ACTA GEOLOGICA HISPANICA,v. 33 (1998),nº 1-4,p. 239-276 Un modelo de depósito vulcanogénico de manganeso del arco v ol c á n i c o Paleógeno de Cuba: el ejemplo de la región Cristo-Ponupo-Los Chi vos A model of manganese v ol c a n o genic deposit from the P al e o gene volcanic island arc of Cuba: the case of the Cristo-Ponupo-Los Chi vos region X. CAZAÑAS(1,2), J.C. MELGAREJO(2), P.ALFONSO(2),A. ESCUSA(2), S. CUBA(3) (1) Instituto de Geología y Paleontología del MINBAS, Cuba. Vía Blanca y Línea del Ferrocarril, Virgen del Camino, San Miguel del Padrón, Ciudad La Habana, Cuba. E-mail: [email protected]. (2) Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona. c/ Martí i Franquès s/n 08028 Barcelona. E-mail: [email protected]. (3) Empresa Geominera Oriental, carretera de San Juan, Santiago de Cuba. RESUMEN Los depósitos de manganeso de La Margarita y Los Chivos son representativos de las mineralizaciones vulcanogénicas de manga- neso de Cuba. A partir de datos de sondeos y de afloramiento se ha sintetizado la geometría tridimensional de los depósitos, que en un depósito completo consiste de base a techo en: a) zona de alteración hidrotermal celadonítica a muro, de color verde, que se interpr e t a como una zona de alteración hidrotermal, b) nivel potente de jaspes, que se interpreta como producto de precipitación de sílice en un fondo submarino, c) cuerpo estratiforme de menas masivas constituido por todorokita (“menas ricas”) cruzada por vetas de óxidos ri- cos en Mn4+ , siendo la todorokita producto de precipitación de menas de manganeso en un fondo submarino en una etapa de nulo apor- te piroclástico a la cuenca, d) zona con mineralización de todorokita como cemento de piroclastos o en finos niveles con fósiles de or- ganismos epifáunicos, que se interpreta como el resultado de interacción entre ciclos de deposición de piroclásticos con los fluidos hi d r o t e r males, y e) zona de alteración hematítica superior. En base al estudio de inclusiones fluidas y de asociaciones minerales en las zonas alteradas, se concluye que los fluidos eran de baja salinidad, de temperaturas medias (230-300ºC) y ricos en CaCl . 2 Pal a br as cla v e : Ma n g aneso. Todorokita. Vol c a n o génico. Estratiforme. Estratoligado. Jaspes. Inclusiones Fluidas. Modelo de depó- sito. Hidrotermal. Cuba. ABSTRACT The La Margarita and Los Chivos manganese deposits are representative of the manganese vulcanogenic mineralizations in Cuba. The tridimensional geometry of the deposits has been synthesized from drilling and outcrop data and consists in a complete deposit of: a) a green hyd r o t h e r mal alteration celadonite zone at the bottom, which has been interpreted as a hyd r o t h e r mal alteration zone; b) an 239 im p o r tant jasper level, which has been interpreted as a precipitation product of silica in a submarine floor, c) a stratiform body of massive ore formed by todorokite (“rich ore”) cross-cut by veins of Mn4+ rich oxides, being todorokite interpreted as a precipitation product of ma n g anese ore in a submarine floor in a period of no pyroclastic contribution to the basin; d) a zone with todorokite mineralization as cement of pyroclasts, or as thin levels with fossils of epifaunic organisms, which have been interpreted as a result of the interaction be t w een pyroclastic deposition cycles with hyd r o t h e r mal fluid venting, and e) upper hematitic alteration zone. The study of fluid inclusions and mineral associations in the altered zones led us to conclude these were low salinity, medium temperature (230-300ºC), Ca C l -rich fluids. 