progress to the public. Introduction Atomic Weights Electricity Units of Electricity Cathode Rays Radioactivity The Structure of the Atom Atomic Numbers Isotopes Energy The Law of Conservation of Energy Chemical Energy Electrons and Energy The Energy of the Sun The Energy of Radioactivity Mass and Energy The Structure of the Nucleus The Proton The Proton-Electron Theory Protons in Nuclei Photograph of night sky VOLUME 1 5 6 11 11 13 17 25 30 35 47 47 50 54 55 57 VOLUME 2 69 75 75 76 80 Nuclear Bombardment Particle Accelerators The Neutron Nuclear Spin Discovery of the Neutron The Proton-Neutron Theory The Nuclear Interaction Neutron Bombardment Nuclear Fission New Elements The Discovery of Fission The Nuclear Chain Reaction The Nuclear Bomb Nuclear Reactors Nuclear Fusion The Energy of the Sun Thermonuclear Bombs Controlled Fusion Beyond Fusion Antimatter The Unknown Reading List 68 82 86 92 92 95 98 101 107 VOLUME 3 117 117 122 127 131 141 147 147 149 151 159 159 164 166 69 A field-ion microscope view of atoms in a crystal. Each tiny white dot is a single atom, and each ring system is a crystal facet or plane. The picture is magnified 1,500,000 times. MASS AND ENERGY In 1900 it began to dawn on physicists that there was a vast store of energy within the atom; a store no one earlier had imagined existed. The sheer size of the energy store in the atom—millions of times that known to exist in the form of chemical energy—seemed unbelievable at first. Yet that size quickly came to make sense as a result of a line of research that seemed, at the beginning, to have nothing to do with energy. Suppose a ball were thrown forward at a velocity of 20 kilometers per hour by a man on top of a flatcar that is moving forward at 20 kilometers an hour. To someone watching from the roadside the ball would appear to be travelling at 40 kilometers an hour. The velocity of the thrower is added to the velocity of the ball. If the ball were thrown forward at 20 kilometers an hour by a man on top of a flatcar that is moving backward at 20 kilometers an hour, then the ball (to someone watching from the roadside) would seem to be not moving at all after it left the hand of the thrower. It would just drop to the ground. There seemed no reason in the 19th century to suppose that light didn’t behave in the same fashion. It was known to travel at the enormous speed of just a trifle under 300,000 kilometers per second, while earth moved in its orbit about the sun at a speed of about 30 kilometers per second. Surely if a beam of light beginning at some earth-bound source shone in the direction of earth’s travel, it ought to move at a speed of 300,030 kilometers per second. If it shone in the opposite direction, against earth’s motion, it ought to move at a 72 70 71 speed of 299,970 kilometers per second. Could such a small difference in an enormous speed be detected? Albert A. Michelson The German-American physicist Albert Abraham Michelson (1852-1931) had invented a delicate instrument, the interferometer, that could compare the velocities of different beams of light with great precision. In 1887 he and a co-worker, the American chemist Edward Williams Morley (1838-1923), tried to measure the comparative speeds of light, using beams headed in different directions. Some of this work was performed at the U. S. Naval Academy and some at the Case Institute. The results of the Michelson-Morley experiment were unexpected. It showed no difference in the measured speed of light. No matter what the direction of the beam—whether it went in the direction of the earth’s movement, or against it, or at any angle to it—the speed of light always appeared to be exactly the same. To explain this, the German-Swiss-American scientist Albert Einstein (1879-1955) advanced his “special theory of relativity” in 1905. According to Einstein’s view, speeds could not merely be added. A ball thrown forward at 20 kilometers an hour by a man moving at 20 kilometers an hour in the same direction would not seem to be going 40 kilometers an hour to an observer at the roadside. It would seem to be going very slightly less than 40 kilometers an hour; so slightly less that the difference couldn’t be measured. However, as speeds grew higher and higher, the discrepancy in the addition grew greater and greater (according to a formula Einstein derived) until, at velocities of tens of thousands of kilometers per hour, that discrepancy could be easily measured. At the speed of light, which Einstein showed was a limiting velocity that an observer would never reach, the discrepancy became so great that the speed of the light source, however great, added or subtracted zero to or from the speed of light. Accompanying this were all sorts of other effects. It could be shown by Einstein’s reasoning that no object possessing mass could move faster than the speed of light. What’s more, as an object moved faster and faster, its length in the direction of motion (as measured by a stationary observer) grew shorter and shorter, while its mass grew greater and