ebook img

Unsteady Aerodynamics Experiment Phase V PDF

162 Pages·2001·4.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Unsteady Aerodynamics Experiment Phase V

August 2001 (cid:149) NREL/ TP-500-29491 Unsteady Aerodynamics Experiment Phase V: Test Configuration and Available Data Campaigns M.M. Hand D.A. Simms L.J. Fingersh D.W. Jager J.R. Cotrell National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute •••• Battelle •••• Bechtel Contract No. DE-AC36-99-GO10337 August 2001 (cid:149) NREL/TP-500-29491 Unsteady Aerodynamics Experiment Phase V: Test Configuration and Available Data Campaigns M.M. Hand D.A. Simms L.J. Fingersh D.W. Jager J.R. Cotrell Prepared under Task No. WER1.1110 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute •••• Battelle •••• Bechtel Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.doe.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: [email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste Table of Contents List of Figures.................................................................................................................................ii List of Tables..................................................................................................................................iv Introduction.....................................................................................................................................1 Background.....................................................................................................................................1 Test Facility Description.................................................................................................................4 Location.......................................................................................................................................4 Test Turbine................................................................................................................................4 Instrumentation................................................................................................................................7 Meteorological (MET) Towers...................................................................................................7 Pressure Measurements...............................................................................................................8 5-hole Pressure Probes............................................................................................................9 Static Probe...........................................................................................................................10 Pressure Taps.........................................................................................................................11 Pressure Transducer..............................................................................................................14 Pressure System Controller (PSC)........................................................................................16 Strain Gauges, Accelerometers, and Load Cells.......................................................................16 Miscellaneous Transducers.......................................................................................................17 Flow Visualization....................................................................................................................19 Cameras.................................................................................................................................19 Tufts......................................................................................................................................20 Lighting.................................................................................................................................20 Data Acquisition and Reduction Systems.....................................................................................20 PCM System Hardware.............................................................................................................20 Calibration Procedures..............................................................................................................21 PCM System Software..............................................................................................................23 Derived Channels......................................................................................................................24 Centrifugal Force Correction................................................................................................24 Dynamic Pressure..................................................................................................................25 Pressure Coefficients.............................................................................................................25 Aerodynamic Force Coefficients..........................................................................................26 Flow Angles..........................................................................................................................29 Angle of Attack.....................................................................................................................29 Other Derived Channels........................................................................................................30 Reference Pressure Correction..............................................................................................32 Conclusions...................................................................................................................................33 Appendix A...................................................................................................................................35 Appendix B...................................................................................................................................43 Appendix C.................................................................................................................................123 Appendix D.................................................................................................................................133 Appendix E..................................................................................................................................137 References...................................................................................................................................151 Index............................................................................................................................................153 List of Figures Figure 1. Phase V test configuration..............................................................................................4 Figure 2. Drive train configuration................................................................................................5 Figure 