ebook img

Woodworking Tools 16001900 by Peter C Welsh PDF

48 Pages·1900·0.24 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Woodworking Tools 16001900 by Peter C Welsh

The Project Gutenberg EBook of Woodworking Tools 1600-1900, by Peter C. Welsh This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: Woodworking Tools 1600-1900 Author: Peter C. Welsh Release Date: November 12, 2008 [EBook #27238] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK WOODWORKING TOOLS 1600-1900 *** Produced by Chris Curnow, Joseph Cooper, Greg Bergquist and the Online Distributed Proofreading Team at https://www.pgdp.net I Cover design after engraving from Diderot. CONTRIBUTIONS FROM THE MUSEUM OF HISTORY AND TECHNOLOGY: PAPER 51 WOODWORKING TOOLS, 1600–1900 Peter C. Welsh SPECIALIZATION 183 CONFIGURATION 194 CHANGE 214 BIBLIOGRAPHY 227 Peter C Welsh WOODWORKING TOOLS 1600–1900 This history of woodworking hand tools from the 17th to the 20th century is one of a very gradual evolution of tools through generations of craftsmen. As a result, the sources of changes in design are almost impossible to ascertain. Published sources, moreover, have been concerned primarily with the object shaped by the tool rather than the tool itself. The resulting scarcity of information is somewhat compensated for by collections in museums and restorations. In this paper, the author spans three centuries in discussing the specialization, configuration, and change of woodworking tools in the United States. The Author: Peter C. Welsh is curator, Growth of the United States, in the Smithsonian Institution's Museum of History and Technology. n 1918, PROFESSOR W.M.F. PETRIE concluded a brief article on "History in Tools" with a reminder that the history of this subject "has yet to be studied," and lamented the survival of so few precisely dated specimens. What Petrie found so discouraging in studying the implements of the ancient world has consistently plagued those concerned with tools of more recent vintage. Anonymity is the chief characteristic of hand tools of the last three centuries. The reasons are many: first, the tool is an object of daily use, subjected while in service to hard wear and, in some cases, ultimate destruction; second, a tool's usefulness is apt to continue through many years and through the hands of several generations of craftsmen, with the result that its origins become lost; third, the achievement of an implement of demonstrated proficiency dictated against radical, and therefore easily datable, changes in shape or style; and fourth, dated survivals needed to establish a range of firm control specimens for the better identification of unknowns, particularly the wooden elements of tools—handles, moldings, and plane bodies—are frustratingly few in non-arid archaeological sites. When tracing the provenance of American tools there is the additional problem of heterogeneous origins and shapes—that is, what was the appearance of a given tool prior to its standardization in England and the United States? The answer requires a brief summary of the origin of selected tool shapes, particularly those whose form was common to both the British Isles and the Continent in the 17th century. Beyond this, when did the shape of English tools begin to differ from the shape of tools of the Continent? Finally, what tool forms predominated in American usage and when, if in fact ever, did any of these tools achieve a distinctly American character? In the process of framing answers to these questions, one is confronted by a constantly diminishing literature, coupled with a steadily increasing number of tool types.[1] Figure 1. Figure 1.—1685: The principal tools that the carpenter needed to frame a house, as listed by Johann Amos Comenius in his Orbis Sensualium Pictus were the felling axe (4), wedge and beetle (7 and 8), chip axe (10), saw (12), trestle (14), and pulley (15). (Charles Hoole transl., London, 1685. Courtesy of the Folger Shakespeare Library.) Figure 2. Figure 2.—1685: The boxmaker and turner as pictured by Comenius required planes (3 and 5), workbench (4), auger (6), knife (7), and lathe (14). (From Johann Amos Comenius, Orbis Sensualium Pictus. Courtesy of the Folger Shakespeare Library.) The literature of the subject, both new and old, is sparse, with interest always centering upon the object shaped by the craftsman's tool rather than upon the tool itself. Henry Mercer's Ancient Carpenters' Tools, first published in 1929, is an exception. It remains a rich source of information based primarily on the marvelous collections preserved by the Bucks County Historical Society. Since 1933, the Early American Industries Association, both through collecting and through its Chronicle, has