Neutrosophic Sets and Systems, Vol. 38, 2020 University of New Mexico The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F) Florentin Smarandache 1* 1 Division of Mathematics, Physical and Natural Sciences, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA * Correspondence: [email protected] Abstract: In this paper we prove that the Single-Valued (and respectively Interval-Valued, as well as Subset-Valued) Score, Accuracy, and Certainty Functions determine a total order on the set of neutrosophic triplets (T, I, F). This total order is needed in the neutrosophic decision-making applications. Keywords: single-valued neutrosophic triplet numbers; single-valued neutrosophic score function; single-valued neutrosophic accuracy function; single-valued neutrosophic certainty function. 1. Introduction We reveal the easiest to use single-valued neutrosophic score, accuracy, and certainty functions that exist in the literature and the algorithm how to use them all together. We present Xu and Daโs Possibility Degree that an interval is greater than or equal to another interval, and we prove that this method is equivalent to the intervalsโ midpoints comparison. Also, Hong-yu Zhang et al.โs interval- valued neutrosophic score, accuracy, and certainty functions are listed, that we simplify these functions. Numerical examples are provided. 2. Single-Valued Neutrosophic Score, Accuracy, and Certainty Functions We firstly present the most known and used in literature single-valued score, accuracy, and certainty functions. Let M be the set of single-valued neutrosophic triplet numbers, ๐ ={(๐,๐ผ,๐น),where ๐,๐ผ,๐น โ[0,1],0โค๐+๐ผ+๐น โค3}. (1) Let ๐ =(๐,๐ผ,๐น) โ M be a generic single-valued neutrosophic triplet number. Then: ๐ = truth (or membership) represents the positive quality of ๐; ๐ผ = indeterminacy represents a negative quality of ๐, hence 1โ๐ผ represents a positive quality of ๐; ๐น = falsehood (or nonmembership) represents also a negative quality of ๐, hence 1โ๐น represents a positive quality of ๐. We present the three most used and best functions in the literature: 2.1. The Single-Valued Neutrosophic Score Function ๐ :๐ โ[0,1] ๐+(1โ๐ผ)+(1โ๐น) 2+๐โ๐ผโ๐น ๐ (๐,๐ผ,๐น)= = (2) 3 3 that represents the average of positiveness of the single-valued neutrosophic components ๐, ๐ผ, ๐น. Florentin Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F) Neutrosophic Sets and Systems, Vol. 38, 2020 2 2.2. The Single-Valued Neutrosophic Accuracy Function ๐:๐ โ[โ1,1] ๐(๐,๐ผ,๐น)=๐โ๐น (3) 2.3. The Single-Valued Neutrosophic Certainty Function ๐:๐ โ[0,1] ๐(๐,๐ผ,๐น)=๐ (4) 3. Algorithm for Ranking the Single-Valued Neutrosophic Triplets Let (๐ ,๐ผ ,๐น ) and (๐ ,๐ผ ,๐น ) be two single-valued neutrosophic triplets from ๐, i.e. 1 1 1 2 2 2 ๐ ,๐ผ ,๐น ,๐ ,๐ผ ,๐น โ[0,1]. 