3. Twisted-blade planform..................................................................................................6 Figure 4. Blade twist distribution at the pitch setting used most frequently during experiment data acquisition: 3° (at tip)......................................................................................................6 Figure 5. Phase V meteorological instrumentation. Elevation view looking downwind toward 112°. Meteorological instruments are 1.5 D (15 m) upwind of the turbine tower.................7 Figure 6. Blade-mounted 5-hole probe...........................................................................................9 Figure 7. Upwind static probe......................................................................................................11 Figure 8. Pressure instrumentation...............................................................................................12 Figure 9. Blade pitch angle orientation........................................................................................17 Figure 10. Blade azimuth angle convention(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)(cid:133)..(cid:133)18 Figure 11. Yaw angle convention.................................................................................................18 Figure 12. Blade flap angle convention.......................................................................................19 Figure 13. Aerodynamic force coefficient conventions...............................................................28 Figure 14. Local flow angle flag assembly..................................................................................30 Figure 15. Yaw error angle convention........................................................................................31 Figure 16. Blade root surface depiction (dimensions in meters).................................................38 Figure 17. Hub-mounted instrumentation boxes, boom, and camera...........................................40 Figure 18. Cup anemometer wiring diagram................................................................................46 Figure 19. Bi-vane anemometor wiring diagram..........................................................................52 Figure 20. Sonic anemometer wiring diagram.............................................................................55 Figure 21. Temperature, delta temperature, and dew-point wiring diagram................................60 Figure 22. Barometer wiring diagram..........................................................................................62 Figure 23. Teeter link load cell location......................................................................................64 Figure 24. Teeter link load cell....................................................................................................64 Figure 25. Teeter damper load cell locations...............................................................................66 Figure 26. Teeter damper load cell cross-sectional view.............................................................66 Figure 27. Hub-shaft strain gauge orientation..............................................................................70 Figure 28. Planview of hub shaft strain gauges...........................................................................70 Figure 29. Root-bending gauges, side view.................................................................................71 Figure 30. Root-bending strain gauge configuration....................................................................72 Figure 31. Low-speed shaft strain gauge positions......................................................................74 Figure 32. Low-speed shaft strain gauge configuration...............................................................74 Figure 33. Low-speed shaft strain gauge location within nacelle................................................75 Figure 34. Yaw moment strain gauge configuration....................................................................76 Figure 35. Nacelle accelerometer configuration..........................................................................78 Figure 36. Blade tip accelerometer configuration........................................................................79 Figure 37. Blade pitch angle orientation......................................................................................82 Figure 38. Azimuth angle encoder photograph and orientation...................................................83 Figure 39. Yaw angle encoder photograph and orientation.........................................................83 Figure 40. Blade flap angle encoder location...............................................................................86 Figure 41. Blade flap angle close-up view...................................................................................86 Figure 42. Blade flap angle convention.......................................................................................87 Figure 43. Pneumatic layout for spring 1998 data collection......................................................92 Figure 44. Pneumatic layout for fall 1998 data collection...........................................................93 Figure 45. Nitrogen tank enclosure..............................................................................................94 ii Figure 46. Mensor electrical ports...............................................................................................96 Figure 47. Upwind probe.............................................................................................................96 Figure 48. Time code generator...................................................................................................98 Figure 49. Rotor based PCM enclosure.....................................................................................106 Figure 50. Ground-based PCM rack, front view and rear view.................................................107 Figure 51. Signal path from PCM streams to useable data........................................................109 Figure 52. Production of calibration and header files (calibration procedures are summarized on p. 111)..................................................................................................................................109 Figure 53. Data processing flow chart.......................................................................................110 Figure 53. Aerial view of site layout..........................................................................................138 Figure 54. Plan view of site showing location of meteorological instruments relative to turbine .............................................................................................................................................139 Figure 55. Rotor instrumentation block