ebook img

Ultrafast Phenomena in Molecular Sciences: Femtosecond Physics and Chemistry PDF

298 Pages·2014·9.503 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ultrafast Phenomena in Molecular Sciences: Femtosecond Physics and Chemistry

SpringerSeriesin chemical physics 107 SpringerSeriesin chemical physics SeriesEditors: A.W.CastlemanJr. J.P.Toennies K.Yamanouchi W.Zinth The purpose of this series is to provide comprehensive up-to-date monographs inbothwellestablisheddisciplinesandemergingresearchareaswithinthebroad fieldsofchemicalphysicsandphysicalchemistry.Thebooksdealwithbothfun- damentalscienceandapplications,andmayhaveeitheratheoreticaloranexper- imentalemphasis.Theyareaimedprimarilyatresearchersandgraduatestudents inchemicalphysicsandrelatedfields. PleaseviewavailabletitlesinSpringerSeriesinChemicalPhysics onserieshomepagehttp://www.springer.com/series/676 Rebeca de Nalda (cid:2) Luis Bañares Editors Ultrafast Phenomena in Molecular Sciences Femtosecond Physics and Chemistry Editors DoctorRebecadeNalda ProfessorLuisBañares InstituteofPhysicalChemistryRocasolano DepartmentofPhysicalChemistryFaculty NationalResearchCouncil ofChemistry Madrid,Spain ComplutenseUniversityofMadrid Madrid,Spain Serieseditors: ProfessorA.W.CastlemanJr. ProfessorK.Yamanouchi Dept.Chemistry DepartmentofChemistry PennsylvaniaStateUniversityCollege UniversityofTokyo ofScience Tokyo,Japan UniversityPark,PA,USA ProfessorJ.P.Toennies ProfessorW.Zinth Max-PlanckInstituteforDynamics Abt.Physik andSelf-Organization UniversitätMünchen Göttingen,Germany Munich,Germany ISSN0172-6218 SpringerSeriesinChemicalPhysics ISBN978-3-319-02050-1 ISBN978-3-319-02051-8(eBook) DOI10.1007/978-3-319-02051-8 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013951886 ©SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Foreword Over the past two decades, the realm of ultrafast science has become vast and ex- citing and has impacted many areas of chemistry, biology and physics, and other fieldssuchasmaterialsscience,electricalengineering,andopticalcommunication. Theexplosivegrowthin molecularscienceis principallyfor fundamentalreasons. In femtochemistry and femtobiology, chemical bonds form and break on the fem- tosecond time scale, and on this scale of time we can freeze the transition states at configurationsnever before seen. Even for nonreactivephysical changes, one is observingthemostelementaryofmolecularprocesses.Onatimescaleshorterthan thevibrationalandrotationalperiods,theensemblebehavescoherentlyasasingle- moleculetrajectory. Butthesedevelopmentswouldnothavebeenpossiblewithouttheadventofnew lightsourcesandequallyimportantthecrystallizationofsomekeyunderlyingcon- cepts that were in the beginning shrouded in fog. First was the issue of the “un- certaintyprinciple”,whichhadtobedecisivelyclarified.Secondwasthequestion of whether one could sustain wave packet motion at the atomic scale of distance. In other words, would the de Broglie wavelength of the atom become sufficiently shorttodefineclassicalmotion—“classicalatoms”—andwithoutsignificantquan- tumspreading?Thistoohadtobeclearlydemonstratedandmonitoredinthecourse ofchange,notonlyforelementaryprocessesinmolecularsystems,butalsoduring complexbiologicaltransformations.And,finally,somequestionsabouttheunique- ness and generality of the approach had to be addressed. For example, why not deduce the information from high-resolution frequency-domain methods and then Fouriertransformtoobtainthedynamics?Itissurelynowclearthattransientspecies cannotbeisolatedthisway,andthatthereisnosubstitutefordirectreal-timeobser- vationsthatfullyexploittheintrinsiccoherenceofatomicandmolecularmotions. Theory has enjoyed a similar explosion in areas dealing with ab initio