ebook img

The mechanism of domain-wall structure formation in Ar-Kr submonolayer films on graphite PDF

1.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The mechanism of domain-wall structure formation in Ar-Kr submonolayer films on graphite

CondensedMatterPhysics,2014,Vol.17,No4,43601:1–14 DOI:10.5488/CMP.17.43601 http://www.icmp.lviv.ua/journal The mechanism of domain-wall structure formation in Ar-Kr submonolayer films on graphite 5 A.Patrykiejew,S.Sokołowski 1 0 DepartmentfortheModellingofPhysico-ChemicalProcesses,FacultyofChemistry,MCSUniversity,20031 2 Lublin,Poland n a ReceivedJuly18,2014,infinalformOctober23,2014 J 2 Using Monte Carlo simulation method in the canonical ensemble, we have studied the commensurate- 1 incommensuratetransitionintwo-dimensionalfinitemixedclustersofArandKradsorbedongraphitebasal planeatlowtemperatures.Ithasbeendemonstratedthatthetransitionoccurswhentheargonconcentration ] l exceedsthevalueneededtocovertheperipheriesofthecluster.Theincommensuratephaseexhibitsasimi- l a lardomain-wallstructureasobservedinpurekryptonfilmsatthedensitiesexceedingthedensityofaperfect h (p3 p3)R30◦ commensuratephase,butthesizeofcommensuratedomainsdoesnotchangemuchwith × - theclustersize.Whentheargonconcentrationincreases,thecompositionofdomainwallschangeswhilethe s e commensuratedomainsaremadeofpurekrypton.Wehaveconstructedasimpleone-dimensionalFrenkel- m Kontorova-likemodelthatyieldstheresultsbeinginagoodqualitativeagreementwiththeMonteCarloresults obtainedfortwo-dimensionalsystems. . t a Keywords:adsorptionofmixtures,commensurate-incommensuratetransitions,MonteCarlosimulation, m finitesystems,Frenkel-Kontorovamodel - d PACS:68.35.Rh,64.70.Rh,64.60.an n o c 1. Introduction [ 1 The commensurate-incommensurate (C-IC) transitionsinadsorbed films have been experimentally v observedinavarietyofsystems[1–15]andstudiedbytheoreticalmethods[16–27]andcomputersimu- 6 6 lations[28–37]. 5 Inalargenumberofsystems,theincommensuratephaseformsacollectionoffinitecommensurate 2 regions(domains)separatedbydomainwalls[21].ThedomainwallnetworksappearwhentheCphase 0 isdegenerated,i.e.,whentheatoms(ormolecules)intheCphaseoccupyoneofseveralequivalentlat- . 1 tices.ThestabilityofICphaseswithdomainwallsnetworksisconsiderablyenhancedbylargeentropic 0 effects[16,21].Themostprominentexampleofsuchasystemisthekryptonmonolayeradsorbedonthe 5 graphitebasalplane[38–41].Atlowtemperatures,theadsorptionofkryptonleadstotheformationofthe 1 : three-folddegeneratecommensurate(p3 p3)R30◦ (p3 p3)R30◦ structure,inwhicheverykrypton v atomoccupiesoneofeverythreehexagons×ofthegraphite×surface,hasthelatticeconstant p3timesthe i X graphitelatticeconstant(a 2.46Å)andisrotatedwithrespecttothegraphitelatticeby30degrees. gr = r Upontheincreaseofpressure,thecommensuratephaseundergoesatransitionintotheincommensurate a phaseofhigherdensity,inwhichthecommensuratedomainsareseparatedbywalls,andtheatomsin neighboring domains are shifted to a different sublattice [40, 42–44]. In this case, the walls are called heavyandcarryalltheexcessofdensity.AtthedensitiesjustabovetheC-ICtransitionthedomainsare verylargeandtheirsizegraduallydecreaseswhenthedensityincreasestowardsthemonolayercomple- tion.Thishasbeenclearlydemonstratedbyalargescalecomputersimulationstudy[30]. The C-IC transition has also been experimentally observed in the mixed Kr-Xe and Ar-Xe films on graphite[45–48].Ontheotherhand,thestructureofmixedAr-Krfilmsongraphitehasnotbeenexper- imentallystudiedyet.TheonlyavailableexperimentalresultswerepublishedbySingletonandHalsey ©A.Patrykiejew,S.Sokołowski,2014 43601-1 A.Patrykiejew,S.Sokołowski nearly60yearsago[49]anddemonstratedthatmixedliquid-likefilmsexhibitcompletemixing,indepen- dentlyofthecomposition.Theonlyinformationaboutthestructureandpropertiesofsolid-likemixed Ar-Krfilmsongraphitehavebeenobtainedusingcomputersimulationmethods[50,51].Inparticular,it hasbeendemonstratedthatalreadyatsubmonolayercoveragesandatsufficientlylowtemperatures,the additionofargonintokryptonfilmtriggerstheC-ICtransition,andleadstotheformationoffiniteclus- tersinwhichsmallcommensuratedomainsconsistingofpurekryptonareseparatedbyheavywallsbuilt ofargonandkrypton[51].TheC-ICtransitioninone-componentfiniteclustersofLennard-Jonesatoms adsorbedongraphitehasalsobeenstudiedbyHoulriketal.