diagram.......................................................................140 Figure 56. Rotor instrumentation enclosure and connector layout............................................141 Figure 57. Rotor-based PWR enclosure (side view)..................................................................142 Figure 58. Rotor-based PSC enclosure (side view)....................................................................143 Figure 59. Rotor-based PSC enclosure (top view).....................................................................144 Figure 60. Rotor-based PCM enclosure (side view)..................................................................145 Figure 61. Ground-based PCM rack power................................................................................146 Figure 62. Ground-based PCM rack I/O....................................................................................147 Figure 63. Aspirator alarm panel schematic...............................................................................148 Figure 64. Aspirator alarm panel wiring....................................................................................149 Figure 65. Pressure tap layout....................................................................................................150 iii List of Tables Table 1. Unsteady Aerodynamics Experiment Configuration Differences....................................3 Table 2. Local Inflow Measurements.............................................................................................8 Table 3. 5-Hole Probe Pressures..................................................................................................10 Table 4. Pressure Tap Channels...................................................................................................13 Table 5. Pressure Tap Chord Locations.......................................................................................13 Table 5. Pressure Tap Chord Locations (continued)....................................................................14 Table 6. Nominal, Full-scale, Pressure Transducer Measurement Ranges..................................14 Table 7. Mensor Channels............................................................................................................15 Table 8. Load Measurements.......................................................................................................17 Table 9. Miscellaneous Transducers.............................................................................................19 Table 10. Phase II PCM Decoder Board Specifications..............................................................21 Table 11. Uncertainty Analysis Results for Selected Phase II Measured Channels....................23 Table 12. Dynamic Pressure Measurements................................................................................25 Table 14. Aerodynamic Force Coefficients..................................................................................28 Table 14. Local Flow Angle Measurements (5-Hole Probe).......................................................29 Table 15. Upwash Corrected LFA Measurements.......................................................................30 Table 16. Miscellaneous Channels...............................................................................................32 Table 17. Reference Pressure Correction Factors........................................................................32 Table 18. Blade Twist..................................................................................................................37 Table 19. Airfoil Profile Coordinates..........................................................................................38 Table 20. Wind Tunnel Profile Coefficients................................................................................39 Table 21. Phase V, Twisted Blade, Structural Properties............................................................41 Table 22. Pressure Tap Chord Locations.....................................................................................89 Table 23. Strain Gauge Calibration File Names........................................................................111 Table 24. Electronic Path Calibration File Names and Voltage Ranges...................................112 Table 25. Phase V Instrumentation Summary............................................................................124 Table 26. Phase V Data Index....................................................................................................134 iv Introduction The main objective of the Unsteady Aerodynamics Experiment is to provide information needed to quantify the full-scale, three-dimensional, unsteady aerodynamic behavior of horizontal-axis wind turbines (HAWTs). To accomplish this, an experimental wind turbine configured to meet specific research objectives was assembled and operated at the National Renewable Energy Laboratory (NREL). The turbine was instrumented to characterize rotating-blade aerodynamic performance, machine structural responses, and atmospheric inflow conditions. Comprehensive tests were conducted with the turbine operating in an outdoor field environment under diverse conditions. Resulting data are used to validate aerodynamic and structural dynamics models, which are an important part of wind turbine design and engineering codes. Improvements in these models are needed to better characterize aerodynamic response in both the steady-state post-stall and dynamic- stall regimes. Much of the effort in the first phase of the Unsteady Aerodynamics Experiment focused on developing required data acquisition systems. Complex instrumentation and equipment was needed to meet stringent data requirements while operating under the harsh environmental conditions of a wind turbine rotor. Once the data systems were developed, subsequent phases of experiments were then conducted to collect data for use in answering specific research questions. A description of the experiment configuration used during Phase V of the experiment is contained in this report. Background Test results from previous phases of the Unsteady Aerodynamics Experiment have shown that wind turbines undergo complex aerodynamic reactions when operating in typical atmospheric conditions. All wind turbine design codes are based on aerodynamic forces derived from steady two-dimensional (2-D) wind tunnel airfoil test results. Blade designs are developed assuming steady loading optimization principles. Although these design codes produce accurate predictions on average, instantaneous loads and peak power predictions are often incorrect. For HAWTs, these principles are accurate for low to moderate wind speeds, provided that the inflow remains constant. In reality, the inflow conditions exhibit an extremely complex and dynamic nature. Factors such as atmospheric turbulence, shear across the rotor plane, yawed operation, and blade passage through the tower wake all