elec- tronicstructures,moleculardynamics,andnonlinearspectroscopies.Therehasbeen progress in calculating potential energy surfaces of reactive systems, especially in their ground state. On excited-state surfaces, it is now feasible to map out regions ofthesurfacewheretransitionstatesandconicalintersectionsareimportantforthe outcomeofchange.Fordynamics,newmethodshavebeendevisedfordirectview- v vi Foreword ingofthemotionbyformulatingthetime-dependentpicture,ratherthansolvingthe time-independent Schrödinger equation and subsequently constructing a temporal picture.Analyticaltheoryhasbeenadvanced,usingtime-ordereddensitymatrices, to enable the design of multidimensional spectroscopy, the analogue of 2-D (and higher)NMRspectroscopy.Thecouplingbetweentheoryandexperimentisevident inmanyofthepapersinthisspecialvolume. On the technical side, the development of direct microscopy imaging methods forvisualizationofdynamicsandthegenerationofattosecondpulsesformapping electronic processes have resulted in new frontiers of research. And, the ability to design shaped and sequenced pulses to control processes of interest is stimulating numerous theoretical studies in the field. Ultrafast science is continuing in many disciplinesbecauseofthefundamentalnatureofthetimeandlengthscalesinvolved. Thescienceshouldbeattractivetofuturegenerationsofyoungscientists. This volume “Ultrafast Phenomena in Molecular Sciences” edited by Rebeca de Nalda and Luis Bañares is a welcome addition to the field, especially for its emphasisonthe“latest”inultrafastmolecuarscienceandthescopeofapplications possible. Pasadena,CA,USA AhmedZewail Preface UndoubtedlytheprogressofMolecularScienceshasbenefitedfromthestronginter- actionwithultrafastlasertechniquesanddevelopmentsinthelastdecades.Inmany instances, ultrafast lasers have been employed along with technological advances as a tool to study molecular systems with the aim to understand their time evolu- tionand,ingeneral,todisentanglethetime-resolvedbehaviorofmatter.Themain idea behind the scene is to reach the time scales where molecular processes occur andtovisualizetheirtimeevolution;thatis,femtosecondsfornuclearmotionand attosecondsforelectronicmotion.Interestingnewphenomenahaveemergedhow- everwhenthisstronginteractionbetweenultrashortultraintenselightandmolecules hasbeenprovoked,andthishasstimulatedinturnnewdevelopmentsbothexperi- mentalandtheoreticaltotrytounderstandthenewphenomena.Thisloopbetween applications and the appearance of new phenomena is behind the progress of the field. This volume of Springer Series in Chemical Physics is conceived to cover the latest progress on the applications of Ultrafast Technology to Molecular Sciences, from small molecules to proteomics and molecule-surface interactions, and from conventionalfemtosecondlaserpulsesandpump-probeandchargedparticledetec- tiontechniquestoattosecondpulsesintheXUV.Theattosecondandfew-cyclefem- tosecondapplicationsarecoveredinthefirstChapterwrittenbyMarcVrakkingand co-workers(Chap.1),wherethemeasurementofmolecularframephotoelectronan- gulardistributionsofhighkineticenergyphotoelectronsforsmallmoleculesbrings the time evolution of molecular structures in the course of a photochemical event. The theoretical aspects along these lines come from the Chapter written by Fer- nandoMartinandhisco-workers(Chap.2)focusingonasimplemolecularsystem, the hydrogen molecule, where state-of-the-art time-dependent theoretical methods areabletoprovideasolidgroundworkfordescribingandinterpretingtheunderlying moleculardynamicsobservedexperimentally.Largermoleculesunderultraintense laser fields are presented in the Chapter written by Tomoya Okino and Kaoru Ya- manouchi (Chap. 3), where coincident momentum charged-particle imaging