greater. At 260,000 kilometers per second, its length in the direction of movement was only half what it was at rest, and its mass was twice what it was. As the speed of light was approached, its length would approach zero in the direction of motion, while its mass would approach the infinite. Could this really be so? Ordinary objects never moved so fast as to make their lengths and masses show any measurable change. What about subatomic particles, however, which moved at tens of thousands of kilometers per second? The German physicist Alfred Heinrich Bucherer (1863-1927) reported in 1908 that speeding electrons did gain in mass just the amount predicted by Einstein’s theory. The 74 73 increased mass with energy has been confirmed with great precision in recent years. Einstein’s special theory of relativity has met many experimental tests exactly ever since and it is generally accepted by physicists today. Einstein’s theory gave rise to something else as well. Einstein deduced that mass was a form of energy. He worked out a relationship (the “mass-energy equivalence”) that is expressed as follows: E = mc² where E represents energy, m is mass, and c is the speed of light. If mass is measured in grams and the speed of light is measured in centimeters per second, then the equation will yield the energy in a unit called “ergs”. It turns out that 1 gram of mass is equal to 900,000,000,000,000,000,000 (900 billion billion) ergs of energy. The erg is a very small unit of energy, but 900 billion billion of them mount up. The energy equivalent of 1 gram of mass (and remember that a gram, in ordinary units, is only ¹/₂₈ of an ounce) would keep a 100-watt light bulb burning for 35,000 years. ENERGY CREATED compared to MATTER (OR MASS) DESTROYED It is this vast difference between the tiny quantity of mass and the huge amount of energy to which it is equivalent that obscured the relationship over the years. When a chemical reaction liberates energy, the mass of the materials undergoing the reaction decreases slightly —but very slightly. Suppose, for instance, a gallon of gasoline is burned. The gallon of gasoline has a mass of 2800 grams and combines with about 10,000 grams of oxygen to form carbon dioxide and water, yielding 1.35 million billion ergs. That’s a lot of energy and it will drive an automobile for some 25 to 30 kilometers. But by Einstein’s equation all that energy is equivalent to only a little over a millionth of a gram. You start with 12,800 grams of reacting materials and you end with 12,800 grams minus a millionth of a gram or so that was given off as energy. No instrument known to the chemists of the 19th century could have detected so tiny a loss of mass in such a large total. No wonder, then, that from Lavoisier on, scientists thought that the law of conservation of mass held exactly. Radioactive changes gave off much more energy per atom than chemical changes did, and the percentage loss in mass was correspondingly greater. The loss of mass in radioactive changes was found to match the production of energy in just the way Einstein predicted. It was no longer quite accurate to talk about the conservation of mass after 1905 (even though mass was just about conserved in ordinary chemical reactions so that the law could continue to be used by chemists without trouble). Instead, it is more proper to speak of the conservation of energy, and to remember that mass was one form of energy and a very concentrated form. The mass-energy equivalence fully explained why the atom should contain so great a store of energy. Indeed, the surprise was that radioactive changes gave off as little energy as they did. When a uranium atom broke down through a series of steps to a lead atom, it produced a million times as much energy as that same atom would release if it were involved in even the most violent of chemical changes. Nevertheless, that enormous energy change in the radioactive breakdown represented only about one-half of 1% of the total energy to which the mass of the uranium atom was equivalent. 76 75 Once Rutherford worked out the nuclear theory of the atom, it became clear from the mass-energy equivalence that the source of the energy of radioactivity was likely to be in the atomic nucleus where almost all the mass of the atom was to be found. The attention of physicists therefore turned to the nucleus. THE STRUCTURE OF THE NUCLEUS The Proton As early as 1886 Eugen Goldstein, who was working with cathode rays, also studied rays that moved in the opposite direction. Since the cathode rays (electrons) were negatively charged, rays moving in the opposite direction would have to be positively charged. In 1907 J. J. Thomson called them “positive rays”. Once Rutherford worked out the nuclear structure of the atom, it seemed clear that the positive rays were atomic nuclei from which a number of electrons had been knocked away. These nuclei came in different sizes. Were the nuclei single particles—a different one for every isotope of every element? Or were they all built up out of numbers of