1 1 1 2 2 2 Apply the Neutrosophic Score Function. 1. If ๐ (๐ ,๐ผ ,๐น )>๐ (๐ ,๐ผ ,๐น ), then (๐ ,๐ผ ,๐น )>(๐ ,๐ผ ,๐น ). 1 1 1 2 2 2 1 1 1 2 2 2 2. If ๐ (๐ ,๐ผ ,๐น )<๐ (๐ ,๐ผ ,๐น ), then (๐ ,๐ผ ,๐น )<(๐ ,๐ผ ,๐น ). 1 1 1 2 2 2 1 1 1 2 2 2 3. If ๐ (๐ ,๐ผ ,๐น )=๐ (๐ ,๐ผ ,๐น ), then apply the Neutrosophic Accuracy Function: 1 1 1 2 2 2 3.1 If ๐(๐ ,๐ผ ,๐น )>๐(๐ ,๐ผ ,๐น ), then (๐ ,๐ผ ,๐น )>(๐ ,๐ผ ,๐น ). 1 1 1 2 2 2 1 1 1 2 2 2 3.2 If ๐(๐ ,๐ผ ,๐น )<๐(๐ ,๐ผ ,๐น ), then (๐ ,๐ผ ,๐น )<(๐ ,๐ผ ,๐น ). 1 1 1 2 2 2 1 1 1 2 2 2 3.3 If ๐(๐ ,๐ผ ,๐น )=๐(๐ ,๐ผ ,๐น ), then apply the Neutrosophic Certainty Function. 1 1 1 2 2 2 3.3.1 If ๐(๐ ,๐ผ ,๐น )>๐(๐ ,๐ผ ,๐น ), then (๐ ,๐ผ ,๐น )>(๐ ,๐ผ ,๐น ). 1 1 1 2 2 2 1 1 1 2 2 2 3.3.2 If ๐(๐ ,๐ผ ,๐น )<๐(๐ ,๐ผ ,๐น ), then (๐ ,๐ผ ,๐น )<(๐ ,๐ผ ,๐น ). 1 1 1 2 2 2 1 1 1 2 2 2 3.3.1 If ๐(๐ ,๐ผ ,๐น )=๐(๐ ,๐ผ ,๐น ), then (๐ ,๐ผ ,๐น )โก(๐ ,๐ผ ,๐น ), i.e. ๐ =๐ , ๐ผ =๐ผ , ๐น =๐น . 1 1 1 2 2 2 1 1 1 2 2 2 1 2 1 2 1 2 3.1. Theorem We prove that the single-valued neutrosophic score, accuracy, and certainty functions all together form a total order relationship on ๐. Or: for any two single-valued neutrosophic triplets (๐ ,๐ผ ,๐น ) and (๐ ,๐ผ ,๐น ) we have: 1 1 1 2 2 2 a) Either (๐ ,๐ผ ,๐น )>(๐ ,๐ผ ,๐น ) 1 1 1 2 2 2 b) Or (๐ ,๐ผ ,๐น )<(๐ ,๐ผ ,๐น ) 1 1 1 2 2 2 c) Or (๐ ,๐ผ ,๐น )โก(๐ ,๐ผ ,๐น ), which means that ๐ =๐ , ๐ผ =๐ผ , ๐น =๐น . 1 1 1 2 2 2 1 2 1 2 1 2 Therefore, on the set of single-valued neutrsophic triplets ๐ ={(๐,๐ผ,๐น),with ๐,๐ผ,๐น โ [0,1],0โค๐+๐ผ+๐น โค3}, the score, accuracy, and certainty functions altogether form a total order relationship. Proof. Firstly we apply the score function. The only problematic case is when we get equality: ๐ (๐ ,๐ผ ,๐น )=๐ (๐ ,๐ผ ,๐น ). (5) 1 1 1 2 2 2 That means: 2+๐1โ๐ผ1โ๐น1 =2+๐2โ๐ผ2โ๐น2 3 3 or ๐ โ๐ผ โ๐น =๐ โ๐ผ โ๐น . 1 1 1 2 2 2 Secondly we apply the accuracy function. Again the only problematic case is when we get equality: ๐(๐ ,๐ผ ,๐น )=๐(๐ ,๐ผ ,๐น ) or ๐ โ๐น =๐ โ๐น . 1 1 1 2 2 2 1 1 2 2 Florentin Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F) Neutrosophic Sets and Systems, Vol. 38, 2020 3 Thirdly, we apply the certainty function. Similarly, the only problematic case may be when we get equality: ๐(๐ ,๐ผ ,๐น )=๐(๐ ,๐ผ ,๐น ) or ๐ =๐ . 