2 Key wor ds : Ma n g anese. Todorokite. Vul c a n o genic. Stratiform. Stratabound. Jaspilite. Fluid inclusions. Deposit model. Hydrother- mal. Cuba. EXTENDED ABSTRACT The Cristo-Ponupo-Los Chivos mining region is located in the eastern Cuba, near the contact between two large mor- ph o s t r uctural units in Cuba: the Danian-Early Eocene volcanic arc and the Te rt i a ry post-volcanic basins (Fig. 1). Vol c a n i c arc materials mapped in the zone are part of the Hongolosongo and Caney formations; the latter, in turn, is located in the upper part of the El Cobre Group (Paleocene to Early-Middle Eocene, Fig. 2). Carbonatic (Puerto Boniato and Charco Re- dondo formations, Middle Eocene) and terrigenous sediments (San Luis formation, Upper Eocene, Kuz o vk ov et al., 1988) are deposited in Te rt i a ry post-volcanic basins. The Pal e o genic series are affected by different fracture systems, determining the tilting of these series (Fig. 3). The stratified rocks in the Caney formation are synchronic with subvolcanic and hyp a b yssal rocks in the Baconao com- pl e x, which consists of subvolcanic and hyp a b yssal dikes, small stock bodies, volcanic necks and sills of basaltic and an- desitic composition (Kuz o vk ov et al., 1988). ST R UCTURE OF THE DEPOSITS During the 1980s and 1990s an intense drilling activity was carried out in different deposits in order to determine the extension of the mineralized zones. In a typical deposit, such as La Margarita, the following lithofacies can be establi s h e d from the wall to the top (Fig. 5,6,7): hyd r o t h e r mal alteration zones at the wall (“green rocks”), jasperoids (named as “bay- ate” in Cuba), massive Mn oxides mineralization (“rich ores”), pyroclastic rocks cemented by Mn mineralization (“poor ores”), and hematitic hyd r o t h e r mal alteration bodies to the top (“rosita”). In the 1980s the drillings cut bodies of up 25 m in thickness. Repetitions of several of these elements occur, yet often suggesting a cyclical character. Mineralized lenses are often piled up, so that lenses are separated by pyroclastic levels of var i a b le width (Fig. 6). The structure of the mineralizations can be studied in detail in the outcrops of some quarries, such as the Los Chivos qu a r ry. In the Los Chivos quarry poor ores outcrop predominantly, unconforma b ly covered by the limestones of the Puer- to Boniato formation. Its cross section is similar to the one at La Margarita (Fig. 8), although important lateral and ve rt i- cal changes can be seen in the structure and thickness of the mineralization. This series shows notable changes in width to both sides of a synsedimentary mineralized fracture, as it cuts the mineralization as a whole, but not the Puerto Boniato fo r mation, which fossilizes it. There is Mn oxides and cryp t o c r ystalline quartz seam infilling of this fracture only whe r e the fracture cuts the jaspers and rich ore bodies, and it does not mineralize the roof of poor ores. Thus, this fracture is syn- genetic with the deposit. MINERALOGY AND ORE TE X T U R E Mineral composition was studied by transmitted and reflected light microscopy, SEM-EDS and X-ray powder dif- f r a c t i o n . 240 Lo wer alteration zones (“green roc ks ” ) Their colour is due only to the presence of celadonite. Celadonite pseudomorphises mafic minerals totally or par- t i a l ly. It also fills the porosity of the rocks in a similar way to what Buatier and Honnorez (1990) describe for present- d ay formed submarine basalts. The analysis of celadonite can be found in Ta ble 1, and its structural formula is the fol- l ow i n g : [n K Na Ca ][ F e2+ Mg ][ F e3+ Al Ti ][ S i Al ]O (O H ) 0. 6 3 1 0. 1 0. 1 7 1. 0 3 1. 0 1 1. 1 6 0. 8 3 0. 0 1 7. 3 8 0. 6 2 20 4 Mo r e o ver , feldspars are strongly altered to analcite in these alteration zones located below the manganese deposit; there are also milimetric veins infilled by a passive sequence of celadonite and todorokite. Few microscopic chalcopyrite and pyrite grains have been found disperse among celadonite crystals in the hyd r o t h e r - mal alteration zones at La Margarita, in an association similar to the present-day formed association in the Tyr rhenian sea (Rossi et al., 1980). Cr-rich crystals of spinel-group minerals can also be found. Jas p e r oid bodies T h ey present a massive structure and consist of cry p t o c rystalline, spherulitic quartz (chalcedony). The central