[37].TheyhaveusedMonteCarlomethodto studytheeffectsofthecorrugationpotentialonthestructureoffinitesystemsandhaveshownthatfora givenamplitudeofthecorrugationpotentialthepresenceoffreesurfacesenhancedthestabilityoftheC structure. Inthispaperwestudythemechanism oftheC-ICtransitionofsubmonolayer mixed filmsmadeof argonandkryptonusingMonteCarlosimulationmethodsandappropriatelymodifiedone-dimensional (1D) Frenkel-Kontorova (FK) model [52, 53]. The original FK model handles an infinite chain of atoms interactingviaharmonicpotentialandsubjectedtoaperiodic(sinusoidal)externalfieldatzerotemper- ature.TheFKmodelcanbeusedtodescribethebasisfeaturesofC-ICtransitions[17].Atthispoint,we should mention thatthe FKmodel hasbeenextended totwo-dimensional systems [54, 55] tomixtures [56],systemswithdisorder[57,58]andhasalsobeenusedtostudyfinitechains[59–63]. Inoneofourrecentworks[52],westudiedtheimpuritydrivencommensurate-incommensuratetran- sitionsinone-dimensionalfinitesystemsusingtheFKmodel.Weassumedthatthepurechainiscommen- surateanddiscussedtheeffectsofimpuritieslocatedeitheronlyatoneendorattwoendsofthechain. It is shown that in both situations the C-IC transition occurs when the amplitude of the external field experiencedbytheimpurityatomsfallsintotheregionbetweenthelowerandupperthresholdvalues. Theselimiting values of theamplitude depend uponthe parameterscharacterizingthe interactionbe- tweentheatomsinthemainchain,theamplitudeofexternalfieldactingonthemainchainatomsand theinteractionbetweenthemainchainandtheimpurities.Thenumberofsolitons(domainwalls)inthe ICstructurewerefoundtodependuponthechainlength,andtheparametersdescribingtheinteractions inthesystem.OurfindingshavebeenconfirmedbyMonteCarlosimulationintwo-dimensionalsystems. Here, we also considered finite chains of Kr atoms with impurities (Ar atoms) located atthe chain endsaswellasinthechaininterior. Thepaperisorganizedasfollows.Inthenextsectionwepresentedthetwo-dimensionalmodeland describedtheMonteCarlomethodused.TheresultsofMonteCarlosimulationarepresentedinsection3. Then, insection 4 we presented the modified 1D FK model and demonstrated that ityields the results qualitativelyverysimilartothoseemergingfromthetwo-dimensionalMonteCarlosimulation. 2. The two-dimensional model and simulation method We have considered strictly two-dimensional mixed submonolayer films consisting of Ar and Kr atoms.Theinteractionbetweentheatomsismodelledviathetruncated(12,6)Lennard-Jonespotential 12 6 4ε σ /r σ /r , r r , uij(r) ij ij − ij É max (2.1) =( 0, h¡ ¢ ¡ ¢ i r rmax, > wherer isthedistancebetweenapairofatoms,thesubscriptsi and j markthespeciesArandKr,and thepotentialiscutatthedistancermax 3.0σij.Thepotentialparametersforapairofunlikeatomsare = givenbytheLorentz-Berthelotrelations: 1 σArKr = 2(σAr+σKr) and εArKr= pεArεKr. (2.2) Theexternalfieldduetothegraphitesubstrateisassumedtobegivenby[33,51] v(x,y) Vb,i cos(q1r) cos(q2r) cos[(q1 q2)r] , (2.3) =− + + − © ª 43601-2 Domain-wallformationinAr-Krsubmonolayerfilmsongraphite Table1.Lennard-JonesparametersforArandKrusedinthiswork i,j σi,j,Å εi,j,K Ar,Ar 3.4 120.0 Kr,Kr 3.6 171.0 Ar,Kr 3.5 142.83 whereq1andq2arethereciprocallatticevectorsofthegraphitebasalplaneandtheamplitudesVb,i (i = Ar,Kr)determinethepotentialbarriersbetweenadjacentminima.WeassumedherethatVb∗,Ar=8.4K andVb∗,Kr=14.4K[51]. Thevaluesofparametersenteringthepotential(2.1)aregivenintable1.Thegraphitelatticeconstant a 2.46Åisassumedtobeaunitoflengthandε istakenasaunitofenergy. gr Ar = The Monte Carlo simulation is carried out in the canonical ensemble [64] for systems of different (submonolayer)density,ofdifferenttotalnumberofatoms, N,andofdifferentmolefractionofargon, x ,between0and0.55.WeusedastandardMetropolissamplingandtwotypesofmovesaretakeninto Ar account,i.e.,thetranslationofarandomlychosenatombyarandomlychosenvectorwithinthecircleof radiusd andtheidentityexchange.Themagnitudeofd isupdatedevery1000MonteCarlosteps max max (each Monte Carlo step consists of N attempts to move a single atom as well as N attempts to change the identity of randomly chosen atoms) in order to keep the acceptance rate equal to about 0.3. The equilibrationandproductionrunsconsistof5 106 and5 107 MonteCarlosteps,respectively.Standard · · periodicboundaryconditionswereusedtherein. 3. The results of Monte Carlo study of Ar-Kr submonolayer films Sinceourstudywasperformedforfiniteclustersatlowtemperaturesitseemsreasonabletobegin withtheestimationoftheeffectsoffreeboundariesonthegroundstatepropertiesoffinitecommensu- ratepatchesmadeofpurekrypton. WeperformedMonteCarlocalculationsatlowtemperaturesusingdifferentstartingconfigurations. Atfirst,therectangular simulationcellsofthesizeLx Ly L Lp3/2withL 30, 60and120,were × = × = used.ThenumberofKratoms inaperfectandfully covered (p3 p3)R30◦ commensuratestructure wasequaltoNKr L2/3.Then,wemodifiedthesimulationcellby×makingLx larger(Lx L ∆),while keepingthenumb=erofKratomsunchanged,i.e.,equaltoN L2/3.Inthisway,twofr=eeb+oundaries Kr = runningalongthey-axiswerecreated.Ofcourse,thedistancebetweenthesetwoboundaries,givenby∆, shouldbelargerthanthecutoffdistanceoftheLennard-Jonespotential[equation(2.1)].Thesecondseries of calculations were donefor finite hexagonal clusters of the commensurate phase builtof a different number of kryptonatoms. Thesimulation was carried out atreduced temperatures between 0.01 and 0.1 and the energies obtained were extrapolated to T 0. In this way, we estimated the ground state = energies. In the case of a fully occupied rectangular box, we did not observe any finite size effects, and the groundstateenergy(perparticle)ofthecommensuratephasewasestimatedtobeequaltoe0,c 4.617 =− (seefigure1).Similarcalculationscarriedoutforthesystemswithfreeboundariesalongthe y-axisled to the ground state energy equal to e0,f 4.562 (see figure 1) for three different systems of the size =− (60 15p3)(N 600),(60 45p3)(N 1800)and(90 30p3)(N 1200). Kr Kr Kr × = × = × = Inthegroundstate,theexcessinterfacialenergyperunitlengthduetothepresenceoffreebound- ariesofthetotallengthL canbecalculatedasfollows: int Eint (E0,f E0,c)/Lint, (3.1) = − whereE0,f NKre0,fandE0,c NKre0,carethetotalenergiesofthesystemswithandwithoutfreebound- = = aries.Forthethreesystemsmentionedabove,weobtainedthesamevalueoftheexcessinterfacialenergy atT 0equaltoabout0.635.Thisindicatesthatfinitesizeeffectsarenegligiblysmallatverylowtem- = peratures. 43601-3 A.Patrykiejew,S.Sokołowski Τ 0.00 0.02 0.04 0.06 0.08 0.10 -4.4 e = -4.562 T)] o,f e( N), [Kr-4.5 e(hex,o -4.6 e = -4.618±0.001 o,c 0.00 0.02 0.04 0.06 0.08 0.10 1/N1/2 Figure1.Thetemperaturechangesoftheenergy(perparticle)offullycovered(opencircles)andwith freeboundaries (opendiamonds) commensuratephaseobtained using arectangularslabscontaining 600,1200and1800atomsandofdifferenttotallengthofthefreeinterface,Lint=Lyp3,withLy=30,60 and90.ThefilledcirclesarethegroundstateenergiesoffinitehexagonalpatchesplottedagainstN−1/2. On the other hand, the ground state energies of finite hexagonal clusters are bound to show large finitesizeeffects.Insuchclusters,thefractionofatomsatthepatchboundariesisproportionalto1/pN. InordertoextrapolatetheresultstothelimitN ,wemadetheplot(giveninfigure1)oftheground Kr →∞ stateenergies(peratom)fortheclustersofdifferentsizee (N )against1/pN andextrapolatedthe hex,0 Kr resultsto1/pN 0.Inthislimit,theboundaryeffectsshouldvanishandtheenergyforN should Kr = →∞ beequaltoe0,c.Theobtainedvalueisequalto 4.169andagreesverywellwiththevalueofe0,cobtained − forthefullycoveredsurface.Theabovepresentedresultsdemonstratethatoursimulationmethodgives