1 1 1 2 2 2 1 2 For the most problematic case, we got the following linear algebraic system of 3 equations of 6 variables: ๐ โ๐ผ โ๐น =๐ โ๐ผ โ๐น 1 1 1 2 2 2 { ๐ โ๐น =๐ โ๐น 1 1 2 2 ๐ =๐ 1 2 Letโs solve it. Since ๐ =๐ , replacing this into the second equation we get ๐น =๐น . 1 2 1 2 Now, replacing both ๐ =๐ and ๐น =๐น into the first equation, we get ๐ผ =๐ผ . 1 2 1 2 1 2 Therefore the two neutrosophic triplets are identical: (๐ ,๐ผ ,๐น )โก(๐ ,๐ผ ,๐น ), i.e. equivalent 1 1 1 2 2 2 (or equal), or ๐ =๐ , ๐ผ =๐ผ , and ๐น =๐น . 1 2 1 2 1 2 In conclusion, for any two single-valued neutrosophic triplets, either one is bigger than the other, or both are equal (identical). 4. Definition of Neutrosophic Negative Score Function We have introduce in 2017 for the first time [1] the Average Negative Quality Neutrosophic Function of a single-valued neutrosophic triplet, defined as: (1๏ญt)๏ซi๏ซ f 1๏ญt๏ซi๏ซ f s๏ญ :[0,1]3 ๏ฎ[0,1],s๏ญ(t,i, f)๏ฝ ๏ฝ . (6) 3 3 4.1. Theorem The average positive quality (score) neutrosophic function and the average negative quality neutrosophic function are complementary to each other, or s๏ซ(t,i, f)๏ซs๏ญ(t,i, f) ๏ฝ1. (7) Proof. 2๏ซt๏ญi๏ญ f 1๏ญt๏ซi๏ซ f s๏ซ(t,i, f)๏ซs๏ญ(t,i, f) ๏ฝ ๏ซ ๏ฝ1. (8) 3 3 The Neutrosophic Accuracy Function has been defined by: h: [0, 1]3 ๏ [-1, 1], h(t, i, f) = t - f. (9) We have also introduce [1] for the first time the Extended Accuracy Neutrosophic Function, defined as follows: he: [0, 1]3 ๏ [-2, 1], he(t, i, f) = t โ i โ f, (10) which varies on a range: from the worst negative quality (-2) [or minimum value], to the best positive quality (+1) [or maximum value]. 4.2. Theorem If s(T1, I1, F1) = s(T2, I2, F2), a(T1, I1, F1) = a(T2, I2, F2), and c(T1, I1, F1) = c(T2, I2, F2), then T1 = T2, I1 = I2, F1 = F2, or the two neutrosophic triplets are identical: (T1, I1, F1) โก (T2, I2, F2). Florentin Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F) Neutrosophic Sets and Systems, Vol. 38, 2020 4 Proof: It results from the proof of Theorem 3.1. 5. Xu and Daโs Possibility Degree Xu and Da [3] have defined in 2002 the possibility degree ๐(.) that an interval is greater than another interval: [๐ ,๐ ]โฅ[๐ ,๐ ] 1 2 1 2 for ๐ ,๐ ,๐ ,๐ โ[0,1] and ๐ โค๐ ,๐ โค๐ , in the following way: 1 2 1 2 1 2 1 2 ๐([๐ ,๐ ]โฅ[๐ ,๐ ])=๐๐๐ฅ{1โ๐๐๐ฅ( ๐2โ๐1 ,0),0}, 1 2 1 2 ๐2โ๐1+๐2โ๐1 where ๐ โ๐ +๐ โ๐ โ 0 (i.e. ๐ โ ๐ ๐๐ ๐ โ ๐ . 2 1 2 1 2 1 2 1 They proved the following: 5.1. Properties 1) ๐([๐ ,๐ ]โฅ[๐ ,๐ ])โ[0,1]; 1 2 1 2 2) ๐([๐ ,๐ ]โ[๐ ,๐ ])=0.5; 1 2 1 2 3) ๐([๐ ,๐ ]โฅ[๐ ,๐ ])+๐([๐ ,๐ ]โฅ[๐ ,๐ ])=1. 1 2 1 2 1 2 1 2 5.2. Example Let [0.4,0.7] and [0.3,0.6] be two intervals. Then, 0.6โ0.4 0.2 ๐([0.4,0.7]โฅ[0.3,0.6])=๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0}=๐๐๐ฅ{1โ๐๐๐ฅ( ),0} 0.7โ0.4+0.6โ0.3 0.6 0.2 0.4 =๐๐๐ฅ{1โ ,0}= โ0.66>0.50, 0.6 0.6 therefore [0.4,0.7]โฅ[0.3,0.6]. The opposite: 0.7โ0.3 0.4 ๐((0.3,0.6)โฅ([0.4,0.7]))=๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0}=๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0} 0.6โ0.3+0.7โ0.4 0.6 0.4 0.2 =๐๐๐ฅ{1โ ,0}= โ0.33<0.50, 0.6 0.6 therefore [0.3,0.6]โค[0.4,0.7]. We see that 0.4 0.2 ๐([0.4,0.7]โฅ[0.3,0.6])+๐([0.3,0.6]โฅ[0.4,0.7])= + =1. 0.6 0.6 Another method of ranking two intervals is the midpoint one. 6. Midpoint Method Let A = [a1, a2] and B = [b1, b2] be two intervals included in or equal to [0, 1], with ๐๐ด = (a1 + a2)/2 and ๐๐ต = (b1 + b2)/2 the midpoints of A and respectively B. Then: 1) If ๐ <๐ then ๐ด<๐ต. ๐ด ๐ต 2) If ๐ >๐ then ๐ด>๐ต. ๐ด ๐ต 3) If ๐ =๐ then ๐ด= ๐ต, i.e. A is neutrosophically equal to B. ๐ด ๐ต ๐ Florentin Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F) Neutrosophic Sets and Systems, Vol. 38, 2020 5 6.1. Example 1) We take the previous example, 0.4+0.7 where ๐ด=[0.4,0.7], and ๐ = =0.55; ๐ด 2 0.3+0.6 and B=[0.3,0.6], and ๐ = =0.45. ๐ต 2 Since ๐ =0.55>0.45=๐ , we have ๐ด>๐ต. ๐ด ๐ต Let ๐ถ =[0.1,0.7] and ๐ท =[0.3,0.5]. 0.1+0.7 0.3+0.5 Then ๐ = =0.4, and ๐ = =0.4. ๐ถ 2 ๐ท 2 Since ๐ =๐ =0.4, we get ๐ถ = ๐ท. ๐ถ ๐ท ๐ Letโs verify the ranking relationship between C and D using Xu and Daโs possibility degree method. 0.5โ0.1 0.4 ๐([0.1,0.7]โฅ[0.3,0.5])=๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0}=๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0} 0.7โ0.1+0.5โ0.3 0.8 0.4 0.4 =๐๐๐ฅ{1โ ,0}=๐๐๐ฅ{ ,0}=0.5; 0.8 0.8 0.7โ0.3 and ๐([0.3,0.5]โฅ[0.1,0.7])=๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0}=๐๐๐ฅ{1โ 0.5โ0.3+0.7โ0.1 0.4 0.4 0.4 ๐๐๐ฅ( ,0),0}=๐๐๐ฅ{1โ ,0}=๐๐๐ฅ{ ,0}=0.5; 0.8 0.8 0.8 thus, [0.1,0.7]= [0.3,0.5]. ๐ 6.2. Corollary The possibility method for two intervals having the same midpoint gives always 0.5. For example: p([0.3, 0.5] โฅ [0.2, 0.6]) = max{1 - max( ((0.6-0.3) / (0.5-0.3 + 0.6-0.2)), 0 ), 0} = = max{1 - max( ((0.3) / (0.6)), 0 ), 0} = max{1 - max( 0.5, 0 ), 0} = 0.5. Similarly, p([0.2, 0.6] โฅ [0.3, 0.5]) = max{1 - max( ((0.5-0.2) / (0.6-0.2 + 0.5-0.3)), 0 ), 0} = 0.5. Hence, none of the intervals [0.3, 0.5] and [0.2, 0.6]) is bigger than the other. Therefore, we may consider that the intervals [0.3, 0.5] = [0.2, 0.6] are neutrosophically equal ๐ (or neutrosophically equivalent). 7. Normalized Hamming Distance between Two Intervals Letโs consider the Normalized Hamming Distance between two intervals [a1, a2] and [b1, b2] h : int([0, 1])โจฏ int([0, 1]) ๏ [0, 1] defined as follows: h([a1, b1], [a2, b2])= ยฝ(|a1 - b1| + |a2 - b2|). 7.1. Theorem 7.1.1. The Normalized Hamming Distance between two intervals having the same midpoint and the negative-ideal interval [0, 0] is the same. Florentin Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F) Neutrosophic Sets and Systems, Vol. 38, 2020 6 7.1.2. The Normalized Hamming Distance between two intervals having the same midpoint and the positive-ideal interval [1, 1] is also the same (Jun Ye [4, 5]). Proof. Let A = [m โ a, m + a] and B = [m โ b, m + b] be two intervals from [0, 1], where m-a, m+a, m-b, m+b, a, b, m โ [0, 1]. A and B have the same midpoint m. 7.1.1. h([m - a, m + a], [0, 0])= ยฝ(|m โ a - 0| + |m + a - 0|) = ยฝ(m โ a + m + a) = m, and h([m - b, m + b], [0, 0])= ยฝ(|m โ b - 0| + |m + b - 0|) = ยฝ(m โ b + m + b) = m, 7.1.2. h([m - a, m + a], [1, 1])= ยฝ(|m โ a - 1| + |m + a - 1|) = ยฝ(1 - m + a + 1 - m - a) = 1 - m, and h([m - b, m + b], [1, 1])= ยฝ(|m โ b - 1| + |m + b - 1|) = ยฝ(1 - m + b + 1 - m - b) = 1 โ m. 8. Xu and Daโs Possibility Degree Method is equivalent to the Midpoint Method We prove the following: 8.1. Theorem The Xu and Daโs Possibility Degree Method is equivalent to the Midpoint Method in ranking two intervals included in [0, 1]. Proof. Let A and B be two intervals included in [0,1]. Without loss of generality, we write each interval in terms of each midpoint: ๐ด=[๐ โ๐,๐ +๐] and ๐ต =[๐ โ๐,๐ +๐], 1 1 2 2 where ๐ ,๐ โ[0,1] are the midpoints of A and respectively B, and ๐,๐ โ[0,1], ๐ด,๐ต โ[0,1]. 1 2 0.4+0.7 (For example, if ๐ด=[0.4,0.7], ๐ = =0.55, 0.55-0.4=0.15, then ๐ด=[0.55โ0.15,0.55+ ๐ด 2 0.15]). 1) First case: ๐ < ๐ . According to the Midpoint Method, we get ๐ด<๐ต. Letโs prove the same 1 2 inequality results with the second method. Letโs apply Xu and Daโs Possibility Degree Method: ๐(๐ดโฅ๐ต)=๐([๐ โ๐,๐ +๐]โฅ[๐ โ๐,๐ +๐]) 1 1 2 2 (๐ +๐)โ(๐ โ๐) 2 1 =๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0} (๐ +๐)โ(๐ โ๐)+(๐ +๐)โ(๐ โ๐) 1 1 2 2 ๐ โ๐ +๐+๐ 2 1 =๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0} 2๐+2๐ ๐ โ๐ +๐+๐ 2 1 =๐๐๐ฅ{1โ ,0},because ๐ <๐ , 2๐+2๐ 1 2 2๐+2๐โ๐ +๐ โ๐โ๐ ๐+๐+๐ โ๐ 2 1 1 2 =๐๐๐ฅ{ ,0}=๐๐๐ฅ{ ,0} 2๐+2๐ 2๐+2๐ i) If ๐+๐+๐ โ๐ โค0, then ๐(๐ด โฅ๐ต)=๐๐๐ฅ{๐+๐+๐1โ๐2,0}=0, hence ๐ด<๐ต. 1 2 2๐+2๐ ii) If ๐+๐+๐ โ๐ >0, 1 2 then ๐(๐ดโฅ๐ต)=๐๐๐ฅ{๐+๐+๐1โ๐2,0}=๐+๐+๐1โ๐2 >0. 2๐+2๐ 2๐+2๐ Florentin Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F) Neutrosophic Sets and Systems, Vol. 38, 2020 7 We need to prove that ๐+๐+๐1โ๐2 <0.5, 2๐+2๐ or ๐+๐+๐ โ๐ <0.5(2๐+2๐), 1 2 or ๐+๐+๐ โ๐ <๐+๐, 1 2 or ๐ โ๐ <0, 1 2 or ๐ <๐ , which is true according to the first case assumption. 1 2 2) Second case: ๐ =๐ . According to the Midpoint Method, A is neutrosophically equal to B 1 2 (we write ๐ด= ๐ต). ๐ Letโs prove that we get the same result with Xu and Daโs Method. Then ๐ด=[๐ โ๐,๐ +๐], and ๐ต =[๐ โ๐,๐ +๐]. 1 1 1 1 Letโs apply Xu and Daโs Method: (๐ +๐)โ(๐ โ๐) ๐(๐ด โฅ๐ต)=๐๐๐ฅ{1โ๐๐๐ฅ( 1 1 ,0),0} (๐ +๐)โ(๐ โ๐)+(๐ +๐)โ(๐ โ๐) 1 1 1 1 ๐+๐ 1 =๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0}=๐๐๐ฅ{1โ ,0}=0.5 2๐+2๐ 2 Similarly: (๐ +๐)โ(๐ โ๐) ๐(๐ต โฅ๐ด)=๐๐๐ฅ{1โ๐๐๐ฅ( 1 1 ,0),0} (๐ +๐)โ(๐ โ๐)+(๐ +๐)โ(๐ โ๐) 1 1 1 1 ๐+๐ =๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0}=0.5 2๐+2๐ Therefore, again ๐ด= ๐ต. ๐ 3) If ๐ >๐ , according to the Midpoint Method, we get ๐ด>๐ต. 1 2 Letโs prove the same inequality using Xu and Daโs Method. ๐(๐ดโฅ๐ต)=๐([๐ โ๐,๐ +๐]โฅ[๐ โ๐,๐ โ๐])= 1 1 2 2 (๐ +๐)โ(๐ โ๐) 2 1 ๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0} (๐ +๐)โ(๐ โ๐)+(๐ +๐)โ(๐ โ๐) 1 1 2 2 ๐ โ๐ +๐+๐ 2 1 =๐๐๐ฅ{1โ๐๐๐ฅ( ,0),0} 2๐+2๐ i) If ๐ โ๐ +๐+๐ โค0, then ๐(๐ดโฅ๐ต)=๐๐๐ฅ{1โ0,0}=1, therefore ๐ด>๐ต. 2 1 ii) If ๐ โ๐ +๐+๐ >0, then 2 1 ๐ โ๐ +๐+๐ 2๐+2๐โ๐ +๐ โ๐โ๐ ๐+๐+๐ โ๐ ๐(๐ด โฅ๐ต)=๐๐๐ฅ{1โ 2 1 ,0}= 2 1 = 1 2 2๐+2๐ 2๐+2๐ 2๐+2๐ We need to prove that ๐+๐+๐1โ๐2 >0.5, 2๐+2๐ or ๐+๐+๐ โ๐ >0.5(2๐+2๐) 1 2 or ๐+๐+๐ โ๐ >๐+๐ 1 2 or ๐ โ๐ >0 1 2 or ๐ >๐ , which is true according to the third case. Thus ๐ด>๐ต. 1 2 8.2. Consequence All intervals, included in [0, 1], with the same midpoint are considered neutrosophically equal. ๐ถ(๐)={[๐โ๐,๐+๐],where all ๐,๐,๐โ๐,๐+๐ โ[0,1]} represents the class of all neutrosophically equal intervals included in [0, 1] whose midpoint is ๐. Florentin Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F) Neutrosophic Sets and Systems, Vol. 38, 2020 8 i) If ๐=0 or ๐ =1, there is only one interval centered in 0, i.e. [0, 0], and only one interval centered in 1, i.e. [1, 1]. ii) If ๐โ{0,1}, there are infinitely many intervals from [0, 1], centered in ๐. 8.3. Consequence Remarkably we can rank an interval [๐,๐]โ[0,1] with respect to a number ๐ โ[0,1] since the number may be transformed into an interval [๐,๐] as well. For example [0.2,0.8]>0.4 since the midpoint of [0.2, 0.8] is 0.5, and the midpoint of [0.4, 0.4]= 0.4, hence 0.5>0.4. Similarly, 0.7>(0.5,0.8). 9. Interval (-Valued) Neutrosophic Score, Accuracy, and Certainty Functions Let ๐,๐ผ,๐น โ[0,1] be three open, semi-open / semi-closed, or closed intervals. Let ๐๐ฟ =๐๐๐๐ and ๐๐ =๐ ๐ข๐๐; ๐ผ๐ฟ =๐๐๐๐ผ and ๐ผ๐ =๐ ๐ข๐๐ผ; ๐น๐ฟ =๐๐๐๐น and ๐น๐ =๐ ๐ข๐๐น. Let ๐๐ฟ,๐๐,๐ผ๐ฟ,๐ผ๐,๐น๐ฟ,๐น๐ โ[0,1], with ๐๐ฟ โค๐๐,๐ผ๐ฟ โค๐ผ๐,๐น๐ฟ โค๐น๐. We consider all possible types of intervals: open (a, b), semi-open / semi-closed (a, b] and [a, b), and closed [a, b]. For simplicity of notations, we are using only [a, b], but we understand all types. Then ๐ด=([๐๐ฟ,๐๐],[๐ผ๐ฟ,๐ผ๐],[๐น๐ฟ,๐น๐]) is an Interval Neutrosophic Triplet. ๐๐ฟ is the lower limit of the interval ๐, ๐๐ is the upper limit of the interval ๐, and similarly for ๐ผ๐ฟ,๐ผ๐, and ๐น๐ฟ,๐น๐ for the intervals ๐ผ, and respectively ๐น. Hong-yu Zhang, Jian-qiang Wang, and Xiao-hong Chen [2] in 2014 defined the Interval Neutrosophic Score, Accuracy, and Certainty Functions as follows. Letโs consider int([0, 1]) the set of all (open, semi-open/semi-closed, or closed) intervals included in or equal to [0, 1], where the abbreviation and index int stand for interval, and Zhang stands for Hong-yu Zhang, Jian-qiang Wang, and Xiao-hong Chen. 9.1. Zhang Interval Neutrosophic Score Function sZhang :{int([0,1])}3 ๏ฎint([0,1]) int ๐๐โ๐๐๐(๐ด)=[๐๐ฟ+1โ๐ผ๐+1โ๐น๐, ๐๐+1โ๐ผ๐ฟ+1โ๐น๐ฟ] (11) ๐๐๐ก 9.2. Zhang Interval Neutrosophic Accuracy Function aZhang :{int([0,1])}3 ๏ฎint([0,1]) int aZhang(๐ด)=[๐๐๐{๐๐ฟโ๐น๐ฟ,๐๐โ๐น๐},๐๐๐ฅ{๐๐ฟโ๐น๐ฟ,๐๐โ๐น๐}] (12) int 9.3. Zhang Interval Neutrosophic Certainty Function cZhang :{int([0,1])}3 ๏ฎint([0,1]) int ๐๐โ๐๐๐(๐ด)=[๐๐ฟ, ๐๐] (13) ๐๐๐ก Florentin Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F) Neutrosophic Sets and Systems, Vol. 38, 2020 9 9. New Interval Neutrosophic Score, Accuracy, and Certainty Functions Since comparing/ranking two intervals is equivalent to comparing/ranking two members (i.e. the intervalsโ midpoints), we simplify Zhang Interval Neutrosophic Score (๐๐โ๐๐๐), Accuracy ๐๐๐ก (๐๐โ๐๐๐), Certainty (๐๐โ๐๐๐) functions, as follows: ๐๐๐ก ๐๐๐ก sFS :{int([0,1])}3 ๏ฎ[0,1] int aFS :{int([0,1])}3 ๏ฎ[๏ญ1,1] int cFS :{int([0,1])}3 ๏ฎ[0,1] int where the upper index FS stands for our nameโs initials, in order to distinguish these new functions from the previous ones: 10.1. New Interval Neutrosophic Score Function sFS(([๐๐ฟ,๐๐],[๐ผ๐ฟ,๐ผ๐],[๐น๐ฟ,๐น๐]))=๐๐ฟ+๐๐+(1โ๐ผ๐ฟ)+(1โ๐ผ๐)+(1โ๐น๐ฟ)+(1โ๐น๐)=4+๐๐ฟ+๐๐โ๐ผ๐ฟโ๐ผ๐โ๐น๐ฟโ๐น๐, int 6 6 which means the average of six positivenesses; 10.2. New Interval Neutrosophic Accuracy Function aFS(([๐๐ฟ,๐๐],[๐ผ๐ฟ,๐ผ๐],[๐น๐ฟ,๐น๐]))=๐๐ฟ+๐๐โ๐น๐ฟโ๐น๐ , which means the average of differences int 2 between positiveness and negativeness; 10.3. New Interval Neutrosophic Certainty Function cFS(([๐๐ฟ,๐๐],[๐ผ๐ฟ,๐ผ๐],[๐น๐ฟ,๐น๐]))=๐๐ฟ+๐๐, int 2 which means the average of two positivenesses. 10.4. Theorem Let โณ ={(๐,๐ผ,๐น),where ๐,๐ผ,๐น โ[0,1],and ๐,๐ผ,๐น are intervals} , be the set of interval ๐๐๐ก neutrosophic triplets. The New Interval Neutrosophic Score, Accuracy, and Certainty Functions determine a total order relationship on the set โณ of Interval Neutrosophic Triplets. ๐๐๐ก Proof. Letโs assume we have two interval neutrosophic triplets: ๐ =([๐๐ฟ,๐๐],[๐ผ๐ฟ,๐ผ๐],[๐น๐ฟ,๐น๐]), 1 1 1 1 1 1 1 and ๐1 =([๐2๐ฟ,๐2๐],[๐ผ2๐ฟ,๐ผ2๐],[๐น2๐ฟ,๐น2๐]), both from Mint. We have to prove that: either ๐ >๐ , or ๐ <๐ , or ๐ =๐ . 1 2 1 2 1 2 Apply the new interval neutrosophic score function (sFS) to both of them: int sFS(๐ )=4+๐1๐ฟ+๐1๐โ๐ผ1๐ฟโ๐ผ1๐โ๐น1๐ฟโ๐น1๐ int 1 6 sFS(๐ )=4+๐2๐ฟ+๐2๐โ๐ผ1๐ฟโ๐ผ1๐โ๐น1๐ฟโ๐น1๐ int 2 6 Florentin Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F) Neutrosophic Sets and Systems, Vol. 38, 2020 10 If sFS(๐ )> sFS(๐ ), then ๐1 >๐2. int 1 int 2 If sFS(๐ )< sFS(๐ ), then ๐1 <๐2. int 1 int 2 If sFS(๐ )= sFS(๐ ), then we get from equating the above two equalities that: int 1 int 2 ๐๐ฟ+๐๐โ๐ผ๐ฟโ๐ผ๐โ๐น๐ฟโ๐น๐ =๐๐ฟ+๐๐โ๐ผ๐ฟโ๐ผ๐โ๐น๐ฟโ๐น๐ 1 1 1 1 1 1 2 2 2 2 2 2 In this problematic case, we apply the new interval neutrosophic accuracy function (aFS) to both ๐ and ๐ , and we get: int 1 2 TL ๏ซTU ๏ญFL ๏ญFU aFS(P)๏ฝ 1 1 1 1 int 1 2 TL ๏ซTU ๏ญFL ๏ญFU aFS(P)๏ฝ 2 2 2 2 int 2 2 If aFS(๐ )> aFS (๐ ), then ๐1 >๐2. int 1 int 2 If aFS(๐ )< aFS (๐ ), then ๐1 <๐2. int 1 int 2 If aFS(๐ )= aFS (๐ ), then we get from equating the two above equalities that: int 1 int 2 ๐๐ฟ+๐๐โ๐น๐ฟโ๐น๐ =๐๐ฟ+๐๐โ๐น๐ฟโ๐น๐ 1 1 1 1 2 2 2 2 Again, a problematic case, so we apply the new interval neutrosophic certainty function (cFS) int to both ๐ and ๐ , and we get: 1 2 cFS(๐ )=๐๐ฟ+๐๐ int 1 1 1 cFS(๐ )=๐๐ฟ+๐๐ int 2 2 2 If cFS(๐ )> cFS(๐ ), then ๐1 >๐2. int 1 int 2 If cFS(๐ )< cFS(๐ ), then ๐1 <๐2. int 1 int 2 If cFS(๐ )= cFS(๐ ), then we get: int 1 int 2 ๐๐ฟ+๐๐ =๐๐ฟ+๐๐ 1 1 2 2 We prove that in the last case we get: ๐ = ๐ (or ๐ is neutrosophically equal to ๐ ). 1 ๐ 2 1 2 We get the following linear algebraic system of 3 equations and 12 variables: ๐๐ฟ+๐๐โ๐ผ๐ฟโ๐ผ๐โ๐น๐ฟโ๐น๐ =๐๐ฟ+๐๐โ๐ผ๐ฟโ๐ผ๐โ๐น๐ฟโ๐น๐ 1 1 1 1 1 1 2 2 2 2 2 2 { ๐๐ฟ+๐๐โ๐น๐ฟโ๐น๐ =๐๐ฟ+๐๐โ๐น๐ฟโ๐น๐ 1 1 1 1 2 2 2 2 ๐๐ฟ+๐๐ =๐๐ฟ+๐๐ 1 1 2 2 Florentin Smarandache, The Score, Accuracy, and Certainty Functions determine a Total Order on the Set of Neutrosophic Triplets (T, I, F)