zone of these spherulites contains submicroscopic inclusions of hematite or goethite. These aggr egates are rimmed by a fi n e - grained todorokite film. The whole is, in turn, grouped as botryoidal bodies. Rests of radiolaria and few rock fragments can be recog n i z e d . Jasperoid bodies are crossed by milimetric irre gular seams infilled by phanerocrystalline quartz ± manganite drus e s . These quartz crystals can be 1 cm long and wide, are ver y transparent and rich in fluid inclusions. Sometimes there is ver y pure calcite at the centre of the vei n s . Ri c h ores T h ey consist of botryoidal todorokite and other oxides (their compositions appear on Ta ble 2), and few py r o- clastic fragments. The contact of the manganese cement with the pyroclasts is sharp, without evidence of any re- placement. These botryoids are generally brecciated and cemented by manganite, hollandite or pyrolusite of slight- ly coarser grain. Electron microprobe analyses of the Cuban mineral produces the following structural form u l a ( Ta ble 3): (S r Ba Ca Na K ) (M n +4 Fe+3 Mg Al Si Ti Zn ) O 0. 3 2 5 0. 3 0 4 0. 0 8 4 0. 1 2 0. 1 3 7 0. 9 7 3 6. 5 1 5 0. 0 8 8 0. 0 4 3 0. 1 7 1 0. 3 0. 0 0 4 0. 0 0 7 7. 9 3 16 These analyses suggest the existence of an extreme member in the cryptomelane group yet undescribed, with formu l a Sr ( M n 4+ ,M n 2+ ) O . Maximum strontium contents registered in the Cuban hollandites (up 4,8% in SrO weight) are much 8 16 higher than those described to date (Cabella et al., 1994). The rest of the porosity is infilled by white, pure, sparry calcite. Poor ores In the poor ores manganese oxides are to be found as part of the tuff cement, or in centimetric nodules within the tuffs . Tuf fs basically consist of feldspar crystal fragments (often pseudomorphised by laumontite, mordenite and heulandite) and fragments of acid or intermediate volcanic rocks (altered zeolites and montmorillonite) and detrital rock fragments. Radi- olaria fossils are also present. Tuf fs have no matrix and are gra i n - s u p p o r te d . 241 The first cement is botryoidal todorokite, which does not replace pyroclastic fragments nor fossil fragments; depen- ding on the deposit its analysis yields ver y different compositions, even within the same level. A late cement generation consists of mordenite and heulandite, and sometimes a late generation of sparry calcite also occur. Roof hematitized tuffs (“Rosita”) These tuffs are subject to intense hematitization and laumontitization. FLUID INCLUSIONS Pr i m a r y inclusions (type I) in idiomorphic crystals from quartz veins cutting the bayate are biphasic (liquid-vapour), have no solids and their size is 14 to 40 microns. The infilling degree ranges between 75-80%. An eutectic T of -22ºC to -23ºC was ob t a i n e d , indicating the presence of small quantities of ions other than NaCl. The melting T of H O was -1.3ºC to -1.4º C,in - 2 dicating salinities of 2,2 to 2,4 % NaCl eq. in weight (obtained with the Bodnar equation, 1993). Homogenization T (L)= 250ºC-305ºC. The bub b le is water vap o u r . Cryogenic and EDS analysis of the liquid (method used by Ayora and Fon t a r na u , 1990) reveals the presence of CaCl . Fluids of this kind are usually related to hyd r o t h e r mal leaching of basic rocks. 2 The second type of inclusions (type II) is monophasic (liquid) and its origin is secondary. Melting temperatures of ice are 0,1ºC, indicating ver y low salinities below 0,2% NaCl eq. GENETIC MODEL According to the model proposed, textural variations in manganese mineralizations in Cuba correspond to the interac- tion of several contemporaneous processes: tectonics, hyd r o t h e r malism and pyroclastic volcanism. Depending on the pro- cess predominant along time, a different type of lithofacies will prevail. The evolution of a typical deposit would consist of the following episodes (Figure 9): A) A high temperature hyd r o t h e r mal fluid, enriched in CaCl , manganese and iron by leaching of intermediate to