ebook img

Universal Absence of Walker Breakdown and Linear Current-Velocity Relation via Spin-Orbit Torques in Coupled and Single Domain Wall Motion PDF

0.63 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Universal Absence of Walker Breakdown and Linear Current-Velocity Relation via Spin-Orbit Torques in Coupled and Single Domain Wall Motion

UniversalAbsenceofWalkerBreakdownandLinearCurrent–VelocityRelation viaSpin–OrbitTorquesinCoupledandSingleDomainWallMotion Vetle Risinggård and Jacob Linder ∗ DepartmentofPhysics,NTNU,NorwegianUniversityofScienceandTechnology,N-7491Trondheim,Norway (Dated:December21,2016) Weconsidertheoreticallydomainwallmotiondrivenbyspin–orbitandspinHalltorques. Wefindthatit ispossibletoachieveuniversalabsenceofWalkerbreakdownforallspin–orbittorquesusingexperimentally relevantspin–orbitcouplingstrengths. Forspin–orbittorquesotherthanthepureRashbaspin–orbittorque, thisgivesalinearcurrent–velocityrelationinsteadofasaturationofthevelocityathighcurrentdensities.The effectsisveryrobustandisfoundinbothsoftandhardmagneticmaterials,aswellasinthepresenceofthe 7 Dzyaloshinskii–Moriyainteractionandincoupleddomainwallsinsyntheticantiferromagnets,whereitleadsto 1 veryhighdomainwallvelocities. 0 2 n Domain wall motion in ferromagnetic strips is a central ultrathinferromagnetwithaheavymetalunderlayerasshown a themeinmagnetizationdynamics. Thetopichasfundamental inFigure1. Wedescribethedynamicsofthemagnetization J interest,andhasrecentlybeeninstrumentaltothediscoveryof m(r,t)usingtheLandau–Lifshitz–Gilbert(LLG)equation[19, 3 severalnewcurrent-inducedeffectsonthemagnetizationdy- 20], ] namics[1–6].Particularlysincetheproposalofracetrackmem- α ll ories[7]—madepossiblebycurrent-inducedtorques—domain ∂tm =γm×H − mm×∂tm+τ, (1) a wallmotionhasalsohadatechnologicalinterest,motivating h where γ < 0 is the gyromagnetic ratio, m is the saturation thesearchforeverhigherdomainwallvelocities. Theattain- - magnetization,α < 0istheGilbertdamping, H = δF/δm s able velocity of a domain wall driven by conventional spin- − e istheeffectivefieldactingonthemagnetizationandτ isthe m transfertorques(STTs)islimitedbytheWalkerbreakdown[8], current-inducedtorques. ThefreeenergyF oftheferromagnet uponwhichthedomainwallhasanegativedifferentialvelocity . isasum, t withrespecttothecurrent. a m Current-induced torques derived from spin–orbit effects F = dr f + f + f + f , (2) (SOTs)suchasaninterfacialRashbaspin–orbitcoupling[9– Z ex DM a - Z d 11]orthespinHalleffect[4–6,12]haveenabledlargedomain (cid:16) (cid:17) n wall velocities. We consider the dependence of the domain o wallvelocityonthecurrentandfindthatregardlessoftherel- c [ ativeimportanceofthereactiveanddissipativecomponents of the torque it is possible to achieve universal absence of 1 Walkerbreakdownforallcurrentdensitiesforexperimentally v relevantspin–orbitcouplingstrengths. Forspin–orbittorques 6 8 otherthanthepureRashbaSOTs,suchasthespinHalltorques, 7 thevelocitywillnotsaturateasafunctionofcurrent,butin- 0 creaselinearlyaslongasaconventionalspin-transfertorque 0 ispresent. Thisbehaviorisrobustagainstthepresenceofan . 1 interfacialDzyaloshinskii–Moriyainteraction[13,14]andis 0 foundbothinperpendicularanisotropyferromagnetsandin 7 shapeanisotropy-dominatedstrips. 