mea- surements shed light into intense field induced hydrogen atom migration in small hydrocarbons. The combination between the femtosecond pump-probe technique vii viii Preface andcharged-particle(ionorphotoelectron)imagingdetectionwithresonantornon- resonantfragmentionizationisthesubjectcoveredbythefollowingthreeChapters, writtenbyRebecadeNaldaandLuisBañaresandtheirco-workers(Chap.4),Helen Fieldingandco-workers(Chap.5)andVasiliosStavrosandco-workers(Chap.6), wherekeyapplicationstothephotodynamicsofpolyatomicmolecularsystemsare presented.Alsotheoreticalsupportiscrucialwhenstudyingsuchlargermolecular systems,butinsuchcasesaccuratequantummechanicaltreatmentsareintractable. In the Chapter written by Leticia González and Ignacio Solá and their co-workers (Chap.7)anapproachbasedonsemiclassicalmethodstostudythephotodynamics ofpolyatomicmolecularsystemsispresented.Theextensiontoreallylargemolecu- larsystemsisdealtwithintheChapterbyMarcosDantusandco-workers(Chap.8), whichiscenteredonfemtosecondlaserinduceddissociationforproteomicanalysis. Anotheraspectofphotodynamicsofexcitedstatesofbiomoleculesistheaimofthe ChapterwrittenbyMarcusMotzkusandco-workers(Chap.9).Inthiscase,multidi- mensionaltime-resolvedspectroscopybasedonthenon-linearbroadbandfour-wave mixingtechniqueusingsub-20femtosecondpulsesisappliedtoaddresscoherence andpopulationdynamicsinmolecularexcitedstates.Reactiondynamicsinthegas- solidinterfaceistreatedintheChapterwrittenbyMihaiVaidaandThorstenBern- hardt (Chap. 10). In particular, the Chapter focuses on the dynamics of chemical reactiononmetaloxidesurfacesbyusingultrashortlaserpulseswithaperspective toapplicationstophotocatalyticreactionsatsupportedmetalclustersandnanopar- ticles.Finally,theChapterwrittenbyOlivierFaucherandhisco-workers(Chap.11) centers on the use of non-linear coherent interactions of molecules with ultrashort laserpulsestodeducethepropertiesofgas-phasemoleculesandtoobtaininforma- tionontheenvironmentofmolecules. Wethankalltheauthorsfortheirvaluableeffortstoprovidebothameaningful background and detailed descriptions of the research lines, and we hope that the material covered in this book provides an updated and insightful window into the broadrangeofareaswherethisfieldisevolving. Madrid,Spain RebecadeNalda LuisBañares Contents 1 MolecularMoviesfromMolecularFramePhotoelectronAngular Distribution(MF-PAD)Measurements . . . . . . . . . . . . . . . . 1 ArnaudRouzée,YmkjeHuismans,FreekKelkensberg,Aneta Smolkowska,JuliaH.Jungmann,ArjanGijsbertsen,WingKiuSiu, GeorgGademann,AxelHundertmark,PerJohnsson,andMarcJ.J. Vrakking 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 MolecularMoviesUsingXUV/X-RayPhotoionization . . . . . . 5 1.3 MolecularMoviesUsingStrongFieldMid-InfraredIonization. . 14 1.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 XUVLasersforUltrafastElectronicControlinH . . . . . . . . . 25 2 AliciaPalacios,PaulaRivière,AlbertoGonzález-Castrillo,and FernandoMartín 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2 ExperimentalSet-Ups . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 TheoreticalApproachandImplementation . . . . . . . . . . . . 28 2.3.1 Time-DependentSpectralMethod . . . . . . . . . . . . . 29 2.4 Time-ResolvedImagingofH Autoionization . . . . . . . . . . 32 2 2.5 ControlandNon-linearEffectsinMultiphotonSingleIonization 37 2.5.1 ControlofSingleIonizationChannelsbyMeansofVUV Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.2 Non-linearEffectsin(1+1)-REMPI . . . . . . . . . . . 39 2.5.3 ProbingNuclearWavePacketsinMolecularExcited States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.6 FuturePerspectives . . . . . . . . . . . . . . . . . . . . . . . . 45 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.