reliableresults. Itwasdemonstratedinourearlierwork[51],thatfinitesubmonolayerclustersmadeofthemixtureof ArandKratomsexhibitdomain-wallstructures,inwhichthecommensuratedomainsmadeofkrypton areseparatedbythedomainwallsofvaryingcomposition.Here,weconsideredsuchsystemsinamore systematic way, aiming at the determination of conditions necessary for the domain-wall structure to appear. TheMonteCarlosimulationswerecarriedoutforaseriesofhexagonal clustersofadifferenttotal numberofatomsequalto343,601,931and1333andofalsodifferentargonmolefractionbetween0.08 and0.55.Thecalculationswereperformedoveraratherwiderangeofreducedtemperaturesbetween 0.01and0.45.Figure2showsthetemperaturechangesofthepotentialenergy(perparticle)inthesystems ofdifferentclustersizeandofdifferentcomposition.Onlyinthecaseofx 0.1andtheclusterswith Ar = N up to 931, the energy smoothly changes with temperature, and the inspection of snapshots showed that all kryptonatoms form a commensurate patch while all argon atoms are located along the patch boundary[seefigure3(a)]. Inordertodistinguishthecommensurateandincommensurateatoms,weusedthefollowingorder parameter[31,37,51] φ(r) cos(q1r) cos(q2r) cos[(q1 q2)r], (3.2) = + + − andassumedthattheatomiscommensurate(incommensurate)whenφ 0(φ 0). > É In all other cases, the domain-wall structures were observed at sufficiently low temperatures. Fig- ure3(b)showstheexampleofasnapshotrecordedatT 0.02andx 0.1forthelargerpatchmade Ar = = of1333atoms.ItcanbeclearlyseenthatunlikeinthesmallerclusterofN 931atoms,theclusterwith = N 1333exhibitsthedomain-wallstructure,andthewallsaremadenearlyentirelyofkryptonatoms. = Theargoncontributestothewallsonlyintheareasclosetothepatchboundaries.Thepatchboundaries 43601-4 Domain-wallformationinAr-Krsubmonolayerfilmsongraphite T T 0,0 0,1 0,2 0,3 0,4 0,0 0,1 0,2 0,3 0,4 -3,6 -3,4 N=343 -3,8 N=601 -3,6 N=931 N=1333 -3,8 -4,0 > > e e < -4,0< -4,2 x = 0.2 xAr = 0.1 Ar -4,2 -4,4 -4,4 -3,2 -3,0 -3,4 -3,6 e> -3,5e> < < -3,8 -4,0 x = 0.3 x = 0.4 Ar Ar -4,0 -4,2 0,0 0,1 0,2 0,3 0,4 0,0 0,1 0,2 0,3 0,4 T T Figure2.(Coloronline)Thetemperaturechangesofthepotentialenergy(perparticle)obtainedforfinite hexagonalpatchesofdifferentsizeandofdifferentargonmolefraction.Theverticalbluelinesmarkthe locationsoftransitionbetweenthemixedcommensuratestructure(stableathightemperatures)andthe domain-wallstructure(stableatlowtemperatures)inthelargestclustersofN 1333atoms,obtained = fromannealingandfreezingruns. arecoveredbyasinglelayerofargonatoms.ThestructureoftheICphaseisqualitativelysimilartothe ICphaseinpurekryptonmonolayersofthedensityexceedingthatofafullyfilledCstructure.However, themechanismleadingtothecommensurate-incommensuratetransitionisquitedifferentinbothsitua- tions.Inthecaseofafullyfilledmonolayer,thedensityexcessoverthevaluecorrespondingtoaperfect Cphasetriggerstheformationofdomainwalls.Upontheincreaseofdensity,thesizeofcommensurate domains gradually decreases [30, 65]. Ultimately, a dense IC phase without commensurate domains is formedclosetothemonolayercompletion. Infinitemixedclusterstheatomsclosetotheboundariesarestrainedandthemagnitudeofthisstrain dependsonthenumber ofargonatomsinthesystem. Itisshown thattheexcessinterfacialenergyin purekryptonclustersispositiveanditinducesaforcenormaltotheinterfaceandpointingtowardsthe patchinterior.Evidently,thisforceistooweaktoleadtotheC-ICtransitioninthepurekryptonclusters. Thepresenceofalayerofargonatomsattheboundariescausestheinterfacialenergytobeconsiderably higherandhenceinducesaconsiderablylargerforce,whichissufficienttocompressthepatchandto triggertheC-ICtransition.Thenumberofargonatomsnecessarytocovertheentirepatchboundaryis proportionaltothetotallengthoftheinterface,whichinturnisproportionalto N1/2.Forasmalland Kr fixedargonmolefractioninthesystem,theconcentrationofargonalongtheinterfaceincreaseswiththe clustersize.Figure3(a)showsthatinthecaseofN 931and x 0.1,argonatomshardlycoverthe Ar = = entireinterface.Ontheotherhand,whenN 