still smaller particles of a very limited number of varieties? Might it be that the nuclei owed their positive electrical charge to the fact that they contained particles just like the electron, but ones that carried a positive charge rather than a negative one? All attempts to discover this “positive electron” in the nuclei failed, however. The smallest nucleus found was that produced by knocking the single electron off a hydrogen atom in one way or another. This hydrogen nucleus had a single positive charge, one that was exactly equal in size to the negative charge on the electron. The hydrogen nucleus, however, was much more massive than an electron. The hydrogen nucleus with its single positive charge was approximately 1837 times as massive as the electron with its single negative charge. Was it possible to knock the positive charge loose from the mass of the hydrogen nucleus? Nothing physicists did could manage to do that. In 1914 Rutherford decided the attempt should be given up. He suggested that the hydrogen nucleus, for all its high mass, should be considered the unit of positive electrical charge, just as the electron was the unit of negative electrical charge. He called the hydrogen nucleus a “proton” from the Greek word for “first” because it was the nucleus of the first element. One proton balances 1837 electrons. Why the proton should be so much more massive than the electron is still one of the unanswered mysteries of physics. The Proton-Electron Theory What about the nuclei of elements other than hydrogen? All the other elements had nuclei more massive than that of hydrogen and the natural first guess was that these were made up of some appropriate number of protons closely packed together. The helium nucleus, which had a mass four times as great as that of hydrogen, might be made up of 4 protons; the oxygen nucleus with a mass number of 16 might be made up of 16 protons and so on. This guess, however, ran into immediate difficulties. A helium nucleus might have a mass number of 4 but it had an electric charge of +2. If 77 78 79 80 it were made up of 4 protons, it ought to have an electric charge of +4. In the same way, an oxygen nucleus made up of 16 protons ought to have a charge of +16, but in actual fact it had one of +8. Could it be that something was cancelling part of the positive electric charge? The only thing that could do so would be a negative electric charge[1] and these were to be found only on electrons as far as anyone knew in 1914. It seemed reasonable, then, to suppose that a nucleus would contain about half as many electrons in addition to the protons. The electrons were so light, they wouldn’t affect the mass much, and they would succeed in cancelling some of the positive charge. Thus, according to this early theory, now known to be incorrect, the helium nucleus contained not only 4 protons, but 2 electrons in addition. The helium nucleus would then have a mass number of 4 and an electric charge (atomic number) of 4 - 2, or 2. This was in accordance with observation. This “proton-electron theory” of nuclear structure accounted for isotopes very nicely. While oxygen-16 had a nucleus made up of 16 protons and 8 electrons, oxygen-17 had one of 17 protons and 9 electrons, and oxygen-18 had one of 18 protons and 10 electrons. The mass numbers were 16, 17, and 18, respectively, but the atomic number was 16 - 8, 17 - 9, and 18 - 10, or 8 in each case. Again, uranium-238 has a nucleus built up, according to this theory, of 238 protons and 146 electrons, while uranium-235 has one built up of 235 protons and 143 electrons. In these cases the atomic number is, respectively, 238 - 146 and 235 - 143, or 92 in each case. The nucleus of the 2 isotopes is, however, of different structure and it is not surprising therefore that the radioactive properties of the two —properties that involve the nucleus—should be different and that the half-life of uranium-238 should be six times as long as that of uranium-235. The presence of electrons in the nucleus not only explained the existence of isotopes, but seemed justified by two further considerations. First, it is well known that similar charges repel each other and that the repulsion is stronger the closer together the similar charges are forced. Dozens of positively charged particles squeezed into the tiny volume of an atomic nucleus couldn’t possibly remain together for more than a tiny fraction of a second. Electrical repulsion would send them flying apart at once. On the other hand, opposite charges attract, and a proton and an electron would attract each other as strongly as 2 protons (or 2 electrons) would repel each other. It was thought possible that the presence of electrons in a collection of protons might somehow limit the repulsive force and stabilize the nucleus. Second, there are radioactive decays in which beta particles are sent flying out of the atom. From the energy involved they could come only out of the nucleus. Since beta particles are electrons and since they come from the nucleus, it seemed to follow that there must be electrons within the nucleus to begin with. The proton-electron theory of nuclear structure also seemed to account neatly for many of the facts of radioactivity. Why radioactivity at all, for instance? The more complex a nucleus is, the more protons must be squeezed together and the harder, it would seem, it must be to keep them together. More and more electrons seemed to be required. Finally, when the total number of protons was 84 or more, no amount of electrons seemed sufficient to stabilize the nucleus. The manner of breakup fits the theory, too. Suppose a nucleus gives off an alpha particle. The alpha particle is a helium nucleus made up, by this theory, of 4 protons and 2 electrons. If a nucleus loses an alpha particle, its mass number should decline by 4 and its atomic number by 4 - 2, or 2. And, indeed, when uranium-238 (atomic number 92) gives off an alpha particle, it becomes thorium-234 (atomic number 90). Suppose a beta particle is emitted. A beta particle is an electron and if a nucleus loses an electron, its mass number is almost unchanged. (An electron is so light that in comparison with the nucleus, we can ignore its mass.) On the other hand, a unit negative charge is gone. One of the protons in the nucleus, which had previously been masked by an electron, is now unmasked. Its positive charge is added to the rest and the atomic number goes up by one. Thus, thorium-234 (atomic number 90) gives up a beta particle and becomes protactinium-234 (atomic number 91). If a gamma ray is given off, that gamma ray has no charge and the equivalent of very little mass. That means that neither the mass number nor the atomic number of the nucleus is changed, although its energy content is altered. Even more elaborate changes can be taken into account. In the long run, uranium-238, having gone through many changes, becomes lead- 206. Those changes include the emission of 8 alpha particles and 6 beta particles. The 8 alpha particles involve a loss of 8 × 4, or 32 in mass number, while the 6 beta particles contribute nothing in this respect. And, indeed, the mass number of uranium-238 declines by 32 in reaching lead-206. On the other hand the 8 alpha particles involve a decrease in atomic number of 8 × 2, or 16, while the 6 beta particles involve an increase in atomic number of 6 × 1, or 6. The total change is a decrease of 16 - 6, or 10. And indeed, uranium (atomic number 92) changes to lead (atomic number 82). It is useful to go into such detail concerning the proton-electron theory of nuclear structure and to describe how attractive it seemed. The theory appeared solid and unshakable and, indeed, physicists used it with considerable satisfaction for 15 years. —And yet, as we shall see, it was wrong; and that should point a moral. Even the best seeming of theories may be wrong in some details and require an overhaul. 81 82 83 Protons in Nuclei Let us, nevertheless, go on to describe some of the progress made in the 1920s in terms of the proton-electron theory that was then accepted. Since a nucleus is made up of a whole number of protons, its mass ought to be a whole number if the mass of a single proton is considered 1. (The presence of electrons would add some mass but in order to simplify matters, let us ignore that.) When isotopes were first discovered this indeed seemed to be so. However, Aston and his mass spectrometer kept measuring the mass of different nuclei more and more closely during the 1920s and found that they differed very slightly from whole numbers. Yet a fixed number of protons turned out to have different masses if they were first considered separately and then as part of a nucleus. Using modern standards, the mass of a proton is 1.007825. Twelve separate protons would have a total mass of twelve times that, or 12.0939. On the other hand, if the 12 protons are packed together into a carbon-12 nucleus, the mass is 12 so that the mass of the individual protons is 1.000000 apiece. What happens to this difference of 0.007825 between the proton in isolation and the proton as part of a carbon-12 nucleus? According to Einstein’s special theory of relativity, the missing mass would have to appear in the form of energy. If 12 hydrogen nuclei (protons) plus 6 electrons are packed together to form a carbon nucleus, a considerable quantity of energy would have to be given off. In general, Aston found that as one went on to more and more complicated nuclei, a larger fraction of the mass would have to appear as energy (though not in a perfectly regular way) until it reached a maximum in the neighborhood of iron. Iron-56, the most common of the iron isotopes, has a mass number of 55.9349. Each of its 56 protons, therefore, has a mass of 0.9988. For nuclei more complicated than those of iron, the protons in the nucleus begin to grow more massive again. Uranium-238 nuclei, for instance, have a mass of 238.0506, so that each of the 238 protons they contain has a mass of 1.0002. By 1927 Aston had made it clear that it is the middle elements in the neighborhood of iron that are most closely and economically packed. If a very massive nucleus is broken up into somewhat lighter nuclei, the proton packing would be tighter and some mass would be converted into energy. Similarly, if very light nuclei were joined together into somewhat more massive nuclei, some mass would be converted into energy. This demonstration that energy was released in any shift away from either extreme of the list of atoms according to atomic number fits the case of radioactivity, where very massive nuclei break down to somewhat less massive ones. Consider that uranium-238 gives up 8 alpha particles and 6 beta particles to become lead-206. The uranium-238 nucleus has a mass of 238.0506; each alpha particle has one of 4.0026 for a total of 32.0208; each beta particle has a mass of 0.00154 for a total of 0.00924; and the lead-206 nucleus has one of 205.9745. This means that the uranium-238 nucleus (mass: 238.0506) changes into 8 alpha particles, 6 beta particles, and a lead-206 nucleus (total mass: 238.0045). The starting mass is 0.0461 greater than the final mass and it is this missing mass that has been converted into energy and is responsible for the gamma rays and for the velocity with which alpha particles and beta particles are discharged. Nuclear Bombardment Once scientists realized that there was energy which became available when one kind of nucleus was changed into another, an important question arose as to whether such a change could be brought about and regulated by man and whether this might not be made the source of useful power of a kind and amount undreamed of earlier. Chemical energy was easy to initiate and control, since that involved the shifts of electrons on the outskirts of the atoms. Raising the temperature of a system, for instance, caused atoms to move more quickly and smash against each other harder, and that in itself was sufficient to force electrons to shift and to initiate a chemical reaction that would not take place at lower temperatures. To shift the protons within the nucleus (“nuclear reactions”) and make nuclear energy available was a harder problem by far. The particles involved were much more massive than electrons and correspondingly harder to move. What’s more, they were buried deep within the atom. No temperatures available to the physicists of the 1920s could force atoms to smash together hard enough to reach and shake the nucleus. In fact, the only objects that were known to reach the nucleus were speeding subatomic particles. As early as 1906, for instance, Rutherford had used the speeding alpha particles given off by a radioactive substance to bombard matter and to show that sometimes these alpha particles were deflected by atomic nuclei. It was, in fact, by such an experiment that he first demonstrated the existence of such nuclei. Rutherford had continued his experiments with bombardment. An alpha particle striking a nucleus would knock it free of the atom to which it belonged and send it shooting forward (like one billiard ball hitting another). The nucleus that shot ahead would strike a film 86 84 85 of chemical that scintillated (sparkled) under the impact. In a rough way, one could tell the kind of nucleus that struck from the nature of the sparkling. In 1919 Rutherford bombarded nitrogen gas with alpha particles and found that he obtained the kind of sparkling he associated with the bombardment of hydrogen gas. When he bombarded hydrogen, the alpha particles struck hydrogen nuclei (protons) and shot them forward. To get hydrogen-sparkling out of the bombardment of nitrogen, Rutherford felt, he must have knocked protons out of the nitrogen nuclei. Indeed, as was later found, he had converted nitrogen nuclei into oxygen nuclei. This was the first time in history that the atomic nucleus was altered by deliberate human act. Rutherford continued his experiments and by 1924 had shown that alpha particles could be used to knock protons out of the nuclei of almost all elements up to potassium (atomic number 19). There were, however, limitations to the use of natural alpha particles as the bombarding agent. First, the alpha particles used in bombardment were positively charged and so were the atomic nuclei. This meant that the alpha particles and the atomic nuclei repelled each other and much of the energy of the alpha particles was used in overcoming the repulsion. For more and more massive nuclei, the positive charge grew higher and the repulsion stronger until for elements beyond potassium, no collision could be forced, even with the most energetic naturally occurring alpha particles. Man-made transmutation. Second, the alpha particles that are sprayed toward the target cannot be aimed directly at the nuclei. An alpha particle strikes a nucleus only if, by chance, they come together. The nuclei that serve as their targets are so unimaginably small that most of the bombarding particles are sure to miss. In Rutherford’s first bombardment of nitrogen, it was calculated that only 1 alpha particle out of 300,000 managed to strike a nitrogen nucleus. The result of these considerations is clear. There is energy to be gained out of nuclear reactions, but there is also energy that must be expended to cause these nuclear reactions. In the case of nuclear bombardment by subatomic particles (the only way, apparently, in which nuclear reactions can be brought about), the energy expended seems to be many times the energy to be extracted. This is because so many subatomic particles use up their energy in ionizing atoms, knocking electrons away, and never initiate nuclear reactions at all. It was as though the only way you could light a candle would be to strike 300,000 matches, one after the other. If that were so, candles would be impractical. In fact, the most dramatic result of alpha particle bombardment had nothing to do with energy production, but rather the reverse. New nuclei were produced that had more energy than the starting nuclei, so that energy was absorbed by the nuclear reaction rather than given off. This came about first in 1934, when a French husband-and-wife team of physicists, Frédéric Joliot-Curie (1900-1958) and Irène Joliot- Curie (1897-1956) were bombarding aluminum-27 (atomic number 13) with alpha particles. The result was to combine part of the alpha particle with the aluminum-27 nucleus to form a new nucleus with an atomic number two units higher—15—and a mass number three units higher—30. The element with atomic number 15 is phosphorus so that phosphorus-30 was formed. The only isotope of phosphorus that occurs 87 in nature, however, is phosphorus-31. Phosphorus-30 was the first man-made nucleus—the first to be manufactured by nuclear reactions in the laboratory. Frédéric and Irène Joliot-Curie The reason phosphorus-30 did not occur in nature was that its energy content was too high to allow it to be stable. Its energy content drained away through the emission of particles that allowed the nucleus to change over into a stable one, silicon-30 (atomic number 14). This was an example of “artificial radioactivity”. Since 1934, over a thousand kinds of nuclei that do not occur in nature have been formed in the laboratory through various kinds of bombardment-induced nuclear reactions. Every single one of them proved to be radioactive. Particle Accelerators Was there nothing that could be done to make nuclear bombardment more efficient and increase the chance of obtaining useful energy out of nuclear reactions? In 1928 the Russian-American physicist George Gamow (1904-1968) suggested that protons might be used as bombarding agents in place of alpha particles. Protons were only one-fourth as massive as alpha particles and the collision might be correspondingly less effective; on the other hand, protons had only half the positive charge of alpha particles and would not be as strongly repelled by the nuclei. Then, too, protons were much more easily available than alpha particles. To get a supply of protons one only had to ionize the very common hydrogen atoms, i.e., get rid of the single electron of the hydrogen atom, and a single proton is left. 88 89 Artificial radioactivity. Of course, protons obtained by the ionization of hydrogen atoms have very little energy, but could energy be imparted to them? Protons carry a positive charge and a force can therefore be exerted upon them by an electric or magnetic field. In a device that makes use of such fields, protons can be accelerated (made to go faster and faster), and thus gain more and more energy. In the end, if enough energy is gained, the proton could do more damage than the alpha particle, despite the former’s smaller mass. Combine that with the smaller repulsion involved and the greater ease of obtaining protons—and the weight of convenience and usefulness would swing far in the direction of the proton. Physicists began to try to design “particle accelerators” and the first practical device of this sort was produced in 1929 by the two British physicists John Douglas Cockcroft (1897-1967) and Ernest Thomas Sinton Walton (1903- ). Their device, called an “electrostatic accelerator”, produced protons that were sufficiently energetic to initiate nuclear reactions. In 1931 they used their accelerated protons to disrupt the nucleus of lithium-7. It was the first nuclear reaction to be brought about by man-made bombarding particles. Other types of particle accelerators were also being developed at this time. The most famous was the one built in 1930 by the American physicist Ernest Orlando Lawrence (1901-1958). In this device a magnet was used to make the protons move in gradually expanding circles, gaining energy with each lap until they finally moved out beyond the influence of the magnet and then hurtled out of the instrument in a straight line at maximum energy. This instrument was called a “cyclotron”. Inventors of one of the first accelerators, Ernest T. S. Walton, left, and John D. Cockcroft, right, with Lord Ernest Rutherford at Cambridge University in the early 1930s.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.