contribute to constantly changing aerodynamic forces that do not obey steady principles. Resulting unsteady aerodynamic forces can be significantly greater than steady forces. These increased fluctuating forces lead to greater dynamic turbine structural responses and high fatigue stresses. With the trend toward lightweight flexible turbines, unsteady aerodynamic loading has become an even more important consideration in predicting dynamic turbine responses. In order to bridge this gap between the three-dimensional (3-D), unsteady operating environment and the 2-D, steady design environment, NREL implemented the Unsteady Aerodynamics Experiment measurement program designed to obtain experimental data from the 3-D field environment. Measurements needed to quantify the 3-D effects of field operation include meteorological data, loads, local flow angles, and blade surface pressures. Meteorological instrumentation was configured to obtain wind speed, wind direction, and atmospheric stability measurements upwind of the turbine. Loads, such as power production, teeter impact, low-speed shaft bending and torque, blade root bending, and tower motion, were obtained using various 1 power transducers, load cells, accelerometers, and strain gauges. Two devices have been used to obtain local flow characteristics in front of one of the two blades. A flag assembly measured local flow angles during the earlier phases of the experiment, and 5-hole differential pressure probes were implemented in the latter phases of the experiment to improve the dynamic response of the local flow angle measurement. Lastly, blade surface pressures were first measured at one blade span location, but the measurements were extended to five span locations as the experiment progressed. In addition to various measurement capabilities, two blade designs were tested. A constant-chord zero-twist blade set was used in Phase I and Phase II tests. A constant- chord, optimally twisted blade set was used in Phases III and IV. Future tests are planned for a tapered and twisted blade set. The turbine configuration originally consisted of a three-bladed, rigid hub. The current phase, Phase V, introduced a two-bladed, teetered-hub configuration using the constant-chord, optimally twisted blades. The Unsteady Aerodynamics Experiment was begun in 1987 (it was initially called the “Combined Experiment”) and has been implemented in five phases to date. Phase I planning began in 1987 and produced valuable knowledge and experience with these types of measurements (Butterfield, Musial, and Simms 1992). The instrumentation configuration that resulted in Phase I was used to obtain the Phase II data in the spring of 1989. Untwisted blades were used again in Phase II, and the pressure instrumentation was expanded from one to four span locations. Optimally twisted blades were designed for Phase III of the project, which began in 1993 and resulted in data sets in early 1995. The fourth phase, initiated in late 1995, also used the twisted blades; the flow angle measurements, however, were improved. The instrumentation differences between the Phase II, Phase III, and Phase IV configurations were described by Simms et al. (1999). This report contains information regarding Phase V, which was conducted during 1998. However, the major differences between the various phases of data collection are summarized in Table 1. This report provides the reader with information related to Phase V data collection. For information regarding Phases II-IV, the reader is referred to Butterfield, Musial, and Simms (1992) and Simms et al. (1999). The tables in the body of this report that describe the channels collected by the data system are based upon the header files that accompany each data campaign. Appendix A provides details of the turbine configuration that could be used to develop models. Detailed descriptions and figures of each component of instrumentation are included in Appendix B. Flow charts illustrate the complete signal path from the measurement source to the resulting data file. Calibration procedures are presented for each instrument. Data processing procedures and the associated input files are described in Appendix B as well. Appendix C contains manufacturer specifications for the instrumentation components summarized in one table. General atmospheric and turbine conditions, instrumentation failures, and observations made during data collection are summarized in Appendix D. 2 Table 1. Unsteady Aerodynamics Experiment Configuration Differences Phase II Phase III Phase IV Phase V Dates for data collection 4/25/89 - 7/25/92 4/7/95 -6/6/95 4/3/96 - 5/18/96 and 6/11/98-6/18/98 and 4/29/97 - 5/7/97 10/28/98-11/18/98 Blades / hub Untwisted / rigid Twisted / rigid Twisted / rigid Twisted / teeter Number of blades 3 3 3 2 Local flow angle (LFA) measurement device Flag Flag, 5-Hole Probe 5-Hole Probe 5-Hole Probe (test) Span locations instrumented with LFA sensors 4 5 5 5 Span locations instrumented with full-chord pressure taps 4 5 5 5 Span locations instrumented with pairs of pressure taps 6 10 10 10 Azimuth angle measurements and rotor speed calculation Poor Good Good Good Meteorological instrumentation Vertical Plane Horizontal and Horizontal and Horizontal and Array Vertical Shear Vertical Shear Vertical Shear Blade strain gauges / blade root strain gauges Yes / yes Yes / yes No / yes No / yes Blade tip and nacelle accelerometers No Yes Yes Yes Selections of data during which yaw brake engaged Yes No Yes Yes Campaign duration 5 minutes 10 minutes 10 minutes 10 minutes Boom extension and camera mounted on hub; tufts on Yes No Yes Yes suction side of instrumented blade Video Yes No Yes Yes Pitch angles (blade tip) 12° 3°, -3°, 8° 3°, -3°, 8°, 12°, -9° 3°, -3°, 8°, 12°, -9° File naming conventions: d6511, d6512, data1-data19 data20-data112, d503003-d503014, • parked#, d4pb###, and d5pb###: Rotor brake engaged d6521, d6522, parked1, parked2, slwrot4, slwrot5 d503017-d503040, with instrumented blade at either 0°°°° or 180°°°° azimuth d6611,…,d7521, slwrot1, slwrot2 d403001-d403039, d5m3001-d5m3004, • slwrot# and d4sr###: Blades feathered with rotor d7522 d408001-d408012, d5m3008-d5m3014, slowly rotating d4m3001-d4m3012, d508007-d508012, • d5y3###: yaw brake engaged throughout campaign, d4pb001-d4pb009, d512001, pitch angle of 3°°°° (parked1 and d4sr001, d412001, d5m9001-d5m9006, • d4pp###, and d5pp###: ‘pp’ indicates pitch angle, ‘m’ parked2 are 60 d4m9001 d5y3001-d5y3002, indicates negative value second duration) d5pb012-d5pb022 • # indicates numerical order in which data collected Number of campaigns 58 23 170 73 3

Description:
Golden, Colorado 80401-3393. NREL is a Geometry. • Blade cross section and planform: NREL S809 (constant chord, no taper, optimally twisted) Asse m b ly. Yaw. Tube. Electrical. Junction. Bo x. 4215. 0.50m . [19.8in.] 0.81m . [31.77in.] 0.01m . [0.39in.] LSS XX or YY Bending - Ch. #237 or 239.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.