1333[figure3(b)],theentireinterfaceisdenselycovered = byargonandthereissomeexcessofargonatomswhichtrytopenetratethepatchandtrigger thede- velopmentofdomainwalls.Whentheargonconcentrationincreases, thewallsbecomemixedandfor alargeargonmolefractionarepredominantlybuiltofargon (seefigure4).Westudiedthechanges of thewallcompositionresultingfromthechangesofargonconcentrationinthesystemfortheclustersof differentsizewithN 601,931and1333.Wedidnottakeintoaccounttheincommensurateatomswith = lessthan5nearestneighbors.Suchatomsarelocatedalongthepatchboundaries,andtheinspectionof snapshots(seefigure3and4)allowedustoassumethatthereisasingleatomiclayerofincommensurate atomsatthepatchboundaries.Usingsuchaprocedurewewereabletomonitorthechangesofthenum- berofargonandkryptonatomsincorporatedwithinthewallsandtoestimatetheargonconcentration withinthewallandalongthepatchboundaries.WeperformedaseriesofMonteCarlosimulationsovera 43601-5 A.Patrykiejew,S.Sokołowski Figure3.(Coloronline)TheexamplesofconfigurationsforthefinitepatcheswithxAr 0.1atT 0.02 = = consistingof931(parta)and1333(partb)atoms.Blueandredcirclesmarkkryptonandargon,respec- tively.Theopencirclescorrespondtothecommensurateatomswiththeorderparameterφ(ri) 0,while Ê thefilledcirclesmarktheincommensurateatomswithφ(ri) 0. < certaintemperaturerangebetween0.01and0.3fordifferentclustersizesanddifferentargonmolefrac- tioninthefilm.Theexamplesoftemperaturechangesofthewallcompositionaregiveninfigure5(a), whichshowsthenumbersofargonandkryptonatomsformingthewallsintheclustersof1333atoms and different argon mole fraction.The results demonstrate that for x 0.1, the patch is commensu- Ar = rate at sufficiently high temperatures, and undergoes a transition to the incommensurate structure at T 0.14 0.02.Thetransitionseemstobeofthefirstorderassuggestedbyratherlargehysteresisalong = ± the freezing and annealing runs. In the case of x 0.2, the transition occurs at higher temperature Ar = ofaboutT 0.20 0.02 andisrounded.Forthepatcheswithahigherargonconcentration,theincom- = ± mensuratestructure occursover the entirerangeof temperaturesstudied.Itisalso evidentthat upon theincreaseofargonconcentrationinthefilm,thecompositionofwallschanges fromkryptonrichto argonrich.Havingthetemperaturechangesofthewallcompositionwecouldestimatethegroundstate behaviorofthesystemsstudied. The results are given in figure 5 (b), which shows the changes of the argon mole fraction within thewallsandatthepatchboundariesversusthetotalargonmolefractioninthesystem.Theseresults demonstratethatwhentheclustersizeincreases,theonsetoftheC-ICtransitionoccursatalowerargon concentration in the film. In the cluster with N 601, it occurs when x 0.125, in a larger cluster Ar = ≈ consistingof931atomsitstartswhen x isslightlyhigherthan0.1,whileinthelargestclusterofN Ar = Figure4.(Coloronline)TheexampleofconfigurationfortheclusterwithN 1333atomsandxAr 0.3 = = atT 0.06.Thelabelingofatomsisthesameasinfigure3. = 43601-6 Domain-wallformationinAr-Krsubmonolayerfilmsongraphite 500 1,0 a ArKr - x =0.1 - xAr =0.2 Ar 400 -- xxAr ==00..34 0,8 N=601 Ar N=931 N=1333 N(Ar), N(Kr)ICIC230000 x [x]Ar,wAr.p00,,46 100 0,2 0 0,0 0 0.05 0.1 0.15 0.2 0.25 0 0,1 0,2 0,3 0,4 0,5 T xAr Figure5.(Coloronline)(parta)Thetemperaturechangesofthenumbersofargonandkryptonatoms withinthewallsinfiniteclustersofN 1333forthesystemswithdifferentargonmolefractionequal = 0.1(circles),0.2(squares)0.3(diamonds)and0.4(triangles).Blackandredsymbolsmarkthenumbers of argon and krypton atoms,respectively. (Part b). Themole fractionof argon within thewall (black symbols)andthemolefractionofargonatomsatthepatchboundaries(redsymbols)againstthetotal molefractionofargonatomsobtainedforclustersofdifferenttotalnumberofatoms(giveninthefigure). Thelinesserveonlyasaguidance. 