basic 2 volcanic rocks, circulates from a fracture zone. The fluid presents low sulphur and high oxygen fugacities. Interaction of this fluid with volcanic rocks located near the sea floor produces an intense celadonite alteration. In this process most iron becomes part of the celadonite structure, so that manganese takes to the rising fluid. The association of celadoni- te and montmorillonite is common to many present-day formed manganese deposits (Odin et al., 1988). Fluid emission to the surface takes place a) in part through the mineralized fracture, b) in part through a framework of small diver ge n t fractures from the fracture towards the sea bed, c) and in part by intergranular flow, a diffuse flow of hyd r o t h e r mal so- lutions, towards the sea bed predominantly, with low venting rates. This results in the stratiform mineralization (Kos k i et al., 1988). The systematic presence of celadonite alteration zones at the base of paleogenic manganese deposits in Cuba reveals their proximal character in relation to the venting zones, and differentiates them from other deposits of hyd r o t h e r mal origin formed in distal position from a sulphide exh a l a t i ve centre (Zierenberg and Shanks, 1988; Butu- zo va et al., 1990; Goodfellow and Blaise, 1988). B) De velopment of a siliceous sinter in a sea bed in exh a l a t i ve intervals during episodes of no volcanic activi t y . Some pre- sent examples of submarine emissions in which siliceous deposits are generated can be found in Taylor (1983), Juni- per and Fouquet (1988), Hekinian et al. (1993), Peter and Scott (1988). C) Siliceous emission stops and venting of a Mn-rich fluid starts, producing botryoidal todorokite. This stage requires a fl o w of fluid developed in a submarine sea bottom where no sedimentary or pyroclastic contributions occurred. Fra g - mentation of these botryoids could happen through exp l o s i ve phenomena related to hyd r o t h e r mal activity itself. Bo- tr yoidal textures are common in submarine exh a l a t i ve deposits (Bouysse et al., 1987, Lalou et al., 1988; Rona, 1988); the asymmetric botryoidal textures were interpreted by Sokol o va et al. (1971) as a result of a gro wth fed by rising so- 242 lutions. Identical geopetal structures have been described in present Bonin deposits (Usui and Nishimura, 1992). Gr o wth rates of present manganese deposits in back arc basins are about 3 cm/yr (Rona and Scott, 1993). So, in order to form a rich ore massive deposit of these characteristics (with typical thickness of 5-8 m, the maximum thickness of rich ores in the Cristo-Ponupo-Los Chivos zone), periods of some 150-250 years are required, though lower gro wth ra- tes have also been described (Lalou et al., 1983). D) Stage of intermittent reactivation of pyroclastic activi t y , which competes with exh a l a t i ve activi t y , more continuous along the time. Thus, each pyroclastic episode produces a tuff layer , which is immediately cemented by manganese oxi - des from the continually emergent hyd r o t h e r mal fluid. Therefore, at the end of each volcanic eruption, production of ma s s i ve manganese bodies can be reactivated at the top of this pyorclastic bed. This schema explains the rythms re- co gn i s a b le in the “poor ores”, each consisting of a package of tuff cemented by manganese oxides, overlapped by a centimetric level of massive manganese oxide. The existence of fossils at the top of these beds indicates, on the one ha n d , absence of strong bottom currents that could have dispersed the mineralization, and on the other hand, it proves the episodic character of each pyroclastic deposit. Bouysse et al. (1987) also find present mineralizations ver y similar to these “poor ores”, and interpret them likewi s e . E) Late stage due to decrease of hyd r o t h e r mal fluid temperature. Fluids do not longer transport manganese, but only iron, and produce in some cases hematitic and laumontitic alteration near the roof of the deposit. The existence of