1 Veryrecently,domainwalldynamicsinbilayerracetracks : v antiferromagneticallycoupledbyinterlayerexchangehasbeen i X consideredboththeoreticallyandexperimentally[15–18]. We r findthatthissystemalsoexhibitsuniversalabsenceofWalker a breakdownandasymptoticlineardependenceofthevelocityon Figure1.Domainwalldynamicsinasingleferromagnet.(a)Ultrathin ferromagnetwithaheavymetalunderlayer.Weconsidertransverse thecurrent. Thestrengthoftheinterlayerexchangecoupling (IEC) determines the rate at which the velocity approaches domainwallmotionalongthexaxis.r,σlandσsdenotethethree nontrivialoperationsofthesymmetrygroupC2v.(b)Current–velocity theasymptoticsolution. Thisenablesveryhighdomainwall relationforthreedifferentSOTs. TheRashbaSOTslevelofftoa velocitiesforrelativelysmallcurrentdensities. Thecombina- constant velocity at large currents, whereas the spin Hall torques tionofSOTswiththeinterlayerexchangetorquealsoenables asymptoticallyapproachalinearcurrent–velocityrelation. Dashed otherinterestingeffectssuchasanonmonotonicdependence linesshowtheasymptoticexpansionanddottedcurvesshowtheseries ofthedomainwallvelocityontheratioofthethicknessesof about j =0.Weuseγ= 0.19GHz/T,λ =4nm,Ky =200kJ/m3, − theferromagnets. m = 1MA/m, D = 1.4mJ/m2, α = 0.25, β = 0.5, P = 0.5, − − UniversalAbsenceofWalkerBreakdown. Weconsideran Hx =0,αR=6.3meVnm,θSH=0.1, βSH=0.02andt =1.2nm. 2 oftheZeemanenergyduetoanyappliedmagneticfields,the As can be seen from the LLG equation (1), the magni- isotropicexchange,themagneticanisotropyandtheinterfacial tude m of the magnetization is constant, and the magnetiza- Dzyaloshinskii–Moriyainteraction. tionisconvenientlyparameterizedinsphericalcoordinatesas TheZeemanenergyandtheisotropicexchangecanbewrit- m/m = cosφsinθex +sinφsinθey +cosθez. Usingtheas- tenrespectivelyas[20] f = H m,whereH istheapplied sumptionthatthereisnomagnetictexturealongthe yandthe Z 0 0 − · magnetic field, and [20] fex = (A/m2)[( mx)2 + ( my)2 + zaxes,giving =∂xex,wecanfindthedomainwallprofile ∇ ∇ ∇ ( mz)2], where Ais the exchange stiffness. Inversion sym- byminimizingthefreeenergyorbysolvingtheLLGequation ∇ metrybreakingattheinterfacebetweentheheavymetaland (1)inthestaticlimit,∂tm =0.Ifweassumethattheazimuthal the ferromagnet gives rise to an anisotropic contribution to angleφisindependentofposition,thisgivestheNéelwallso- theexchangeknownastheDzyaloshinskii–Moriyainteraction, lutionθ =2arctanexp[ (x X)/λ]forthepolarangle,where ± − whichfavorsacantingofthespins[13,14,21]. Theresulting X isthedomainwallpositionandλ = A/Kz isthedomain contributiontothefreeenergyis fDM = (D/m2)[mz( m) wallwidth;andφ=nπ,wheren=0,2,4,...ifD <0andwe ∇· − p (m )mz],whereDisthemagnitudeoftheDzyaloshinskii– choose the + sign for θ, and n=1,3,5,... if D >0 and we ·∇ Moriyavector. choosethe signforθ. − Ultrathin magnetic films are prone to exhibit perpendicu- SubstitutionofthisdomainwallprofileintothefullLLG lar magnetization due to interface contributions to the mag- equation (1) using H0 = Hxex and a positive topological netic anisotropy [22]. Consequently, we write the magnetic chargegivesthecollectivecoordinateequations, anisotropyenergyas fa =−Kzmz2+Kym2y,correspondingtoan αX˙ βu easyaxisinthez-directionandahardaxisinthe y-direction. φ˙=+πγ H βH cosφ+ , (6) Thecurrent-inducedtorquesτ areconventionallydivided λ − 2 SH− R λ intospin-transfertorques[23–25], (1+α2)φ˙= α(cid:16)γKy sin2φ+(cid:17)παγ(D−Hxmλ) sinφ (7) − m 2mλ βu u(α+ β) (cid:102) (cid:103) τSTT =u∂xm− m m×∂xm, (3) − λ − π2γ HSH(1−αβSH)−HR(α+ β) cosφ, andspin–orbittorques[4–6,9–12], for the domain wall position X and tilt φ. The equations can be simplified by introducing aj = πγ(H βH ), τR =γm×HRey −γm× m× βHRey/m , (4) bj = βu/λ, c = 2αγKy/m, d = παγ(D 2 HxmSHλ)−/(2mλR), τSH =γm× m×HSHey/(cid:16)m +γm× βSH(cid:17)HSHey. (5) Weja=lke−rπ2bγre[HakSdHo(w1−−nαisβaSbHs)e−nHtwR(hαe+nβth)e]atinmdef−dje=riv−auti(vαe+φ˙βv)a/nλ-. (cid:16) (cid:17) In fact, assuming that the stack can be described using the ishes,resultinginthecondition C2v symmetrygroupasindicatedbythesymmetryoperations 0=csinφcosφ+dsinφ+ j(ecosφ+ f). (8) in Figure 1(a), it can be shown that these torques exhaust the number of possible torque components if the current is If e > f this equation will always have a solution for φ re- onlyappliedinthe xdirectionandthewidth(ydirection)and gardless of the value of j. For realistic material values this the thickness (z direction) of the ferromagnetic layer are so corresponds to a Rashba parameter α > 4µ2/(πeγλ) = R B smallthatthereisnomagnetictexturealongtheseaxes(see 5.5meVnm(pureRashbaSOTs)oraspinHallangle θ > SH SupplementalMaterialfordetails[26]). 4µ Pt/(π~γλ) =0.091(purespinHalltorques). Theabsence B Thereisonereactiveandonedissipativespin-transfertorque, ofWalkerbreakdownforsufficientlystrongRashbaspin–orbit whoserelativemagnitudeisparameterizedby β[23–25]. The couplinghasbeenpointedoutpreviously[27],andcanalsobe strengthoftheSTTsisdeterminedbytheelectriccurrent jand notedinreferences[10,28–30]. itsspinpolarizationPthroughu= µBPj/[em(1+ β2)]where Letuswrite ξ = cosφandη = sinφ,sothat ξ2 +η2 = 1. µB is the Bohr magneton and e is the electron charge. The Solvingequation(8)forηtogetη = j(eξ+ f)/(cξ+d),this Rashba SOTs τ are due to the Rashba spin–orbit coupling − R relationgivesaquarticequation inducedintheferromagnetbythebrokeninversionsymmetry at the heavy metal interface [9–11]. Just as for the STTs, c2ξ4+2cdξ3+[(ej)2+d2 c2]ξ2 − (9) thereisonereactiveandonedissipativetorque(β-term). The +2(efj2 cd)ξ+(fj)2 d2 =0. strength of the Rashba SOTs is determined by the Rashba − − spin–orbit coupling α and the spin current through H = Theexactsolutionsofthequartic(9)arehopelesslycompli- R R α Pj/[2µ m(1+ β2)]. ThespinHalltorquesτ aredueto cated.However,theyallhavethesameseriesexpansionaround R B SH thetransversalspincurrentinjectedintotheferromagnetfrom j =0and j = . Weconsiderfirsttheasymptoticexpansion, ∞ theheavymetalduetothespinHalleffect[4–6,12]. Since whichgives the polarization direction of this current changes sign upon f S time-reversaltheprincipalspinHalltorquetermisdissipative, ξ = + 1 + j−2 , (10) −e j O whilethe β correctionisreactive. Themagnitudeofthespin SH (cid:16) (cid:17) Halltorquesisdeterminedbytheinjectedspincurrentandthe where S represents the solutions of the quadratic equation 1 thicknessoftheferromagnett throughH =~θ j/(2emt). e6ζ2 = d2e4+c2f4+(c2 d2)f2e2+2cdef(f2 e2). The SH SH − − 3 domainwallvelocity,asgivenbyequation(6)thentakesthe form αX˙ af λ = bj− e j+aS1+aO j−1 . (11) (cid:16) (cid:17) Back-substitutionoftheabbreviationsa,b, f andeshowsthat forpureRashbaSOTsthecoefficientofthelineartermreduces tozerobecausetheratioofthereactivetothedissipativetorque isthesamefortheSTTsandtheRashbaSOTs. Thus,forlarge j the domain wall velocity approaches a constant. Instead, for pure spin Hall torques we get the linear term uα(1 + − ββ )/[λ(1 αβ )]. Thismeansthatforlarge jthevelocity SH SH − isactuallyindependentofthesignofthespinHallangleand increaseslinearlywith j. Notetheimportanceofincludingthe STTs—whicharealwayspresent—intheseconsiderations: in theabsenceofSTTs(u 0)bothband f gotozeroandthe → velocitylevelsofftoaconstantforlarge j foranycombination ofSOTs. For completeness, we also consider the series expansion about j = 0,whichgivesξ = 1+[(e f)2/2(c d)2]j2+ − − − (j4) and X˙ = bj aj +[a(e f)2/2(c d)2]j3+a (j5). O − − − O Thekeyobservationhereisthatinthisregimethevelocitydoes dependonthesignofthespinHallangle(a θ forpure SH ∝ spinHalltorques)andincreaseswiththecubeof j. Figure1(b) showsanumericalsolutionofthecoupledequations(6)and (7)asafunctionof j forpureRashbaSOTsandforpurespin Halltorquesbothinthecasesofθ >0andθ <0together SH SH withtheanalyticalsolutionscloseto j =0andforlarge j. We seethatouranalyticalresultssuccessfullyapproximatethefull Figure2.Domainwalldynamicsininterlayerexchangecoupledfer- solutionintheexpectedrangesofvalidity(seeSupplemental romagnets.(a)Twoultrathinferromagnetsseparatedbyaninsulating Materialforadescriptionofthenumerics[26]). spacerwithheavymetalover-andunderlayers.Theferromagnetsare Thein-planehardaxisincludedinthemagneticanisotropy identicalexceptfortheirthicknesses,butthedifferentheavymetals is appropriatefor narrow ferromagneticstrips, which gener- inducedifferentDMIandSOTs.(b)and(c):Domainwalldynamics allyhostNéelwalls. WiderstripsgiveBlochwalls[22],and insingleferromagnetscomparedwithaSAFstructure.Blackcurves correspondtowallsdrivenbySTTsonly,whileorangecurvesinclude bymakingthenecessarymodificationstotheabovecalcula- spinHalltorques. (b)TheIECdelaysWalkerbreakdownforSTT- tions,wefindthatinthiscasethedomainwallvelocityretains driving.WithspinHalltorquesthereisuniversalabsenceofWalker thequalitativefeatureselucidatedabove. Thisisalsotruefor breakdownandtheIECrescalesthecurrentaxis.Boththeresultsfor shapeanisotropy-dominatedstrips,whichhosthead-to-head STTsandspinHalltorquesaretheresultofasuppressionofthetilt walls. This shows that universal absence of Walker break- angleasshownin(c). (d)TheIECgivesthevelocityanonmono- downisarobusteffectthatdoesnotdependonthedetailsof tonicthickness-dependenceresultinginapeakclosetot1/t2 = 1. theferromagneticmaterial,unlikeotherSOTeffectsstudied Results in (d) are shown for j = 3·1013A/m2, corresponding to the dashed vertical line in (b). We use the same parameters as in previously[31]. CoupledDomainWallsinaSAFStructure.Weconsidernext FJig=u(r5em1Jw/imth2t)2/t=1t2t1. =1.2nm(exceptin(d)wheret2isvaried)and anasymmetricstackoftwoultrathinferromagnetsseparated byaninsulatingspacerasshowninFigure2(a). Wedescribe thedynamicsofeachoftheferromagnetsusingseparateLLG twoferromagnets,aswellasontheirstrengthrelativetothe equationssimilarlytowhatwasdoneintheprevioussection, interlayer exchange and on the relative thickness of the fer- butaddtothefreeenergyacouplingterm, romagnets. To