1333thetransitionisfoundalreadywhenx 0.09.Ofcourse,whentheargonmolefractionislower Ar ≈ thanthelimitingvaluenecessarytotriggertheC-ICtransition,allargonatomsarelocatedalongthepatch boundaries.Theargonmolefractionwithinthewallsincreaseslinearlywiththeargonmolefractionin thefilmandforsufficientlylargeargonconcentrationthewallsareentirelyformedbyargon.Afurther increase of the argon mole fraction leads to a gradual decrease of the size of krypton commensurate domains[51]. The inspection of configurations showed that when the walls are predominantly made of krypton atoms(atlowargonconcentrations)theyarewiderthanthewallsformedinthefilmswithhighargon concentration.Thedomainwallsmadeofargonatomsonlywereobservedtousuallyconsistofjusttwo rowsofargonatomsandcanbeclassified asheavywalls.Theneighboringdomainsareshiftedbythe displacementvectorofthelengthequaltoa [21].Theresultsobtainedfordifferentclustersizesshowed gr thatthedomainsarerathersmall,andusuallycontainupto10commensuratekryptonatomsalongthe linejoiningoppositewalls.ThisisquitedifferentfromthealreadymentionedpurekryptonICphase,in whichthedomainsareverylargeclosetotheC-ICtransitionandtheirsizegraduallydecreaseswhenthe densitybecomeshigher. Wealsostudiedsemi-infinitesystemsconsistingoftherectangularcommensuratedomainofthesize Lx Ly withperiodicboundaryconditionsappliedalongthex and y-axes,butwithfreeinterfacesrun- × ningalongthey-axis.ThesimulationcellwasofthesizeLx 60 ∆,with∆ 30,andLy 30p3/2. = + = = StartingfromaperfectCstructure,weestimatedthegroundstateenergiesforthreedifferentconfig- urationswiththefixednumbersofArandKratomsequaltoN 60and N 540.Thesimulations Ar Kr = = were carried out at low temperatures, between 0.01 and 0.1, using two types of algorithms, with and withouttheidentityexchangeattempts. Threedifferentsystemswereconsidered.Inthefirst(i),tworowsofkryptonatomsadjacenttoeach boundaryrunningalongthey-axiswerereplacedbyargonatoms.Thesecondsystem(ii)containedonly singlerowsofargonatomsatbothfreeboundariesandtherestofAratomsformedasinglewallconsist- ingoftworowsofatomsinsidetheCpatchatacertaindistancerw fromoneoftheinterfaces.Thethird system(iii)alsoconsistedofsinglerowsofargonatomsalongthetwofreeboundaries,buttherestofAr atomsformedtwowalls,eachmadeofonerowofatomslocatedatthedistancerw fromthecloserfree interface.Thecalculationsshowedthatinthesystems(ii)and(iii)energybecomesindependentofrw as soonasrw islargerthantheassumed cutoff distancermax.Theresultsgivenbelow wereobtained for 43601-7 A.Patrykiejew,S.Sokołowski rw 10. = The simulation without identity exchange attempts demonstrated that the system (ii) has a lower groundstateenergy(perparticle)(e 4.450)thanthesystems(i)(e 4.425)and(iii)(e 4.398). i ii iii ≈− ≈− ≈− Moreover,theentirekryptonpatchinthesystem (i)wasobserved toformtheC structureatlowtem- peratures,whilethevastmajorityofargonatomsweredisplacedtoincommensuratepositionsduetoa certaincontractionresultingfromthepresenceoffreeinterfaces.Inthecaseofsystem(ii),argonatoms wereobservedtoformanincommensuratewallwiththedisplacementvectorbetweenthecommensu- ratedomainsatbothsidesofthewallcorrespondingtoaheavywall.Thestructureofsystem(iii)was foundtobecommensurate,justthesameasinthecaseofsystem(i)AnotherMonteCarlorun,inwhich theidentityexchangeattemptedwastakenintoaccount,performedforthesystem(i)demonstratedthat alreadyatverylowtemperaturesthesystemstructurespontaneouslychangestothatcorrespondingto thesystem (ii).Moreover, the twosingle rows ofargonatoms insidethe patchof thesystem (iii)were observedtomergeintoasingleheavywall consistingoftworowsofargonatoms. Wealsoperformed arunusing thealgorithminvolving theidentityexchange attempts andthestaringconfigurationwith threerowsofargonatomsateachfreeboundary.Inthiscase,weobservedtheformationoftwoheavy wallsrunningalongthey-axisandmadeoftworowsofargonatomsagain. Wecalculatedthegroundstateenergiesofperfectlycommensurate(Ec,k)andrelaxed(Erel,k)struc- turesforthesystemsk (i),(ii)and(iii)aswellastheenergygain(pertheunitlengthoffreeinterfaces) = duetotherelaxation eint,k=(Erel,k−EC,k)/Lint. (3.3) Theenergies(peratom)ofperfectlyorderedcommensuratestructuresareverysimilarandequalto eC,1 4.3748,eC,2 4.3699andeC,3 4.36707.Ontheotherhand,theenergygainsduetorelaxation =− =− =− areconsiderablydifferentandequaltoeint,1 1.16,eint,2 1.85andeint,3 0.76. ≈− ≈− ≈− Figure6.