cross-cutiing manganese mineralization associated to stratiform mineralizations is not uncommon in vu l c a n o genic deposits (Pouit, 1989; Fre i b e r g, 1983). Associations of celadonite with heulandite can be retrograde by dehy- dratation of chlorite/illite ± pumpellyite higher T associations (Li-Gejing et al., 1997); they are though primary in Cuba. Du p l a y et al. (1986, 1989), Gonçalves et al. (1990) and Gallaghan and Duncan (1994) propose maximum formation T of 20-60ºC for celadonite; other authors propose T even higher than 300ºC (Honnorez et al., 1983; Var e n t s o v et al., 1983; Ca- thelineau and Izquierdo, 1988). The presence of primary caledonite instead of chlorite proves the oxidant character of the fluid compared to hyd r o t h e r mal fluids generated by exh a l a t i ve sulphide deposits (Andrews, 1980). Ores located in fractu- res are the more oxidized manganese phases (exc l u s i vel y with Mn4+ ). Precipitation of pyrolusite and hollandite would ta- ke place in the higher range of temperatures for zeolitic alteration (about 250ºC to 300ºC). The presence of todorokite (with p a rt ly tetravalent and partl y trivalent manganese) instead of pyrolusite (mineral with manganese exc l u s i vel y as Mn4+ ) ap- pears to indicate that conditions were not ext r e m e l y oxidizing in the stratiform zones of the deposit. This change in the va- lence state can be due to interaction with sea water (with a more reducing Eh) or with sulphate-reducing bacteria in the hy- dr o t h e r mal fluid venting zone. Instead, manganese carbonates are completely absent in Pal e o gene deposits in Cuba, whi c h fo r m in reducing sea beds or by more reducing fluids (e.g., Xu and Liu, 1990). Ba and Sr contents of Mn oxides are high if compared with todorokites from marine or terrestrial deposits (Radtke and Jones, 1966; Dymond and Eklund, 1978, Ostwal d , 1986). These elements are transported by the hyd r o t h e r mal fluid; their source is lixiviation in depth at higher temperatures of alkali feldspars from volcanic rocks. The various chemical compo- sitions of todorokite in each deposit indicate a variety of lixiviated rocks. Furth e r more, although hollandite has also been described as a secondary ore by supergenic oxidation of primary ores, Pouit (1989) also finds it as a primary ore in the root vein zone of manganese exh a l a t i ve deposits in Morocco. On the other hand, the absence of barite in Cuban deposits (with ver y few exceptions) is a further argument (in addition to the rare presence of sulfurs) in favour of ver y low sulphur acti- vities during deposit forma t i o n . Compositional variations in position A of todorokite are ver y aleatory, although a certain tendency exists to increasing the Ca proportion in the upper parts of the poor ore zone of the deposit. These variations can be explained as arising from disequilibrium crystallization by the interaction of a hyd r o t h e r mal fluid with sea wat e r . The low content of alkalis in man- ganese oxides, as well as the absence of iron oxides, can be explained by the presence of an intense potassic alteration zo- ne at the base of the deposit. Moreover , no significant variations are registered in position M of todorokite. Major substi- tutions of Zn, Ni, Co and Cu for Mn do not occur in hyd r o t e r mal todorokites, but in hyd r o genic todorokites (Bonatti et al., 1972; Usui, 1990, Hein et al., 1997), meteoric todorokites (Larson, 1962) or todorokites linked to subaerial vol c a n i s m (Crespo and Lunar, 1997). Ostwald (1982) suggested that high Si contents can be due to the mixing of todorokite with ver y fine grain silicates. 