called attention to the vanishing trades, their tools and techniques; the magazine Antiques has occasionally dealt with this subject. Historians of economic and industrial development usually neglect the tools of the woodcrafts, and when considering the toolmakers, they have reference only to the inventors and producers of machine tools. The dearth of written material is somewhat compensated for by the collections of hand tools in American museums and restorations, notably those at Williamsburg, Cooperstown, Old Sturbridge Village, Winterthur, the Henry Ford Museum, and Shelburne; at the latter in particular the extensive collection has been bolstered by Frank H. Wildung's museum pamphlet, "Woodworking Tools at Shelburne Museum." The most informative recent American work on the subject is Eric Sloane's handsomely illustrated A Museum of Early American Tools, published in 1964. Going beyond just the tools of the woodworker, Sloane's book also includes agricultural implements. It is a delightful combination of appreciation of early design, nostalgia, and useful fact. Figure 3. Figure 3.—1703: The tools of the joiner illustrated by Moxon are the workbench (A), fore plane (B. 1), jointer (B. 2), strike-block (B. 3), smoothing plane (B. 4 and B. 7), rabbet plane (B. 5), plow (B. 6), forming chisels (C. 1 and C. 3), paring chisel (C. 2), skew former (C. 4), mortising chisel (sec. C. 5), gouge (C. 6), square (D), bevel (F), gauge (G), brace and bit (H), gimlet (I), auger (K), hatchet (L), pit saw (M), whipsaw (N), frame saw (O), saw set (Q), handsaw (unmarked), and compass saw (E). (Joseph Moxon, Mechanick Exercises ..., 3rd ed., London, 1703. Library of Congress.) Figure 4. Figure 4.—1703: Only the principal tools used in carpentry are listed by Moxon: the axe (A), adz (B), socket chisel (C), ripping chisel (D), drawknife (E), hookpin (F), bevel (G), plumb line (H), hammer (I), commander (K), crow (L), and jack (M). (Moxon, Mechanick Exercises ..., 1703. Library of Congress.) Charles Hummel's forthcoming With Hammer in Hand: The Dominy Craftsmen of East Hampton—to be published by the Yale University Press—will be a major contribution to the literature dealing with Anglo-American woodworking tools. Hummel's book will place in perspective Winterthur Museum's uniquely documented Dominy Woodshop Collection. This extensive collection of tools—over a thousand in number—is rich in attributed and dated examples which range from the early 18th through the mid- 19th century. The literature of the subject has been greatly enhanced by the English writer, W.L. Goodman. Extending a series of articles that first appeared in the Journal of The Institute of Handicraft Teachers, Goodman has put together a well-researched History of Woodworking Tools (London, 1964), one particularly useful for its wealth of illustration from antiquity and the Middle Ages. Specialization Given the limitations of precise dating, uncertain provenance, and an uneven literature, what can be learned about woodworking tools after 1600? In some instances, design change can be noted and documented to provide at least a general criteria for dating. Frequently, the original appearance of tools can be documented. For some hand tools, characteristics can be established that denote a national origin. Not infrequently a tool's style, decorative motif, or similarity to other objects that coexisted at a given time can suggest, even in relatively modern times, the values of the society that produced it. The source of such information derived from the hand tool is generally visual, recorded in the tool itself or in pictures of it and supported by manuscript and printed material. Survey the principal printed sources of the 17th, 18th, and 19th centuries. The first thing that is apparent is a remarkable proliferation of tool types without any significant change in the definition and description of the carpenter's or joiner's task. Begin in 1685 with Charles Hoole's translation of Johann Amos Comenius' Orbis Sensualium Pictus for use as a Latin grammar. Among the occupations chosen to illustrate vocabulary and usage were the carpenter (fig. 1), the boxmaker (cabinetmaker), and the turner (fig. 2). "The Carpenter," according to Hoole's text, "squareth Timber with a Chip ax ... and saweth it with a Saw" while the more specialized "Box-maker, smootheth hewen-Boards with a Plain upon a Work-board, he maketh them very smooth with a little plain, he boarth them thorow with an Augre, carveth them with a Knife, fasteneth them together with Glew, and Cramp-irons, and maketh Tables, Boards, Chests &c." Hoole repeated Comenius' plates with the result that the craftsman's tools and his work have the same characteristic medieval flavor as the text.[2] Joseph Moxon in his well-quoted work on the mechanic arts defined joinery as "an Art Manual, whereby several Pieces of Wood are so fitted and join'd together by Straight-line, Squares, Miters or any Bevel, that they shall seem one intire Piece." Including the workbench, Moxon described and illustrated 30 tools (fig. 3) needed by the joiner. The carpenter's tools were less favored by illustration; only 13 were pictured (fig. 4). The tools that the carpenter used were the same as those of the joiner except that the carpenter's tools were structurally stronger. The axe serves as a good example of the difference. The joiner's axe was light and short handled with the left side of the cutting edge bezeled to accommodate one-handed use. The carpenter's axe, on the other hand, was intended "to hew great Stuff" and was made deeper and heavier to facilitate the squaring and beveling of timbers.[3] By mid-18th century the craft of joiner and carpenter had been completely rationalized in Diderot's Encyclopédie and by André Roubo in his L'Art du menuisier, a part of Duhamel's Descriptions des arts et métiers. Diderot, for example, illustrates 14 bench planes alone, generally used by the joiner (fig. 5), while Roubo suggests the steady sophistication of the art in a plate showing the special planes and irons required for fine molding and paneling (fig. 6). Figure 5. Figure 5.—1769: The bench planes of the joiner increased in number, but in appearance they remained much the same as those illustrated by Moxon. (Denis Diderot, Recueil de planches sur les science et les arts libéraux, Paris, 1769, vol. 7, "Menuiserie." Smithsonian photo 56630.) Despite such thoroughness, without the addition of the several plates it would be almost impossible to visualize, through the descriptive text alone, the work of the carpenter and joiner except, of course, in modern terms. This is particularly true of the numerous texts on building, such as Batty Langley's The Builder's Complete Assistant (1738) and Francis Price's The British Carpenter (1765), where building techniques are well described but illustration of tools is omitted. This inadequacy grows. In two 19th-century American editions of British works, The Book of Trades, printed at Philadelphia in 1807, and Hazen's Panorama of the Professions and Trades (1838), the descriptions of the carpenter's trade are extremely elementary. Thomas Martin's Circle of the Mechanical Arts (1813), although far more thorough than many texts, still defined carpentry "as the art of cutting out, framing, and joining large pieces of wood, to be used in building" and joinery as "small work" or what "is called by the French, menuiserie." Martin enumerated 16 tools most useful to the carpenter and 21 commonly used by the joiner; in summary, he noted, as had Moxon, that "both these arts are subservient to architecture, being employed in raising, roofing, flooring and ornamenting buildings of all kinds" (fig. 7).[4] In Peter Nicholson's The Mechanic's Companion (figs. 8, 9, and 10), the all-too-familiar definition of carpentry as "the art of employing timber in the construction of buildings" suggests very little of the carpenter's actual work or the improvement in tool design that had occurred since Moxon's Exercises. From Nicholson's list of the tools required by the carpenter—"a ripping saw, a hand saw, an axe, an adze, a socket chisel, a firmer chisel, a ripping chisel, an auguer, a gimlet, a hammer, a mallet, a pair of pincers, and sometimes planes"—there would seem at first glance slight advance since the 1600's. The enumeration of the joiner's tools, however, indicates a considerable proliferation, particularly when compared to earlier writers. By the early 19th century, the more refined work of joinery required over 50 tools. The bench planes [instructed Nicholson] are, the jack plane, the fore plane, the trying plane, the long plane, the jointer, and the smoothing plane; the cylindric plane, the compass and forkstaff planes; the straight block, for straightening short edges. Rebating planes are the moving fillister, the sash fillister, the common rebating plane, the side rebating plane. Grooving planes are the plough and dado grooving planes. Moulding planes are sinking snipebills, side snipebills, beads, hollows and rounds, ovolos and ogees. Boring tools are: gimlets, bradawls, stock, and bits. Instruments for dividing the wood, are principally the ripping saw, the half ripper, the hand saw, the panel saw, the tenon saw, the carcase saw, the sash saw, the compass saw, the keyhole saw, and turning saw. Tools used for forming the angles of two adjoining surfaces, are squares and bevels. Tools used for drawing parallel lines are gauges. Edge tools are the firmer chisel, the mortise chisel, the socket chisel, the gouge, the hatchet, the adze, the drawing knife. Tools for knocking upon wood and iron are, the mallet and hammer. Implements for sharpening tools are the grinding stone, the rub stone, and the oil or whet stone.[5] Reflecting what the text writers listed, toolmakers by the end of the 18th century gave buyers a wide choice. The catalogue of Sheffield's Castle Hill Works offered 20 combinations of ready-stocked tool chests; the simplest contained 12 carpenter's tools and the most complex, 39, plus, if desired, an additional assortment of gardening implements (fig. 11). In 1857, the Arrowmammett Works of Middletown, Connecticut, producers of bench and molding planes, published an illustrated catalogue that offered 34 distinct types that included everything from hollows and rounds to double jointers and hand-rail planes (fig. 12).[6] Figure 6. Figure 6.—1774: André Roubo's L'Art du menuisier contains detailed plates and descriptions of the most specialized of woodworking planes: those used to cut panel moldings. The conformation of these tools was still distinctly in keeping with the Moxon type and suggests that, at least in Europe, no remarkable change had yet occurred in the shape of planes. (André-Jacob Roubo, L'Art du menuisier: Troisième partie, troisième section, l'art du menuisier ébéniste [Paris, 1774]. Smithsonian photo 49790-D.) Figure 7. Figure 7.—1813: Thomas Martin illustrated on one plate the tools of the carpenter and joiner dividing them as follows: the tools most useful to the carpenter, the axe (7), adz (6), saw (24), socket chisel (13), firmer chisel (5), auger (1), gimlet (3), gauge (16), square (9), compass (36), hammer (21), mallet (22), hookpin (11), crow (12), plumb rule (18), and level (19); and the tools most often associated with joinery, the jack plane (30), trying plane (31), smoothing plane (34), tenon saw (25), compass saw (26), keyhole saw (27), square (8), bevel (23), gauge (17), mortise chisel (4), gouge (14), turnscrew (15), plow plane (29), molding plane (35), pincers (37), bradawl (10), stock and bit (2), sidehook (20), workbench (28), and rule (38). The planes are of particular interest since they show clearly a change in form from those previously illustrated. (Thomas Martin, The Circle of the Mechanical Arts, London, 1813.) Figure 8. Figure 8.—1832: Peter Nicholson illustrated an interesting mixture of old and new forms. An updating of Moxon, Nicholson's carpenter required an axe (1), adz (2), socket chisel (3), mortise and tenon gauge (4), square (5), plumb rule (6), level (7), auger (8), hookpin (9), and crow (10). (Peter Nicholson, The Mechanic's Companion. 1st American ed., Philadelphia, 1832. Smithsonian photo 56633.) Figure 9. Figure 9.—1832: The workbench delineated by Nicholson was little improved over Moxon's, although the planes—jack (1), trying plane (2), smoothing plane (3), sash fillister (7), and plow (8)—followed the form seen in Martin (fig. 7). The inception of this shape occurred in the shops of Sheffield toolmakers in the last half of the 18th century, and it persisted until replaced by metallic versions patented by American innovators during the last quarter of the 19th century. (Nicholson, The Mechanic's Companion. Smithsonian photo 56631.) Figure 10. Figure 10.—1832: The brace and bit, gimlet, chisels, and saws, having achieved a standard form distinctly different than those of Moxon's vintage, were, like the plane, slow to change. The metallic version of the brace did not replace the standard Sheffield type (1) in the United States until after 1850. For all intent and purpose the saw still retains the characteristics illustrated in Nicholson. Of interest is Nicholson's comment regarding the saws; namely, that the double handle was peculiar to the hand (6) and tenon saws (7), while the compass (9) and the sash saws (8) had the single handle. In addition the tenon saw was generally backed in iron and the sash saw in brass. (Nicholson, The Mechanic's Companion. Smithsonian photo 56632.) Figure 11. Figure 11.—Early 19th century: The advertisements of toolmakers indicated the diversity of production. The Castle Hill Works at Sheffield offered to gentlemen 20 choices of tool chests designed to appeal to a wide variety of users and purses. The chest was available in either oak or mahogany, depending on the gentleman's tastes (fig. 49). (Book 87, Cutler and Company, Castle Hill Works, Sheffield. Courtesy of the Victoria and Albert Museum.) Figure 12. Figure 12.—1857: The diversity of tools available to buyers made necessary the illustrated trade catalogue. Although few in number in the United States before 1850, tool catalogues became voluminous in the last half of the century as printing costs dropped. (Smithsonian Institution Library. Smithsonian photo 49790.) American inventories reflect the great increase suggested by the early technical writers and trade catalogues cited above. Compare the content of two American carpenters' shops—one of 1709, in York County, Virginia, and the other of 1827, in Middleborough, Massachusetts. John Crost, a Virginian, owned, in addition to sundry shoemaking and agricultural implements, a dozen gimlets, chalklines, bung augers, a dozen turning tools and mortising chisels, several dozen planes (ogees, hollows and rounds, and plows), several augers, a pair of 2-foot rules, a spoke shave, lathing hammers, a lock saw, three files, compasses, paring chisels, a jointer's hammer, three handsaws, filling axes, a broad axe, and two adzes. Nearly 120 years later Amasa Thompson listed his tools and their value. Thompson's list is a splendid comparison of the tools needed in actual practice, as opposed to the tools suggested by Nicholson in his treatise on carpentry or those shown in the catalogues of the toolmakers.[7] Thompson listed the following: 1 set bench planes $6.00 1 Broad Axe 3.00 1 Adze 2.25 1 Panel saw 1.50 1 Panel saw 1.58 1 fine do— 1.58 1 Drawing knife .46 1 Trying square .93 1 Shingling hatchet .50 1 Hammer .50 1 Rabbet plane .83 1 Halving do .50 1 Backed fine saw 1.25 1 Inch augre .50 1 pr. dividers or compasses— .71 1 Panel saw for splitting 2.75 1 Tennon gauge 1.42 1 Bevel .84 1 Bradd Hammer .50 1 Architect Book 6.50 1 Case Mathematical Instruments 3.62-1⁄2 1 Panel saw 2.75 1 Grafting saw 1.00 1 Bench screw 1.00 1 Stamp 2.50 1 Double joint rule .62-1⁄2 1 Sash saw 1.12-1⁄2 1 Oil Can .17 1 Brace & 36 straw cold bits 9.00 1 Window Frame tool 4.00 1 Blind tool 1.33 1 Glue Kettle .62-1⁄2 1 Grindstone without crank 1.75 1 Machine for whetting saws .75 1 Tennoning machine 4.50 Drafting board and square Bevel— 1.25 1 Noseing sash plane with templets & copes 4.50 1 pr. clamps for clamping doors 2.17 1 Set Bench Planes—double irons.— 7.50 1 Grindstone 300 lbs @ 6.25 1 Stove for shop—$7.25, one elbow .37 & 40 lbs second hand pipe $4.00 11.62 1 Bed moulding 2.00 1 Pr. shears for cutting tin.— .17 1 Morticing Machine 10.75 1 Grecian Ovilo 1.13 1-3⁄16 beed .67 1 Spirit level 2.25 1 Oil stone .42 1 Small trying square .48 1 pareing chisel .37 1 Screw driver .29 1 Bench screw .75 1 Box rule .50 1-3⁄4 Augre .41 11 Gouges 1.19 13 Chisels 1.17 1 small iron vice .52 1 pr. Hollow Rounds .86 4 Framing chisels 1.05 1 Grove plough & Irons—Sold at 4.50 5.00 1 Sash plane for 1-1⁄4 stuff 1.50 1 Copeing plane .67 1 Bead 1⁄4— .75 1 Bead 3⁄4 1.00 1 Rabbet (Sold at .92) .92 1 Smooth plane 1.50 1 Strike Block .92 1 Compass saw .42 6 Gauges 1.83 1 Dust brush .25 1 Rasp, or wood file .25 1 Augre 2 in. .76 1 Augre 1 in. .40 1 Do 3⁄4 .30 1 Spoke shave .50 1 Bevel— .25 1 Box rule .84 1 Iron square 1.42 1 Box rule 1.25 1 Spur Rabbet (Sold—1.17) 1.33 1 Pannel plane 1.25 1 Sash plane 1.25 1 pr. Match planes 2.25 1 Two inch chisel or firmer— .42 1 Morticing chisel 3⁄8 .25 1 Large screw driver 1.00 1 Pr. small clamps .50 1 pr. Spring dividers .92 1 do-nippers .20 1 Morticing chisel 1⁄2 in. .28 1 Ovilo & Ostrigal 3⁄4— 1.25 1 Scotia & Ostrigal 5⁄8— 1.08 1 Noseing— 1.08 1 Pr. Hollow & rounds 1.33 1 Ogee— 1⁄2 inch 1.00 1 Ostrigal 7⁄8 inch 1.00 1 Bit— .15 1 Beed 1⁄2 inch .83 1 Claw hammer .67 1 Fillister 2.50 2 Beeds at 5⁄8 1.83 1 Pair Quirk tools 1.50 1 Side Rabbet plane .83 1 Large steel tongued sq. 1.71 1 Saw & Pad .67 1 pr. fire stones .50 1 small trying sq. .50 1 Set Bench planes double ironed without smooth plane 6.00 1 Bench screw .75 Figure 13. Figure 13.—Early 18th century: In addition to their special function and importance as survivals documenting an outmoded technology, the hand tool often combines a gracefulness of line and a sense of proportion that makes it an object of great decorative appeal. The dividers of the builder or shipwright illustrated here are of French origin and may be valued as much for their cultural significance as for their technical importance. (Smithsonian photo 49792-G.) By 1900, the carpenter's tool chest, fully stocked and fit for the finest craftsman, contained 90 or more tools. Specialization is readily apparent; the change in, and achievement of, the ultimate design of a specific tool is not so easily pinpointed. Only by comparing illustrations and surviving examples can such an evolution be appreciated and in the process, whether pondering the metamorphosis of a plane, a brace and bit, or an auger, the various stages of change encountered coincide with the rise of modern industrial society.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.