(Coloronline)Theexampleofconfigurationfortherectangularslabofthesize60 30p3with × xAr 0.2atT 0.03.Blueandredcirclesmarkkryptonandargonrespectively.Circleswiththinlines = = correspondtocommensurateatomswiththeorderparameterφ(ri) 0,whilecircleswiththicklinesare Ê forincommensurateatomswithφ(ri) 0. < Theabovepresentedresultsdemonstratethattheformationofheavywallsconsistingoftworowsof argonatomsinsidethekryptonpatchleadstothemoststablestructure.Itshouldbealsonotedthatsim- ulationforthesystemswithlargerargonconcentrationsleadtothedevelopmentofnetworksofheavy wallslikethatgiveninfigure 6,ratherthantoaseriesofparallelwalls runningalong the y-axis.This demonstrates that wall crossings contribute to the system stability and suggests that the wall crossing energyisnegative.Ofcourse,atfinitetemperaturesthenetworkofhexagonalwallsisalsostabilizedby entropiceffects,inparticular,bytheso-calledbreathingentropy[22,23,66]. Concludingthissection,weshouldmentionthatfromourearlierstudy[51]itfollowsthatuponthe increaseoftemperaturethedomainwallsstructuredisappearsandthemixedcommensurate phaseis formedatthetemperaturesbelowthemeltingpoint. 43601-8 Domain-wallformationinAr-Krsubmonolayerfilmsongraphite 4. A simple one-dimensional Frenkel-Kontorovamodel Inthissection,weproposeasimplemodifiedone-dimensionalFrenkel-Kontorovamodel[52,53]that leadstoqualitativelysimilarresultsasthosediscussedintheprevioussection. Taking into account that the domain-wall structures that appear for submonolayer coverages are stableonlyatverylowtemperatures,weconsiderfinitechainsatzerotemperature. In general, the energy of the chain consisting of N atoms of two different species A and B can be writtenas 1 N 1 N E=2(i−1Ki,i+1 xi+1−xi−bi,i+1 2+i 1vi[1−cos(2πxi/a)]). (4.1) X= £ ¤ X= In the above, we assumed that the interaction between a pair of nearest neighbors is harmonic and characterized by the force constant Ki,i 1 K(A,A), K(A,B) or K(B,B) and the equilibrium distance bi,i 1 b(A,A), b(A,B) or b(B,B), depend+ing=on the composition of the pair. The second sum in equa- tion+(4=.1)representsthecontributiontothepotentialenergyduetotheperiodicsubstratefield,withthe distancebetweenadjacentminimaequaltoa,andtheamplitudeoftheexternalfieldvi isequaltovAor v . B Inordertofind theequilibriumconfigurationofsuch amixed chainofthelength N,oneneedsto specify the numbers of atoms A and B and their positions along the chain, and then to minimize the energywithrespecttothesetof{xi}. Here,weconsideredafewsituationsthataresupposedtomimicthebehaviorofthepreviouslydis- cussedtwo-dimensionalsystems.WeassumedthatthecomponentAisKr-like,whilethecomponentBis Ar-like.TheequilibriumconfigurationofthechainmadeofatomsAonlyshouldcorrespondtothecom- mensuratestructure.Ontheotherhand,thechainmadeofonlyBatomsshouldleadtoanincommensu- ratefloatingstructure.AssumingthattheelasticconstantK(A,A)istheunitofenergyandthesubstrate latticeconstantaistheunitoflength,wefoundoutthatthemodelwiththeparametersv 0.0055and A = b(A,A) 1.9describesreasonablywellthecommensuratestructure.Notethatbytakingb(A,A) 1.9we = = assumedthatinthecommensuratestructureeverysecondpotentialwellisoccupiedbyanatomandthat themisfitm b(A,A) 2 0.1isnegative.ThisvalueofmisfitislargerthaninthecaseofKr/Graphite AA = − =− system, for which it is equal to about 0.06 [51], but assuming the value of the misfit equal to 0.06, − − theFKmodelleadstothestablecommensuratephaseevenforunreasonablylowamplitudesofthesur- facefield.TomodelAratomsweassumedthatv 0.003,b(B,B) 1.8andK(B,B) 0.9Theparameters B = = = K(A,B)andb(A,B)areassumedtobegivenbytheLorentz-Berthelotmixingrules,sothat K(A,B) K(A,A)K(B,B) and b(A,B) 0.5[b(A,A) b(B,B)]. (4.2) = = + p We considered the chains that begin and terminate with atoms B. This assumption arises directly fromtheobservationthatintwo-dimensionalsystems,thedomain-wallstructuresappearingonlyafter theperipheriesofthecluster madeofKratomsarecovered withafilled singlelayerofAratoms. The situationinwhichargonatomsarelocatedonlyattheendsofthechaincorrespondstothemodellabeled asModelI.Weconsideredtwoversionsofthismodelassumingthatthereisonlyoneargonatomateach chainend(ModelI1)andthateachendisdecoratedbytwoargonatoms(ModelI2).Then,intheModel II,weassumed thatatacertainpositionafter theatom N1,i.e., attheposition N1 1, amixedwall of + thethicknessequaltokatomsappears.TheversionofthemodelwithagivenvalueofkisnamedModel II(k,N1). Inordertoconsidermixedwalls,weassumedthatwithinthewall,theparametersrepresentingthe elasticconstant,Kw,theequilibriumdistance,bw,andtheamplitudeofthesubstratepotential,vw,are alldependentonthewallcompositionmeasuredbythemolefractionofcomponentB,x ,andaregiven B by: Kw xBK(B,B) (1 xB)K(A,A), (4.3) = + − bw xBb(B,B) (1 xB)b(A,A) (4.4) = = − and vw xBvB (1 xB)vA. (4.5) = + − 43601-9 A.Patrykiejew,S.Sokołowski Thepairs(N1,N1 1)and(N1 k,N1 k 1),i.e.,atbothsidesofthewall,consistofoneAatomand + + + + onewallatom,sothattherespectiveelasticconstantsandequilibriumdistancesaregivenby K(A,w) x K(A,B) (1 x )K(A,A) and b(A,w) x b(A,B) (1 x )b(A,A). (4.6) B B B B = + − = = − TheaboveassumptiontakesintoaccountthefactthatwhenthewallismadeonlyofatomsB,theinter- actionbetweenthepairs(N1,N1 1)and(N1 k,N1 k 1)isthesameasbetweenthepairs(A,B)and + + + + (N 1,N),whichareequaltoK(A,B)andb(A,B),respectively. − Ofcourse, theaboveassumed additivityrelationsaretoosimpletoproperlydescribetheeffectsof wall composition on the behavior of adsorbed films, but we will demonstrate that even such asimple modelleadstotheresultsqualitativelyverysimilartothoseobtainedfortwo-dimensionalfilms. Then,weintroducedthedisplacementsui xi/b 2i,withbbeingtheequilibriumdistanceforthe = − pairi andi 1,andrewroteequation(4.1)intheform + 1 N 1 N E=2(i−1Kˆi,i+1 ui+1−ui−mi,i+1 2+i 1vˆi[1−cos(2πui)]), (4.7) X= £ ¤ X= wheretheenergyisexpressedinunitsofK(A,A)a2,andKˆi,i 1 Ki,i 1/[K(A,A)a2]andvˆi vi/[K(A,A)a2] andthemisfitsmi,i 1 aredefinedasmi,i 1 b(α,β)/a 2+wi=th(α,+β) (A,A),(A,B),(A,w=)or(w,w). + + = − = InthecaseofModelI,theenergygivenbyequation(4.7)dependsonthenumberofargonatomsat theendsofthechain,whileintheModelsII(k,N1)itdependsonboththethicknessofthewall(k)andits position(N1). OneshouldnotethatthesystemsconsideredintheprevioussectionwerestudiedusingMonteCarlo methodallowingfortheexchangeofatomsidentity,sothatthedistancesbetweenthepatchboundary andthewallsandthewall-wall distancesinsidethepatchcorrespondtotheequilibriumstates. Inthe presentone-dimensionalmodel,thelocationofthewallispredeterminedbyN1,andoneneedstomin- imizetheenergywithrespecttoalldisplacements{ui}aswellaswithrespecttoN1 inordertofindthe equilibriumstateofthechain.Ontheotherhand,thewallthicknessandcompositionarecontrolledby theargonmolefractioninthechain.Thefirstseriesofcalculationsisaimedatdeterminingwhetherthe assumed model predictsthe formation of solitons when B atoms are located only at the chain bound- aries,i.e., when x 0.0withinthewall. Thecalculations carriedoutfor differentchainlengths, with B = N rangingfrom11to101,andusingModelI1alwaysledtoasinglecommensuratedomain,i.e.,tothe same qualitative results as for pure A chain. The only effect of the B atoms located at the chain ends wasanincreaseofatomicdisplacementsnearthechainends(seefigure7).Thisresultagreesverywell with two-dimensional Monte Carlo simulations carried out for low x , up to the value for which the Ar 2 Model I1 Model I2 Pure Kr 1 ui 0 -1 -2 50 100 x i Figure7.(Coloronline)Atomicdisplacementsversusatomicpositionsforfinitechainsconsistingof41 atoms.BlackcirclesandlinecorrespondtopurechainofBatoms,whileredandbluecirclesandlines correspondtothechainsdecoratedbyoneandtwoatomsAateachendofthechain,respectively. 43601-10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.