243 The presence of analcite in alteration zones, in absence of other zeolites, indicates temperatures between 230ºC and 300ºC (empiric geothermometre of Kristmanndottir and Tomasson, 1978), which coincide with T ranges obtained in fluid inclusions. The presence of laumontite, analcite, heulandite and mordenite in the stratiform mineralization suggests the hyd r o t h e r mal fluid had lower (100-230ºC, geothermometre mentioned above). Zeolitic alterations and hematitizations in rocks located to roof of the manganese mineralization indicate a late activity at the venting zones, but at temperatures too lo w to transport manganese. This decrease in temperature can be due to thermic difussion by interaction with sea wat e r . In pr e s e n t - d a y formed mineralizations ver y low temperatures have to date been described, from nearly environmental tempe- ratures (Kimura et al., 1988; Usui y Nishimura, 1992) to about 20ºC in the deposits of the Galapagos islands (Corliss et al., 1978); however , few data on heat flux in manganese deposits are avai l a b le. The low proportion of sulphides in the emission channels indicates low sulphur fugacity in the fluids that formed the deposits. The low presence of sulphur may have favoured specialization of sulphate-reducing bacteria in manganese re- duction, as some authors seem to point out (see revision by Gould et al., 1997). Fin a l l y, it is difficult to evaluate the role of supergenic phenomena in these mineralizations. We should keep in mind, ho wever , that during the last phase of fisural infilling or of infilling of intergranular porosity ver y pure chalcite is deposi- te d , and that this phenomenon takes place in all zones in the deposit. This carbonate crystallization can be related to cir- culation of diagenetic fluids during formation of piggy-back basins or by meteoric waters much later, as these fluids may ha ve contributed ver y pure calcium carbonate. These data agree with the presence of a generation of fluid inclusions with ver y low salinity water and no vapour bub b le in quartz crystals in bayate veins. These inclusions may correspond to me- teoric water of ver y late entrapment, possibly unrelated to mineralizing processes. In this case, remobilization of manga- nese at this stage must have been none. CO N C L U S I O N S The distribution of the mineral facies in the Pal e o gene vol c a n o genic manganese mineralizations from Cuba is ver y si- milar to the VMS model. An alteration zone at the bottom is present, although celadonitic and zeolitic alteration (ferro a n , potassic and alkaline) occurs instead of the typical sericitic/kaolinitic alteration (magnesian, acidic). The circulation of a hyd r o t h e r mal fluid (300ºC) through this zone fed a massive stratiform deposit in the sea bottom, zones with disseminated mineralization (produced at lower temperatures, 230-300ºC), and late alteration zones at the top. The different mineral fa- cies are the result of the interaction between hyd r o t h e r mal processes and the sedimentation processes in the basin. Th u s , the massive mineralization was produced during an stage characterized by high venting and low pyroclastic input in the basin; the disseminated mineralization represents the interaction at the sea bottom between episodic pyroclastic supply and the exh a l a t i ve processes (more continuous); the hematitic alterations could represent ver y late alteration processes. The occurrence of the manganese deposits in association with coarse pyroclasts is indicative of a relative proxi m i t y with the volcanic centres. This is a difference with the manganese deposits distal to VMS, for instance, in the Iberian Pi- ritic Belt (Sedler et al., 1997). The exh a l a t i ve processes are favoured by the presence of synsedimentary fractures. The repetitive activity of these frac- tures explains the ciclic occurrence of manganese deposits in the stratigraphic series. In any case, these fractures, as the exh a l a t i ve processes, ended their activity during the development of the piggy back basins. IN T R OD U C C I Ó N ti t u y eron junto con Charco Redondo, ubicado en la regi ó n de Guisa-Los Negros (a unos 80 km al W de la zona estu- La región minera Cristo-Ponupo-Los Chivos contiene diada, véase Cazañas y Melgarejo, en este mismo vol u - los mayores afloramientos de mineral de manganeso en el men) las principales fuentes de manganeso de Cuba. arco Paleógeno de Cuba. Dentro de sus límites se localizan las minas Ponupo, Sultana, Balcanes, Los Chivos, Boston, En este trabajo se ofrece una síntesis de datos de di- Bo s t f o r d , La Margarita y El Quinto, entre otras, que cons- versas mineralizaciones, ya sea en forma de sondeos (en 244 Figura 1. Situación de la zona estudiada en el marco de las grandes unidades en el Paleógeno de Oriente de Cuba (base geológica de Iturralde-Vinent, 1996). 