limit the scope of the treatment we consider (cid:102) (cid:103) onlythecasewhereD andD havethesamesign. Thus,for dr dr 1 2 FIEC = m(11) m(22) J(r1−r2) m(1)(r1)·m(2)(r2) , (12) oppositetopologicalchargesforthetwowalls,boththeDMI Z Z andtheIECfavorthesamechiralitiesforthewalls. representingtheinterlayerexchange(IEC).Weassumethatthe Followingthesameprocedureasintheprevioussectionwe IECislocalintheplane, J(r r ) = Jδ(x x )δ(y y ). maynowderivefourcoupledcollectivecoordinateequations 1 2 1 2 1 2 − − − Equation (12) then represent the lowest order coupling pro- (seeSupplementalMaterial[26]). Wesolvetheseequations posed by Bruno [32]. The static solution will now depend numericallyfort /t =1inthepresenceofSTTsonlyandin 1 2 onthesignsoftheDzyaloshinskii–Moriyainteractionsinthe thepresenceofspinHalltorquestogetthecurrent–velocity 4 relations shown in Figure 2(b). We see that the presence of theIECdelaysWalkerbreakdownwhenthewallisdrivenby ordinarySTTs,butthesubcriticaldifferentialvelocityremains unaffected. This can also be shown analytically by solving ∗ [email protected] [1] I.M.Miron,P.-J.Zermatten,G.Gaudin,S.Auffret,B.Rodmacq, forthetiltangleofthewallasafunctionofcurrent. Sucha andA.Schuhl,Phys.Rev.Lett.102,137202(2009). calculationshowsthatthetiltangleissuppressedbytheIEC [2] I.M.Miron, G.Gaudin, S.Auffret, B.Rodmacq, A.Schuhl, (butthebreakdownangleisstillπ/4).Back-substitutionofthis S.Pizzini, J.Vogel, andP.Gambardella,Nat.Mater.9,230 angleintothetorqueactingonthewallshowsthatthistorque (2010). isindependentof J,explainingthatthereisnochangeinthe [3] I.M.Miron,T.Moore,H.Szambolics,L.D.Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, differentialvelocity. A.Schuhl, andG.Gaudin,Nat.Mater.10,419(2011). AverysimilarmechanismemergesfromthespinHalltorque [4] S.Emori,U.Bauer,S.-M.Ahn,E.Martinez, andG.S.D.Beach, results,whichshowthatthemaineffectoftheIECistorescale Nat.Mater.12,611(2013). thecurrentaxis. Sucharescalingofthecurrentcanbeunder- [5] K.-S.Ryu,L.Thomas,S.-H.Yang, andS.Parkin,Nat.Nan- stoodintermsoftheexpansion(10)simplyasarescalingof otechnol.8,527(2013). theconstantS andthehigherorderconstantsS ,S ,... Again [6] P.P.J.Haazen,E.Murè,J.H.Franken,R.Lavrijsen,H.J.M. 1 2 3 thisisnothingbutasuppressionofthe tiltangle, as seenin Swagten, andB.Koopmans,Nat.Mater.12,299(2013). [7] S.S.P.Parkin,M.Hayashi, andL.Thomas,Science320,190 Figure2(c).ThisshowsthatuniversalabsenceofWalkerbreak- (2008). downisalsofoundinSAFstructures.Wenoteinparticularthat [8] N.L.SchryerandL.R.Walker,J.Appl.Phys.45,5406(1974). thecombinationofspinHalltorquesandIECproducesmuch [9] A.ManchonandS.Zhang,Phys.Rev.B78,212405(2008). higherdomainwallvelocitiesthaninsingleferromagnetsfor [10] K.-W.Kim,S.-M.Seo,J.Ryu,K.-J.Lee, andH.-W.Lee,Phys. comparativelysmallcurrentdensities. Rev.B85,180404(2012). Inthecaseofasingleferromagneticlayerthevelocityofa [11] A.Chernyshov,M.Overby,X.Liu,J.K.Furdyna,Y.Lyanda- domainwalldrivenbyspinHalltorqueshasamonotonic1/t Geller, andL.P.Rokhinson,Nat.Phys.5,656(2009). [12] K.Ando,S.Takahashi,K.Harii,K.Sasage,J.Ieda,S.Maekawa, thicknessdependence. AsshowninFigure2(d)thevelocityof andE.Saitoh,Phys.Rev.Lett.101,036601(2008). coupledwallsinaSAFstructurepeaksclosetot /t =1when 1 2 [13] I.E.Dzyaloshinskii,J.Exp.Theor.Phys.5,1259(1957). changingthethicknessoflayer2fromt = 2t tot = t /2. 2 1 2 1 [14] T.Moriya,Phys.Rev.Lett.4,228(1960); Phys.Rev.120,91 Thispeakistheresultoftwocompetingmechanisms. Whent2 (1960). islargethewallinlayer2movesslowerthanthewallinlayer1 [15] H.Saarikoski,H.Kohno,C.H.Marrows, andG.Tatara,Phys. andtheeffectivefieldfeltbylayer1duetotheIEC—whichis Rev.B90,094411(2014). proportionaltot —-islarge. Thusthevelocityofthedouble [16] S.Lepadatu,H.Saarikoski,R.Beacham,M.J.Benitez,T.A. 2 Moore,G.Burnell,S.Sugimoto,D.Yesudas,M.C.Wheeler, wallsystemisdeterminedbywall2. Thevelocityincreasesup J.Miguel,S.S.Dhesi,D.McGrouther,S.McVitie,G.Tatara, tot /t 1(thedeviationfrom1isduetotheDMI)following 1 2 ≈ andC.H.Marrows, arXiv:1604.07992. approximatelythe1/t increaseexpectedbyasinglewall. As [17] S.-H.Yang,K.-S.Ryu, andS.Parkin,Nat.Nanotechnol.10, thethicknesschangesfurther,(φ1 φ2)approachesπ. Ascan 221(2015). − beseenfromequation(12)theIECtorquevanisheswhenthe [18] R.Tomasello,V.Puliafito,E.Martinez,A.Manchon,M.Ricci, two magnetizations are colinear, and the velocity decreases M.Carpentieri, andG.Finocchio, arXiv:1610.00894. towardsthesinglewallvalue. [19] L.D.LandauandE.M.Lifshitz,Phys.ZeitschriftderSowjetu- nion8,153(1935);Ukr.J.Phys.53,14(2008). Conclusion. Wehaveshownthatcompletesuppressionof [20] T.Gilbert,IEEETrans.Magn.40,3443(2004). Walkerbreakdownispossibleinawiderangeofdomainwall [21] A.Fert,Mater.Sci.Forum59–60,439(1990). systemsdrivenbyspin–orbittorques,includinghead-to-head [22] R.C.O’Handley,Modernmagneticmaterials.Principlesand wallsinsoftmagnets,BlochandNéelwallsinPMAmagnets, applications(JohnWiley&Sons,2000). in the presence of the DMI and in coupled domain walls in [23] S.ZhangandZ.Li,Phys.Rev.Lett.93,127204(2004). SAFs. ForSOTsotherthanpureRashbaSOTsthisleadstoa [24] G.Beach,M.Tsoi, andJ.Erskine,J.Magn.Magn.Mater.320, linearcurrent–velocityrelationinsteadofasaturationofthe 1272(2008). [25] A. Brataas, A. D. Kent, and H. Ohno, Nat. Mater. 11, 372 velocity for large currents. In combination with IEC, SOT- (2012). driven domain wall motion in SAFs gives rise to very high [26] SeeSupplementalMaterial,whichincludesRefs.[32–38],for domainwallvelocities. detailsonthepossiblespin–orbittorquesinthissystem,ade- Fundingviathe“OutstandingAcademicFellows”program scriptionofthenumericsandforthecollectivecoordinateequa- at NTNU, the COST Action MP-1201, the NT-Faculty, and tionsforthecoupleddomainwalls. theResearchCouncilofNorwayGrantnumbers216700and [27] J.LinderandM.Alidoust,Phys.Rev.B88,064420(2013). 240806,isgratefullyacknowledged.WethankMortenAmund- [28] M.Stier,M.Creutzburg, andM.Thorwart,Phys.Rev.B90, 014433(2014). senforveryusefuldiscussionsofthenumerics. [29] O. Boulle, L. D. Buda-Prejbeanu, E. Jué, I. M. Miron, and G.Gaudin,J.Appl.Phys.115,17D502(2014). [30] P.-B.He,H.Yan,M.-Q.Cai, andZ.-D.Li,Europhys.Lett.114, 67001(2016). [31] A.V.Khvalkovskiy,V.Cros,D.Apalkov,V.Nikitin,M.Krounbi, 5 K.A.Zvezdin,A.Anane,J.Grollier, andA.Fert,Phys.Rev.B T.Suzuki,S.Mitani, andH.Ohno,Nat.Mater.12,240(2012). 87,020402(2013). [36] K.-S.Ryu, S.-H.Yang, L.Thomas, andS.S.P.Parkin,Nat. [32] P.Bruno,Phys.Rev.B52,411(1995). Commun.5,3910(2014). [33] K.M.D.HalsandA.Brataas,Phys.Rev.B88,085423(2013); [37] X.Fan,H.Celik,J.Wu,C.Ni,K.-J.Lee,V.O.Lorenz, and Phys.Rev.B91,214401(2015). J.Q.Xiao,Nat.Commun.5,3042(2014). [34] R.R.Birss,SymmetryandMagnetism,1sted.,editedbyE.P. [38] J.R.DormandandP.J.Prince,J.Comput.Appl.Math.6,19 Wohlfarth,SelectedTopicsinSolidStatePhysics,Vol.3(North- (1980). HollandPublisingCompany,1964). [35] J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, SupplementalMaterialfor UniversalAbsenceofWalkerBreakdownandLinearCurrent–VelocityRelation viaSpin–OrbitTorquesinCoupledandSingleDomainWallMotion Vetle Risinggård and Jacob Linder DepartmentofPhysics,NTNU,NorwegianUniversityofScienceandTechnology,N-7491Trondheim,Norway (Dated:December21,2016) SYMMETRYADMISSIBLESPIN–ORBITTORQUES αR,θSHand βSH. AshasbeenshownbyHalsandBrataas[S1],thegeneral- HalsandBrataas[S1]describespin–orbittorquesandgen- izedspin-transfertorquesreducetotheordinarySTTsinthe eralizedspin-transfertorquesintermsofatensorexpansion. nonrelativistic limit. Thus, by using the ordinary STTs we Assumingthelowestordersaresufficienttodescribetheessen- neglectpossiblespin–orbitcouplingcorrectionstothesehigher tialdynamics,thereactiveanddissipativespin–orbittorques orderterms. aredescribedbyrespectivelyanaxialsecondranktensorand a polar third rank tensor while the generalized spin-transfer torquesaredescribedusingapolarfourthranktensorandan EQUATIONSOFMOTIONFORSAFSTRUCTURE axialfifthranktensor. Thetorquesthatariseinagivenstruc- ture are limited by the requirement that the tensors must be invariantunderthesymmetryoperationsfulfilledbythestruc- Weassumethattheinterlayerexchangecoupling(IEC)is ture. Wehaveassumedthatthephysicalsystemsweconsider completely local in the plane [S6], J(r1 r2) = Jδ(x1 − − aredescribedbyC2v symmetry. Combinedwiththefactthat x2)δ(y1 − y2). It follows that the IEC should not affect the thecurrentisappliedinthe xdirectiononlyandthat∂ym =0 domain wall profile, but can only determine the chirality of and∂zm =0,thisimpliesthatthereareonly1relevantnonzero coupled domain walls. Thus, we can use the static solution elementintheaxialsecondranktensor,2elementsinthepolar derivedinthemaintext,θ =2arctanexp[ (x X)/λ],where ± − thirdranktensor,3elementsinthepolarfourthranktensorand λ = A/Kz is the domain wall width. For a single wall the 6elementsintheaxialfifthranktensor[S2]. azimuthal angle φ is given by φ = nπ, where n=0,2,4,... p The3relevantnonzeroelementsofthesecondandthirdrank if D <0 and we choose the + sign for θ, and n=1,3,5,... tensorsgiveriseto3spin–orbittorques. Adetailedanalysis if D >0andwechoosethe signforθ. Twocoupledwalls − showsthatthesetorquecomponentsarecapturedbytheRashba must have opposite topological charges. If D1 and D2 both and spin Hall torques in equations (4) and (5) in the main arenegativetheDMIandtheIECcooperatetogivethestatic text. Asanaside,wenotethatalthoughtheRashbaandspin solution φ1 = 0 (positive topological charge) and φ2 = π Hall effects may not necessarily capture all of the relevant (negativetopologicalcharge). microscopicphysics[S3–S5]thesetorquescanstillbeusedto SubstitutingthisstaticsolutionintotheLLGequationusing modelthedynamicsbecausetheycontain3‘free’parameters, H0 = Hxex givesthecollectivecoordinateequations (cid:102) (cid:103) (1+α2)X˙1 = γKy sin2φ + πγ(D1−Hxmλ) sinφ + γJt2 αU(s)cos(φ φ )+αW(s)+V(s)sin(φ φ ) λ − m 1 2mλ 1 2m 1− 2 1− 2 (cid:102) (cid:103) (S1) u(1 αβ) − + πγ H(1) α+ β(1) +H(1)(1 αβ) cosφ , − λ 2 SH SH R − 1 (cid:16) (cid:17) (cid:102) (cid:103) (1+α2)X˙2 =+ γKy sin2φ + πγ(D2+Hxmλ) sinφ γJt1 αU(s)cos(φ φ )+αW(s) V(s)sin(φ φ ) λ m 2 2mλ 2− 2m 1− 2 − 1− 2 (cid:102) (cid:103) (S2) u(1 αβ) − + πγ H(2) α+ β(2) +H(2)(1 αβ) cosφ , − λ 2 SH SH R − 2 (cid:16) (cid:17) (cid:102) (cid:103) (1+α2)φ˙ = αγKy sin2φ + παγ(D1−Hxmλ) sinφ γJt2 U(s)cos(φ φ )+W(s) αV(s)sin(φ φ ) 1 − m 1 2mλ 1− 2m 1− 2 − 1− 2 (cid:102) (cid:103) (S3) u(α+ β) παγ H(1) 1 αβ(1) H(1)(α+ β) cosφ , − λ − 2 SH − SH − R 1 (cid:16) (cid:17) 2 (cid:102) (cid:103) (1+α2)φ˙ = αγKy sin2φ παγ(D2+Hxmλ) sinφ γJt1 U(s)cos(φ φ )+W(s)+αV(s)sin(φ φ ) 2 − m 2− 2mλ 2− 2m 1− 2 1− 2 (cid:102) (cid:103) (S4) u(α+ β) + + παγ H(2) 1 αβ(2) H(2)(α+ β) cosφ . λ 2 SH − SH − R 2 (cid:16) (cid:17) wherewehaveassumedthatthebulkparametersofthetwofer- NUMERICS romagnets are equal and where s is the separation between the two walls, s = (X1 X2)/λ. The IEC terms are ex- Equations(S1)and(S3)reducetoequations(6)and(7)in − pressedusingthethreefunctionsV(s),U(s)andW(s):V(s) = themaintextwhen J 0. Tosolveequations(S1)through 4ses/(e2s 1),U(s) = 4es(e2s(s 1)+s+1)/(e2s 1)2 (S4) numerically, we r→escale the equations to obtain dimen- − − − − andW(s) = 2(e4s 4se2s 1)/(e2s 1)2. Thesefunctions sionlessvariables. Thedimensionofequations(S1)through − − − areplottedinFigure1. (S4)isHz. Aconvenientscalingfactorwiththesamedimen- sions is µ γm. By dividing equations (S1) through (S4) by 0 µ0γm we get the rescaled variables t˜ = tµ0γm, X˜i = Xi/λ, 2 H˜x = Hx/µ0m, K˜y = Ky/µ0m2, D˜i = Di/µ0m2λ,t˜i = ti/λ, J˜= Jλ/µ m2andu˜=u/µ γmλ. 0 0 Equations (S1) through (S4) are solved using an explicit fourthorderRunge–Kuttaschemewithadaptivestepsizecon- 0 trol, implemented as a Dormand–Prince pair [S7]. Material V(s) parametersarechosentomatchapproximatelyCoorCo/Ni U(s) multilayers,seeTableI. 2 W(s) − 6 4 2 0 2 4 6 − − − separations Figure1.DependenceoftheIECtermsonthedomainwallseparation. [S1] K.M.D.HalsandA.Brataas,PhysicalReviewB88,085423 (2013);PhysicalReviewB91,214401(2015). [S2] R.R.Birss,SymmetryandMagnetism,1sted.,editedbyE.P. TableI.Materialparametersusedforthenumericalsolutionofequa- Wohlfarth,SelectedTopicsinSolidStatePhysics,Vol.3(North- tions(S1)through(S4)andforanalyticalestimatesinthemaintext. HollandPublisingCompany,1964). [S3] J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, parameter value unit T.Suzuki,S.Mitani, andH.Ohno,NatureMaterials12,240 (2012). gyromagneticratioγ 0.19 GHz/T [S4] K.-S.Ryu,S.-H.Yang,L.Thomas, andS.S.P.Parkin,Nature domainwallwidthλ 4.0 nm Communications5,3910(2014). hardaxisanisotropyKy 0.20 MJ/m3 [S5] X.Fan,H.Celik,J.Wu,C.Ni,K.-J.Lee,V.O.Lorenz, and saturationmagnetizationm 1.0 MA/m J.Q.Xiao,NatureCommunications5,3042(2014). Dzyaloshinskii–Moriyaconst. D 1.4 mJ/m2 [S6] P.Bruno,PhysicalReviewB52,411(1995). − Gilbertdampingα 0.25 [S7] J.R.DormandandP.J.Prince,JournalofComputationaland spin-polarizationP 0.50 AppliedMathematics6,19(1980). nonadiabacityparameter β 0.50 Rashbaspin–orbitcouplingα 6.3 meVnm R spinHallangleθ 0.1 SH spinHall β-term β 0.02 SH interlayerexchange Jt t 5.0 mJ/m2 1 2 thicknesst 1.2 nm

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.