1- Basamento del arco. Rocas del arco volcánico Daniense-Eoceno Inferior: 2- Flujos de basaltos a dacitas, tobas, grauvacas, calizas; 3- tobas y tufitas con calizas, margas, y grauvacas intercaladas; 4-Calizas, margas, tufitas y algunas inter- calaciones de grauvacas; 5- Rocas plutónicas del Eoceno. Figure 1. Situation of the studied area in the main geological units in the Paleogen of Oriente of Cuba (Iturralde-Vinent, 1996). 1- Arc basement. Rocks of the Danian-Lower Eocene volcanic arc: 2- Basalt to dacite flows, tuffs, greywackes, limestones; 3- Tuffs, limes- tones, marls, with interbedded greywackes; 4- Limestones, marls, tuffs and some interbedded greywackes; 5- Eocene plutonic rocks. mina Margarita) o de afloramiento en corta a cielo abier- bre el nivel del mar), y hacia el sur se encuentran las co- to (Los Chivos), con el objetivo de establecer la estruc t u - tas más altas (hasta 500 m). ra, mineralogía y texturas de estas mineralizaciones, las más importantes del arco paleógeno, en vistas a la obten- ción de un modelo para los depósitos de Mn del arco. MARCO GEOLÓGICO La región menífera Cristo-Ponupo-Los Chivos se en- SI T U ACIÓN GEOGRÁFICA cuentra situada en las cercanías del contacto entre dos grandes unidades morfoestructurales de Cuba: el arco La región minera Cristo-Ponupo-Los Chivos está si- volcánico del Daniense-Eoceno Inferior y las cuencas tuada en la zona oriental de Cuba, a sólo unos 20 km al N po s t v olcánicas terciarias (Fig. 1, Kuz o vk ov et al., 1988). de la ciudad de Santiago de Cuba, en la provincia del mis- mo nombre (Fig.1), y de forma orientativa puede defin i r - Los materiales del arco volcánico cartografiados en se por las coordenadas Lambert siguientes: X - 613000- la zona (Fig. 2) pertenecen a las formaciones Hongolo- 632750; Y - 159500-177000. La zona forma parte del songo y Caney (Kuzovkov et al., 1988); esta última, a su extremo oriental del sistema montañoso de Sierra Maes- vez, se sitúa en la parte superior del Grupo El Cobre, cu- tra. En este sector el relieve está definido predominante- ya edad va desde el Paleoceno hasta el Eoceno Inferior- mente por colinas de poca altitud (entre 200 y 300 m so- Medio). 245 246 Por otra parte, el relleno sedimentario de las cuencas En la región Cristo-Ponupo-Los Chivos las rocas más po s t v olcánicas terciarias incluye los sedimentos carbona- antiguas de la región, que afloran en una pequeña porción tados de las formaciones Puerto Boniato y Charco Re- en el límite suroriental del mapa, pertenecenerían a esta dondo (Eoceno Medio) y los terrígenos de la forma c i ó n fo r mación (miembro El Escandel). Este miembro está San Luis (Eoceno Superior). Esta cuenca es también co- constituido predominantemente por rocas piroclásticas de nocida en la literatura como Sinclinorio Oriental Cubano. composición ácida y granulometría desde grano muy fi- Las características geológicas y la estratigrafía de la re- no hasta muy grueso. Son menos frecuentes las tobas de gión se dan fundamentalmente en base al levan t a m i e n t o composición media-básica, las areniscas, las gra vel i t a s geológico a escala 1:50.000 “La Gran Piedra” de Kuz o v- tobáceas algo carbonatadas, las tufitas y las calizas. kov et al. (1988). Formación Caney ES T R A TIGRAFÍA La formación Caney abarca desde la parte alta del Eo- El grupo El Cobre, en la zona considerada, cons- ceno Inferior hasta la parte baja del Eoceno Medio y tie- ta de base a techo de los siguientes materiales ne dos miembros: Guaninicum y El Quinto; este último es ( Fig. 2, 3): el único que aflora en el área de estudio. Está constituida esencialmente por rocas volcánicas de composición bási- ca a intermedia, con escasos productos ácidos y minerali- Formación Hong ol o s o n g o zación de Mn. La potencia total del conjunto es de 185- 200 m, eventualmente 300 m (Kuz o vk ov et al., 1988). Esta formación fue diferenciada por Grechanik y N o rman (1971) en la región del yacimiento El Cobre, y Los materiales del grup El Cobre, en la región Cris- fue asumida por Kuz o vk ov et al. (1988); no obstante, ca- to-Ponupo-Los Chivos, están cubiertos por depósitos te- rece de un perfil tipo en la región del yacimiento El Co- rrígenos y carbonatados del Eoceno Medio y Superior bre y por ello ha sido integrada en trabajos recientes en (formaciones Charco Redondo, Puerto Boniato y San las secuencias inferior y media del Grupo El Cobre Luis), depositados durante un segundo estadio de desa- (García y Méndez, 1994; Méndez, 1997). Pese a ello, en rrollo de cuencas de piggy back, justo al concluir la acti- este trabajo se ha mantenido el uso de esta unidad por vidad volcánica paleógena (Quintas, 1993; Iturralde-Vi- m o t ivos descriptivos. La formación Hongolosongo se nent, 1994, 1996). De base a techo, pueden distinguirse s u b d ivide en tres miembros que, de base a techo, son: las siguientes unidades (Sokolova et al., 1971; Linares et Gran Piedra, Alto de Villalón y El Escandel. La edad de al., 1985; Kuzovkov et al., 1988): formación Puerto Bo- la formación abarca desde el Paleoceno a la parte media niato o formación Charco Redondo, y formación San del Eoceno Inferior. Luis. Figura 2. Mapa geológico del distrito minero Cristo- Ponupo-Los Chivos, modificado de Kuz o vk ov et al., 1988: 1- Jaspes, 2- Menas es- tr a t i f o r mes de óxidos de Mn, 3- Andesita-basalto, 4- Basaltos, 5- For mación Hongolosongo, miembro El Escandel: tobas intermedio a áci- das, areniscas tobáceas, calizas, microconglomerados, 6- For mación Caney, miembro El Quinto: tobas, lutitas, areniscas tobáceas, andesi- ta-basalto, localmente conglomerados, 7- For mación Puerto Boniato: calizas, margas, areniscas vulcanomícticas calcáreas, 8- For ma c i ó n Charco Redondo: calizas masivas, 9- For mación San Luis, miembro El Quemado: interestratificación fina de areniscas vulcanomícticas, limolitas, lutitas y margas, 10- For mación San Luis, Miembro Camarones: conglomerados, areniscas, areniscas carbonosas, 11- For ma c i ó n San Luis, miembro Tí Ar riba: Areniscas y limolitas calcáreas, 12- Cuaternario, piso inferior- superior: depósitos aluviales, depósitos delu- viales, 13- Cuaternario, piso superior contemporáneo: cantos rodados, guijarros, arcillas aluviales, limo, arena, 14- Cuaternario, piso con- temporáneo: cantos rodados, guijarros, arena, y también bloques y arcillas tecnógenas (escombreras), 15 sondeo, 16, mina. Figure 2. Geological map of the Cristo- Ponupo-Los Chivos mining district, modified from Kuz o vk ov et al., 1988: 1- Jaspers, 2- Strati- fo r m Mn oxide ores, 3- Andesite-basalt, 4- Basalt, 5- Hongolosongo formation, El Escandel member: intermediate to acidic tuffs, tuffa- ceous sandstones, limestones, microconglomerates, 6- Caney formation, El Quinto member: tuffs, silts, tuffaceous sandstones, andesite- basalts, locally conglomerates, 7- Puerto Boniato formation: limestones, marls, calcareous vulcanomictic sandstones, 8- Charco Redondo fo r mation: massive limestones, 9- San Luis formation, El Quemado member: vulcanomictic sandstones thiny interbedded withsilts,lu t i - tes and marls, 10- San Luis formation, Camarones member: conglomerates, sandstones, carbonaceous sandstones, 11- San Luis forma - tion, Tí Ar riba member: sandstones and calcareous silts, 12- Quaterna r y, Lower -upper stage: alluvial deposits, dilluvial deposits, 13- Qu a t e r na r y, contemporaneous: gra vels, alluvial clays, silt, sand, 14- Quaterna r y contemporaneous (dumps), 15- drilling, 16- mine. 247 248
Description: