ebook img

The large scale magnetic fields of thin accretion disks PDF

0.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The large scale magnetic fields of thin accretion disks

ACCEPTEDBYAPJ PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 THELARGESCALEMAGNETICFIELDSOFTHINACCRETIONDISKS XINWUCAO1 ANDHENDRIKC.SPRUIT2 1KeyLaboratoryforResearchinGalaxiesandCosmology,ShanghaiAstronomicalObservatory,ChineseAcademyofSciences,80NandanRoad,Shanghai, 200030,China;[email protected] 2MaxPlanckInstituteforAstrophysics,Karl-Schwarzschild-Str. 1,85748,Garching,Germany;[email protected] acceptedbyApJ ABSTRACT 3 Largescale magnetic field threadingan accretiondisk is a key ingredientin the jet formationmodel. The 1 0 mostattractivescenariofortheoriginofsuchalargescale fieldistheadvectionofthefieldbythegasinthe 2 accretiondiskfromtheinterstellarmediumoracompanionstar. However,itisrealizedthatoutwarddiffusion oftheaccretedfieldisfastcomparedtotheinwardaccretionvelocityinageometricallythinaccretiondiskifthe n valueofthePrandtlnumberP isaroundunity. Inthiswork,werevisitthisproblemconsideringtheangular a m momentum of the disk is removed predominantly by the magnetically driven outflows. The radial velocity J of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the 9 verticaldiskstructure,we findthatevenmoderatelyweakfieldscancausesufficientangularmomentumloss 1 viaamagneticwindtobalanceoutwarddiffusion. Therearetwoequilibriumpoints,oneatlowfieldstrengths correspondingto a plasma-beta at the midplane of orderseveralhundred,and one for strongaccreted fields, ] E β∼1. Wesurmisethatthefirstisrelevantfortheaccretionofweak,possiblyexternal,fieldsthroughtheouter partsofthedisk,whilethelatteronecouldexplainthetendency,observedinfull3Dnumericalsimulations,of H strongfluxbundlesatthecentersofdisktostayconfinedinspiteofstrongMRIturbulencesurroundingthem. . h Subjectheadings:accretion,accretiondisks,galaxies:jets,magneticfields p - o 1. INTRODUCTION advectiondominatedaccretionflow(Cao2011),whichishot r andgeometricallythick(Narayan&Yi1994,1995). t Jets/outflowsareobservedindifferenttypesofthesources, s Theadvectionof the field in a geometricallythin(H/r≪ a such as, active galactic nuclei (AGNs), X-ray binaries, and 1),turbulentaccretiondiskisinefficient,however,becausethe [ youngstellarobjects,whichareprobablydrivenfromtheac- radial componentof the magnetic field diffuses much faster cretion disk through the magnetic field lines threading the 1 disk (see reviews in Spruit 1996; Konigl&Pudritz 2000; acrossthedisk,onatimescale ∼H2/η. Asaresult,amag- v Pudritzetal. 2007; Spruit 2010). The large scale magnetic netic field with inclination Br/Bz ∼1 actually diffuses out- 3 fieldco-rotateswiththegasesinthedisk,andthejets/outflows wardonatimescaleoforderH/rshorterthanapurelyverti- 4 calfield(vanBallegooijen1989).Aninclinedfieldisaneces- arepoweredbythegravitationenergyreleasedbyaccretionof 5 saryconsequenceofeffectiveaccretionofthefield,however, thegasesthroughtheorderedfieldthreadingthedisk. Alarge 4 sincetheaccumulationoffieldlinesintheinnerdiskexertsa scale magnetic field, of uniformpolarity threadingthe inner . 1 partsofthediskisprobablyakeyingredientinthisjetforma- pressurethatcausesthefieldabovethedisktospreadoutward. 0 tionmodel. Whilesuchaninclinedconfigurationisfavorableforlaunch- 3 ing a flow (Blandford&Payne 1982; Cao&Spruit1994), it Theoriginofsuchafieldisnotwellunderstood,however, 1 since the net magnetic flux threading a disk cannot be pro- raisesthe problemhowitcan beaccretedeffectivelyagainst : theactionofmagneticdiffusion. v ducedorchangedby internalprocessesin thedisk (aconse- Severalalternativesweresuggestedtoresolvethedifficulty i quenceofthesolenoidalnatureofthemagneticfield,seee.g. X Spruit2010).Anetmagneticfluxintheinnerdiskmustthere- offieldadvectioninthinaccretiondisks. Spruit&Uzdensky r foreeitherbeinheritedfrominitialconditions,orsomehowbe (2005) suggested that a weak large-scale magnetic field a threadsthediskintheformoflocalizedpatchesinwhichthe accretedfroma largerdistance; ultimatelyforexamplefrom the interstellarmediumora companionstar(cf. Bisnovatyi- field is strong enough to cause efficient angular momentum throughamagneticwind. Generalrelativisticmagnetohydro- Kogan&Ruzmaikin1974,1976). dynamic(GRMHD)simulationsofanaccretiontorusembed- One could imagine a steady state in which the inward advection of the field lines is balanced by the outward dedinalarge-scalemagneticfieldshowedthatacentralmag- netic flux bundle, once formed from a suitable initial condi- movement of field lines due to magnetic diffusion. In tion, can survive in spite of MRI turbulence present in the conventional isotropic idealizations of a turbulent plasma, it is expected (e.g. Parker 1979) that ν ∼ η ∼ lv, in disk surroundingit (Beckwithetal. 2009). The calculations t by Guilet&Ogilvie (2012a) and Guilet & Ogilvie (2012b) which l is the largest eddy size, and v is turnover ve- t showthattheaccretionvelocityofthegasintheregionaway locity, i.e. P ∼ 1. Whether this is actually the case in m MRI turbulence has been investigated using numerical sim- from the midplane of the disk can be larger than that at the midplaneofthedisk, whichmaypartiallysolvetheproblem ulations (e.g., Yousefetal. 2003; Lesur&Longaretti 2009; oftooefficientdiffusionofthefieldinthinaccretiondisk. Fromang&Stone 2009; Guan&Gammie 2009). The re- sults all suggest that the effective magnetic Prandtl number Theoutwarddiffusionofthefieldcouldbebalancedbyac- cretionifa processcanbefoundthatincreasesthe accretion isaroundunity. Fromangetal.(2009),forexample,measure P ≈2. ForsuchPrandtlnumbersaverticalfield(perpendic- velocitybyafactor∼r/Hrelativetotherateduetotheturbu- m ulartothediskplane)canindeedbedraggedefficientlybyan lencealone. Weexploreheretheconditionsunderthiscanbe 2 achievedbyamagneticwindgeneratedbytheweakmagnetic Theangularmomentumequationforasteadyaccretiondisk fieldthatistobeaccreted. withoutflowsis d d dΩ 2. MODEL (2πrΣvrr2Ω)= (2πrνΣr2 )- 2πrTm, (4) dr dr dr 2.1. Modelassumptions whereΣ is thetotalsurfacemassdensityofthe disk(count- Apart from the accreted field, the disk model we use is a ingbothsides),T thetotaltorqueperunitofsurfaceareaof m standard α–disk model, i.e. with a viscosity ν parametrized thedisk(countingbothsides)duetothemagneticallydriven as ν =αcsH, where cs is the (isothermal) sound speed, H is outflows.IntegratingEq.(4),yields thescaleheightofthedisk,andα∼0.01- 0.1(therangeof dΩ valuesmeasuredinMRIsimulations).Thefieldtobeaccreted 2πrΣv r2Ω=2πrνΣr2 - 2πf (r)+C, (5) r m is assumed to be sufficiently weak that it does not suppress dr magnetororationalinstability.ThediskthuscontainsanMRI- wherethevalueoftheintegralconstantC canbedetermined generatedfield as well as a weaker field of uniformpolarity withaboundaryconditionontheaccretingobject,and threadingthedisk. df (r) Since the accretionvelocitythatis to beachievedexceeds rT = m . (6) m theviscousrate,wesimplifytheanalysisbyassumingtheac- dr cretionflow to bedominatedbythe angularmomentumloss Themagnetictorquein unitsurface disk areaexertedbythe fromtheaccretedfield,ignoringtheviscouscontributionfrom outflowsis the MRI turbulence. Theresultingaccretionrate then hasto T =2m˙ r2Ω, (7) exceedoutwarddiffusionduetotheMRIturbulence.Thetur- m w A bulenceisassumedtoproduceaneffectivemagneticdiffusiv- where m˙w is the mass loss rate in the outflow from a unit itycorrespondingtoamagneticPrandtlnumberPm∼1. surfacearea ofthe disk (single sided), rA is the (cylindrical) The model needs a prescription for the angular momen- Alfvén radius of the outflow, Ω(r) is the angularvelocity of tumlossproducedbytheaccretingweakmagneticfield. For thedisk, andr is theradiusofthe field line footpointatthe thisweusetheWeber-Davismodelforamagneticallydriven disksurface.Thedimensionlessmassloadparameterµofthe wind, in the ‘cold’ approximation (in which the gas pres- outflowis 4πρ v Ωr 4πΩr sure force is neglected). It leads to a simple description in µ= w w = m˙ , (8) terms of the field strength and mass loss rate (Mestel 2012, B2p BpBz w Spruit 1996). The Weber-Davis model strictly applies only where ρ v =m˙ B /B is the mass flux parallel to the field to the ‘split monopole’ configuration, in which the poloidal w w w p z line. InthecoldWeber-DavismodeltheAlfvénradiusis field is purely radial. Its properties are found to be a rather goodapproximationformoregeneralpoloidalfieldshapesas 3 1/2 well(Andersonetal. 2005),whichmakesitadequateforthe rA=r (1+µ- 2/3) . (9) 2 presentpurpose. (cid:20) (cid:21) The angular momentum loss in this model can be char- [FormoredetaileddiscussionofthismodelseeMestel(2012) acterized by a single dimensionless constant, a ‘mass load or Spruit (1996)]. MHD simulations of axisymmetric mag- parameter’µ(c.f.Michel1969,Mestel,2012): netically driven flows have shown that relations like (9) and (10) below are fair approximationsfor more general config- µ=χ4πΩr0/Bp, (1) urationsthantheWeber-Davis‘splitmonopole’(cf.Fig.7in Andersonetal.2005). SubstitutingEqs.(9)and(8)into(7), where B =(B2+B2)1/2 is the poloidalcomponentof the ac- p z r wefind cretedfield atradiusr onthe surfaceofthedisk, and Ω the 3 rotationrateat r0 (cyli0ndricalcoordinatesr,φ,z). χisacon- Tm= 4πrB2pµ(1+µ- 2/3). (10) stantalongtheflow,itisameasureofthe‘massfluxperfield Theradialvelocityofanaccretionflowinwhichtheangular line’: momentumisremovedpredominantlybytheoutflowscanbe χ=ρv /B , (2) p p estimatedfromEq.(4): where ρ, vp, Bp are the mass density, poloidal velocity and T d - 1 2T poloidalfield strength. Itis relatedto the mass flux perunit v ∼- m (r2Ω) ≃- m , (11) surfaceareafromthediskm˙w by r Σ (cid:20)dr (cid:21) ΣrΩ wherewehaveassumedthattherotationisapproximatelyKe- m˙w=Bzχ. (3) plerian, Ω≈Ω . [This is sufficient for the following esti- K mates,buthastobemademoreprecisewhenconsideringthe Theasymptoticvelocityofthewinddecreasesmonotonically windlaunchingconditions(section2.3).] Themassaccretion withincreasingµ,andforµ=1equalstherotationvelocityat rateoftheaccretiondiskis r . Theangularmomentumlossincreasesmonotonicallywith 0 µ. M˙ =- 2πrΣv ≃ 4πTm, (12) Itturnsoutthattheconditionsforeffectiveaccretionofthe r Ω field can be satisfied when µ&αP r/H. This is described m whereEq.(11)isused. Wecancomparethemasslossratein inthefollowingsections, usingaspecificmodelforthedisk the outflowswith the accretion rate throughthe disk. Using structure. (8),(10)and(12): 2.2. Themagneticfieldofthedisk dlnM˙ = 4πr2m˙w = 1(1+µ- 2/3)- 1. (13) ˙ dlnr M 3 Thelargescalemagneticfieldsofthinaccretiondisks 3 This shows that forlarge mass loading parameters, µ&1, a (moreaccurately,theslowmodecuspspeed). Themassflux, fraction∼1/3oftheaccretionratecanbelostinthewind,if parallelto the field, is thusapproximatelyρc , andperunit s,s thewindissustainedacrossthediskoveradistanceoforderr. ofsurfaceareaparalleltothedisksurface,themassfluxis Forµ.1themasslossinthewindisnotsignificantcompared B withtheaccretionrate. Substituting(10)into(11),weobtain m˙ ∼ zρc , (22) w B s,s p 6c g(µ) vr=- ΩsHβp cs, (14) whereBp=(B2z+B2r)1/2asbefore.Asmentioned,weconsider only the wind associated with the accreted field. The MRI whereg=µ(1+µ- 2/3),c isthesoundspeedofthegasinthe turbulencealsoproducesafield,butbeingalocalprocess,we s midplaneofthedisk,and assumethatitdoesnotproducealargescalefieldthatwould besignificantforwind-drivenangularmomentumloss. B2p The mass flux depends sensitively on the surface temper- β =p / (15) p c 8π ature Ts. Assume a radiative disk, i.e. the vertical energy transport through the disk is by radiation. In the diffusion isameasureofthepoloidalfieldstrengthatthesurfacerela- approximation,the surfacetemperatureis thenrelatedto the tive to p , the gaspressure at the midplane of the disk. The c temperatureT ofthediskatthemidplaneofthediskby magneticfieldisadvectedinwardsonatimescale c τadv∼ r = r ΩHβp . (16) 4σ3τTc4 =σTs4, (23) |v | c 6c g(µ) r s s where τ isthe opticaldepthof the diskin the verticaldirec- InthelimitH/r≪1,theradialcomponentofthefielddom- tion. Intermsofthesoundspeedsc ,c atthesurfaceand s,s s,c inates the outward diffusion timescale τdiff of the magnetic themidplane, field(vanBallegooijen1989,Lubowetal.1994).Let 4 1/8 c = c . (24) κ0=Bz/Br,s (17) s,s 3τ s,c (cid:18) (cid:19) be the inclination, with respect to the horizontal, of the ac- Alongafieldlinethatcorotateswithitsfootpointinthedisk cretedfieldatthedisksurface(s). Thediffusiontimescaleis theoutflowisgovernedbyaneffectivepotentialΨ , eff thenoforder τdif∼ rHηκ0, (18) Ψeff(r,z)= (r2+GzM2)1/2 - 12Ω2r2, (25) where η is the magneticdiffusivity. [Thisdependenceholds where Ω is the angular velocity of the footpoint at the disk as long as 1/κ > H/r; in the opposite case of a nearly surface. In this expression and in the following, the (small) 0 vertical field B /B < H/r, the diffusion time is of order differencebetweentherotationrateΩofthefieldlineandthe r 0 r2/η]. ThemagneticPrandtlnumberisdefinedasP =η/ν, Keplerian value ΩK has to be included consistently, since it m hasa strongeffectonthe launchingconditionsforthe wind, where ν is the turbulentviscosity. With the conventionalα- throughitseffectonΨ (OgilvieandLivio,2001). Thisdif- parametrization,ν=αc H wecanthenwriteEq.(18)as eff s ference,duetothemagneticstressexertedatthesurfacesfol- τ ∼ rκ0 1 . (19) lowsfromtheradialequationofmotion, dif c αP s m B B B2 rΩ2 - rΩ2= r,s z = z , (26) For a steady state, the advection of the field in the disk has K 2πΣ 2πΣκ 0 to balance the diffusion, i.e. τ =τ . With (16), (19) this yieldsaconditiononthemassfladuvxpadriafmeterµ: whereΣthetotal(two-sided)surfacedensityΣ≈2ρcH.This yields µ(1+µ- 2/3)= αΩHβpPm, (20) 2r c2 1/2 6csκ0 Ω=ΩK 1- β κ H r2Ωs2 , (27) (cid:20) z 0 K(cid:21) whichreducesto whichcanbeapproximatedas αβ P µ(1+µ- 2/3)= 6κp0m (21) Ω=Ω 1- H 2 1/2, (28) K in weak field approximation, cs =ΩH. If a significant mass (cid:20) r βzκ0(cid:21) flux,µ∼1canbelaunched,andassumingα=0.01,Pm=1, inweakfieldcase,whereβ =8πp /B2=β (1+κ2)/κ2isthe and a field inclination of 30◦ to the vertical, this shows that z c z p 0 0 plasma-betaoftheaccretedfieldevaluatedatthemidplane( ) a weak field with β ∼103 can still be accreted through the c ofthedisk. angularmomentumlossofthewindassociatedwithit. Inthe Next, we make the model more specific and simplify it a followingsectionsweinvestigatethiswithspecificmodelsfor bitbyapproximatingthesoundspeedinthelaunchingregion thestructureofthedisk. as constant with height. In addition we take the midplane temperatureasrepresentativefortheinteriorofthedisk. This 2.3. Themassfluxinthewind is sufficient for the evaluation of quantities like the rotation Themasslossrateintheoutflowisgovernedbythegasden- ratecorrectionin(28). sityatthepositionofthesonicpoint(inthefollowinglabeled Thelocationofthesonicpointisclosetothemaximumof with index ), where the flow speed equals the sound speed the effective potential. The mass flux is determined by the s 4 density at the sonic point; a fair approximationforthis is to Equation (32) should be a good approximation for the treat the subsonic regionas if it were in hydrostaticequilib- presentinvestigation,especiallyinthethinouterregionofthe rium.Thisyieldsthefollowingestimateforthemasslossrate diskwhichisprobablythemostcriticalregionfortheaccre- inanisothermaloutflow(perunitofdisksurfacearea), tionofanetmagneticflux.Substituting(29)into(8),themass flowparameteris κ m˙ ∼ 0 ρ c exp - (Ψ - Ψ )/c2 , (29) w (1+κ20)1/2 0 s,s eff,s eff,0 s,s µ= 4πΩrρ0cs,sexp - (Ψ - Ψ )/c2 . (37) (cid:2) (cid:3) B2 eff,s eff,0 s,s where ρ is the density of the gas in the base of the outflow p (still to0be specified), and Ψeff,s and Ψeff,0 are the effective Toestimate thedensityρ0(cid:2)atthe baseof theflo(cid:3)w, we note potentialat the sonic pointand the footpointat the disk sur- that Eq. (37) is applicable only at heights in the atmosphere face,respectively.Thefactorinvolvingκ0isequaltotheratio where the field is strong enough, relative to the plasma, to Bz/Br,sinEq.(17). enforcecorotationsotheeffectivepotentialΨisrelevantfor The vertical structure of an isothermal disk can be calcu- thelaunchingprocessofthewind.Insidethedisk,whereβ> latedwiththeverticalmomentumequation, 1,thisisnotthecase. Asbaseoftheflow,wherethepressure is p ,weassumetheheightwheretheplasma-betaisoforder dρ(z) B (z)dB (z) 0 c2 =- ρ(z)Ω2z- r r . (30) unity,i.e. s dz K 4π dz β ≡8πp /B2≈1, (38) s 0 p Inprinciple,thefieldlineshapeiscomputablebysolvingthe whichdetermines p if β isgiven. Formostofcalculations radialandverticalmomentumequationswithsuitablebound- 0 s reportedbelow, β =1 is used, some with a lowervalue0.1. ary conditions (for a detailed discussion see Cao & Spruit s Themassfluxisthenrelatedtothe poloidalfieldstrengthat 2002, hereafter CS02). For the isothermal case, an approx- thedisksurfaceby imate analytical expression is proposed for the shape of the fieldlinesintheflow: B2 p ρ c = . (39) r- r = H (1- η2+η2z2H- 2)1/2- H (1- η2)1/2, (31) 0 s,s 8πcs,s i κ η2 i i κ η2 i 0 i 0 i Using(24)Eq.(37)canthenbewrittenas where ri is the radius of the field line footpoint at the mid- Ωr plane of the disk, and η =tanh(1) (see CS02). This expres- µ= (3τ/4)1/8exp - (Ψ - Ψ )/c2 . (40) i 2c eff,s eff,0 s,s sionreproducesthebasicfeaturesoftheKippenhahn-Schlüter s,c modelforasheetofgassuspendedagainstgravitybyamag- Thefactorinfrontoftheexp(cid:2)onentialtendstobea(cid:3)largenum- neticfield(Kippenhahn&Schlüter1957),forweakaswellas ber, the exponential itself a small one. To evaluate the ef- strongfieldcases. AsdoneinCS02,weuseafittingformula fectivepotentialasafunctionofheight,fieldlineinclination, tocalculatethescaleheightofthediskintherestofthiswork, andthe(slightlynon-Keplerian)rotationrateΩ,themodelof CS02isused. Itisalsousedfortheopticaldepthconnecting 1/2 H 1 4c2 1 thesurfacetemperaturetothediskmidplanetemperature. = s,c +f2 - f, (32) r 2 r2Ω2 2 K ! 3. RESULTS where The disk is compressed in the vertical direction by the 1 B2 curved magnetic field line, which sets an upper limit on the f = 2(1- e- 1/2)κ 4πρrHzΩ2κ . (33) magnetic field strength. We plot the correspondingminimal 0 K 0 β as a function of the field inclination κ at the disk sur- z 0 SolvingforH: faceinFig.1. Thecurvedfieldlinealsoexertsaradialforce on the disk against the gravity of the central object, which c 1 1/2 providesanadditionalconstraintonthefieldstrength(Fig.1 H= Ωs,c 1- (1- e- 1/2)β (1+κ2) , (34) show the resultfordifferentvaluesof the disk temperature). K(cid:20) p 0 (cid:21) TheangularvelocityΩdeviatesfromtheKeplerianvaluedue whichrequires totheradialmagneticforce. Fig.2showsthedimensionless angular velocity Ω/Ω of the disk as a function of κ and K 0 βp>βp,min= (1- e- 1/12)(1+κ2), (35) ΘF=ocr2sg,ci/v(ern2Ωva2Kl)u.esofthediskparameters,i.e.,theviscosityα, 0 thetemperatureparameterΘinthedisk,andtheopticaldepth or 1 τ,thedependenceofmassloadingµonβz canbecalculated βz>βz,min= (1- e- 1/2)κ2. (36) withEqs.(20)and(40)respectively.Theserelationsareplot- 0 ted in Figs. 3-5 for disk-outflow systems with different val- The square bracket in (34) gives the magnetic correction to uesoftheparameters. Inallcalculations,Pm=1isadopted. the standard relation between disk thickness and the sound It is found that two branches of solutions usually exist for speedatthemidplane. Itreducestounityforaweakfield,or mostcases. Weplotthesolutionsofthedisk-outflowsystems whentheradialcomponentissmallcomparedwiththeverti- in Figs. 6 and 7. The solutions with different values of βs calcomponent.Foratypicalvalueofκ0∼1,wefindβpmust (βs =8πp0/B2p) at the base of the outflow forthe isothermal be&1.3.Thismeansthatthemagneticpressurecanbelarger diskarecomparedinFigs.8and9. Thetwobranchesofso- thanthegaspressureinthediskonlyiftheinclinationofthe lutionscorrespondtolowmass(µ≪1)loadedoutflowswith fieldlineatthedisksurfaceκ islargerthanunity. strong field strength (low-β), or high mass loaded outflows 0 Thelargescalemagneticfieldsofthinaccretiondisks 5 withrelativeweakfieldstrength.Theopticaldepthneededto atthedisksurface.WehaveusedthecoldWeber-Davismodel connectsurfaceandinternaltemperaturehasbeencomputed fordeterminingthemassloadparameterµoftheoutflowasa by includinga Rosseland mean opacityand electronscatter- functionofstrengthoftheaccretedfieldandparametersofthe ing;itisshowninFig.10. diskstructure: itsopticaldepth(aradiativediskisassumed), For comparison, we have repeated the calculations for a atemperature-parameterΘ,theα-viscosity,andthemagnetic uniformly isothermal disk, that is, the temperatures of disk Prandtl number P of the assumed MRI turbulence (cf. Eq. m andwindareassumedtobethesame(Figs.8and9). Though 20). Balancing the resulting accretionvelocitywith the out- thisisnotveryrealistic,itgivesanimpressionofthesensitiv- warddiffusionbymagneticturbulencedeterminesthecondi- ityoftheresultstothemodelassumptionsmade. tionsforexistenceofastationarydisk-outflowsystem. Figs. 3-5 illustrate the propertiesof the solutions. It is foundthat two solution branches exist for all cases. The lower branch correspondsto high field strength and low µ, i.e., low mass 101 lossrate,theupperonecorrespondstolowfieldstrengthand high µ, i.e. high mass loss rate (see Figs. 6 and 7). There is an upper limit on the field inclination κ at the disk sur- 0 face,whichincreaseswithdisktemperature.Overcomingthe 100 deepereffectivepotentialbarrierassociated with a largerin- clination requires a higher internal energy of the gas. The n z,mi mcaalxdiemputhmτinocflitnhaetidoinskκ,0atshtuhsedseucrrfeaacseestewmiptheriantcurreeadsiencgreoapsteis- b with increasing τ, (keeping other disk parameters fixed, see 10−1 Eq.24). We have also explored the sensitivity to model assump- tionssomewhatwith solutionsfora more drastically simpli- fiedcase,wherethetemperatureisassumeduniformthrough- 10−2 out,i.e. thetemperatureoftheoutflowisthesameasthedisk 0 2 4 6 8 10 k temperature.ThisisshowninFigs.8and9. Thesealsoshow 0 theeffectofassumingalowerdensityofthegasatthebaseof FIG.1.—Constraintsonthepoloidalmagneticfieldstrengthintermsofβz theoutflow(β =0.1). Theresultsarequalitativelysimilarto (theplasma-betaoftheaccretedfieldmeasuredatthemidplaneofthedisk, s seetext).Blackline:βz,minasconstrainedbytheverticalpressureexertedby thosewithβs=1. thecurvedfieldline(Eq.36). Colors: theminimalvaluesofβpconstrained bytheradialmagneticforce(seeEq.27)fordifferentdisktemperatures,Θ= 0.01(red),2.5 10- 4(green),and10- 4(blue). × 100 100 10−3 m 10−6 t =102 10−9 K W/ 10−12 W 100 100 101 102 10−3 10−1 m 10−6 t =103 10−1 100 101 102 10−9 b z FIG.2.—DeviationoftheangularvelocityofthediskΩrelativetoKep- 10−12 lerianduetomagneticstress,asafunctionofβz(Eq.27). Fieldlineincli- 100 100 101 102 nationκ0=1(red),√3(green),and2.5(blue). Disktemperatureparameter Θ=0.01(solid),2.5×10- 4(dashed),and10- 4(dash-dotted). 10−3 3.1. Discussion m 10−6 t =104 Themagneticfieldisdraggedinwardsbytheaccretiondisk, 10−9 anoutflowislaunchedbythisfield,andtheradialvelocityof the accretion disk is determined by the rate of angular mo- 10−12 mentum carried away by the outflows. This loss rate in the 10−1 100 101 102 103 outflows can be estimated by exploring the launching pro- b cess of the outflow, which depends sensitively on the field z strength/configurationandthedensity/temperatureofthe gas 6 thFeIwG.in3d.—lauMncahsisnglocaodnindgitiµonassEaqf.u(n4c0ti)o.nBorofkβezn.:Smolaisds:laosaddientgerrmeqinueidredfrofomr 100 effectiveaccretionofthefieldlines(20),fordiskviscosityα=0.1(dashed)) andα=1(dash-dotted).Theintersectionpointsarepossiblesolutionsforthe 10−3 stationarywinddrivenaccretionproblem.Fieldlineinclinationsareκ0=1.5 (mreadg)n,e√tic3P(rgarnedetnl)n,uamndbe2r(Pbmlu=e)1..Thedisktemperatureparameter Θ=0.01, m 10−6 t =102 10−9 10−12 100 100 100 101 102 10−3 10−3 m 10−6 t =102 m 10−6 t =103 10−9 10−9 10−12 10−12 100 100 101 102 100 100 101 102 10−3 10−3 m 10−6 t =103 m 10−6 t =104 10−9 10−9 10−12 10−12 100 100 101 102 10−1 100 1b01 102 103 z 10−3 FIG.5.—AsFig.3,forΘ=10- 4. m 10−6 t =104 10−9 10−12 102 10−1 100 101 102 103 b 100 z −2 FIG.4.—AsFig.3forΘ=2.5 10- 4. 10 × −4 m 10 −6 10 −8 10 1.5 2 2.5 3 3.5 3 10 2 10 z b 1 10 0 10 −1 10 1 1.5 2 2.5 3 3.5 4 k 0 FIG.6.—Resulting disk-outflow solutions fordifferent disktemperature parameters:Θ=0.01(red),2.5 10- 4(green),and10- 4(blue),anddifferent valuesofthediskopticaldepth:×τ=102(solid),103(dashed),and104(dash- dotted).Theviscosityparameterα=0.1. Thelargescalemagneticfieldsofthinaccretiondisks 7 2 3 10 10 100 100 −2 10 −3 10 −4 m 10 m −6 10 −6 10 −9 10 −8 10 −12 10 1.5 2 2.5 3 3.5 2 3 4 5 6 7 3 3 10 10 2 2 10 10 z z b 101 b 101 100 100 −1 −1 10 10 1 1.5 2 2.5 3 3.5 4 1 2 3 4 5 6 7 8 k k 0 0 FIG.7.—AsFig.6,forα=1. FIG.9.—ThesameasFig.8,forα=1. 103 105 0 10 104 −3 10 m 10−6 t 103 −9 10 102 −12 10 2 3 4 5 6 7 3 10 101 100 101 102 103 r/ r 102 S z FIG.10.— The optical depth of the standard thin accretion disks with- b 101 outmagnetic fieldasfunctions ofradius, where rS=2GM/c2. Theopac- ity κtot =κes+κR is adopted, where the Rosseland mean opacity κR = 100 5a×bla1c0k24hρoTlec- 7w/2ithcmM2=g-110.MT⊙h,ewrehdilelintheesbreluperelsiennetstahreerfeosrualtsblcaaclkcuhloalteedwfiothr M=108M⊙. Thedifferentlinetypescorrespondtothediskswithdifferent 10−1 parameters: solid(α=1andm˙ =0.1),dashed(α=0.1andm˙ =0.1),dash- 1 2 3 4 5 6 7 8 dotted(α=1andm˙ =0.01),anddottedlines(α=0.1andm˙ =0.01). k Thedependenceofthesolutionsonthevalueofαisshown 0 in Fig. 7. The magnetic diffusivity η is scaled with the tur- FIG.8.— The disk-outflow solutions for vertically isothermal accretion bulentviscosityν,andthereforethediffusionbecomesmore disks. Thecoloredlinesrepresentthesolutionsderivedwithdifferentdisk important for the cases with a higher value of the viscosity temperature,Θ=0.01(red),2.5 10- 4(green),and10- 4(blue),respectively. Thesolutionsderivedwithdiffe×rentratiosofgaspressuretomagneticpres- parameter α. In order to compete with the diffusion of the sureatthedisksurfaceareindicatedwithdifferentlinetypes,βs=1(solid), field,alargeradialvelocityofthediskisrequiredforhigh α and0.1(dashed),respectively.Viscosityparameterα=0.1. cases, which correspondsa high rate of angular momentum removalbytheoutflows. Wefindthatthevaluesofthemass loadparameterµoftheoutflowaresystematicallyhigherfor those derivedwith a larger α (comparethe resultsin Figs. 6 and7). 8 The accretion disk is vertically compressed by the curved thiswork. magneticfield,whichsetsanupperlimitonthefieldstrength Newisthehigh-fieldsolutionfound(leftmostintersection). (seeEqs.35and36). Thevalueofβ onlydependsonthe Bythesamelineofreasoningasabove,thispointisexpected z,min field inclination κ at the disk surface, and β decreases tobestable,sincetheslopesofthedashedandsolidcurvesare 0 z,min with increasing κ (see Fig. 1). There is a force exerted on reversedhere. Itis, however,somewhatoutside theassump- 0 thediskbythe curvedfield againstthegravityofthecentral tions made, since the MRI turbulence that was assumed for objectintheradialdirection,whichmakestherotationofthe the magnetic diffusion is probably suppressed at these field gas in the disk be sub-Keplerian. The rotational velocity of strengths.Instead,instabilityofthestrongfielditselfislikely the disk can be quite low if the field strength is sufficiently tocauseitsoutwarddiffusion(asinthesimulationsofStehle strong(seeEq.27andFig.2). Thediskisthenmagnetically &Spruit2001andIgumenschevetal.2003). Tothe (uncer- supported against gravity. Such configurations are likely to tain)extentthatthisprocesscanbeparametrizedintermsof beunstabletointerchangeinstabilities,however(Spruitetal. c2/Ω, the present analysis would still apply. We speculate s 1995), which effectively cause the magnetic field to spread thatthe stability ofthispointis actuallysignificant, andthat outward and limit the field strength (as observed in the nu- it is relevantfor the experimentallyobservedstability of the merical simulations of Stehle & Spruit 2001). The require- strongcentralfluxbundlesinnumericalsimulationsofaccre- ment that the magnetic force is less than the gravity in the tionontoblackholes. radialdirectionprovidesanadditionalconstraintonthefield strength.Wefindthattheconstraintsalmostoverlapwiththat 4. CONCLUSIONS constrainedbytheforceintheverticaldirectionwhenκ .3, 0 Wehaveconsideredthepossibilitythattheangularmomen- while maximal field strength becomes lower (a larger β ) min tum of an accretion disk is removed predominantly by out- foradiskwithrelativehightemperatureand κ &3(seeFig. 0 flowsdrivenbytheaccretedfield(Bisnovatyi-Kogan&Ruz- 1). maikin1974, Blandford1976). An obstacle to this proposal From Fig. 1 we see that the magnetic field can be very hasbeentherealization(vanBallegooijen1989,Lubowetal. strong, e.g., the magneticpressure can be more than one or- (1994)) that outward diffusions of the accreted field is fast derofmagnitudehigherthanthegaspressureinthediskifthe comparedtotheinwardaccretionvelocityinageometrically fieldinclinationκ issufficientlylarge.However,themagnet- 0 thin accretion disk if the value of the Prandtl number P is icallydrivenoutflowwillbesuppressedifκ istoolarge,be- m 0 aroundunity.Revisitingthisproblem,wefindthatevenmod- causethe effectivepotentialbarrierbecomesextremelydeep erately weak fields can in fact cause sufficient angular mo- inthiscase. Theresultsshowthatβ&0.5isalwayssatisfied mentum loss via a magnetic wind to balance outward diffu- inthedisk-outflowsolutions(seeFigs.6and7).Notethatthis sion. The estimate in Eq. (21) shows that, at P =1, a field doesnotmeanthemagneticfieldcannotbestrong,asthedisk withamagneticpressureaslowas∼10- 3ofthemgaspressure issignificantlycompressedintheverticaldirection,whichin- p atthediskmidplanehasachanceoffacilitatingitsownac- creases the density of the disk and then the gas pressure for c cretionbydrivingamoderatelystrongmagneticoutflow.This givendisktemperature. isduemoreorlesstocompoundingnumericalfactorsoforder unity. In particularwhen MRI turbulenceproducesthe rela- 3.2. Stability tivelyloweffectiveviscosityα∼0.01thatisseeninseveral Wehavecalculatedonlystationarysolutions,buttheirsta- numericalsimulations. bilitytotime-dependentperturbationscanalreadybeguessed Usingasimplifiedmodelfortheverticaldiskstructure,we at by inspection of the intersection points in Fig. 3. Near have studied the conditions for existence of such stationary thehigh-beta(lowfield)solutionthemassloadingparameter equilibriabetween wind-inducedadvectionand outwardtur- (solidline)isnearlyindependentofthefieldstrengthassumed bulentdiffusioninmorequantitativedetail. Twoequilibrium (thisisbecauseoftheassumedvalueoftheplasma-betaatthe pointsarefound,oneatlow field strengthscorrespondingto base of the flow). If the field strength were to decrease (to a plasma-betaat the midplaneof orderseveralhundred, and therightoftheintersectionpoint),themasslosswouldneed oneforstrongaccretedfields,β∼1.Wesurmisethatthefirst toincreaseinordertomaintainabalancebetweeninwardac- isrelevantfortheaccretionofweak,possiblyexternal,fields cretion and outward diffusion(dashed line). Since the mass throughtheouterpartsofthedisk,whilethelatteronecould loadingactuallydoesnotchangemuch,theangularmomen- explain the tendency, observed in full 3D numerical simu- tumlossisinsufficienttobalanceoutwarddiffusionforsucha lations, of strong flux bundles at the centers of disk to stay perturbation.Outwarddiffusionwillthentendtodecreasethe confinedinspiteofstrongMRIturbulencesurroundingthem field strength, providinga positive feedbackto the perturba- (e.g. Beckwith et al. 2009). These authorsalso identify the tion. Thisstationarysolutionisthusexpectedtobeunstable. mechanismresponsibleformaintenanceofthebundleagainst Thismechanismofinstabilityisthesameasthatidentified the outward diffusion that one might expect from the turbu- inthelinearstabilityanalysisofCS02. Thetimescaleofthe lence surroundingit. Unlike the present model, this mecha- instabilityiscomparablewiththedynamicaltimescaleofthe nismdoesnotdependonthepresenceofawind. disk if the magnetic torque is large, which becomes signif- icantly small when the magnetic torque is weak (see CS02 for the detailed results and discussion). At sufficiently low HS thanks the Shanghai Astronomical Observatory for fieldstrengthsor/andhigh-κ ,wherethemagnetictorquebe- theirgeneroushospitality duringthe work on the projectre- 0 comesweak,thisanalysispredictedaregimeofstabilitydue ported here. This work is supported by the National Ba- tomagneticdiffusion. Thisimpliesthatthegrowthtimescale sic Research Program of China (grant 2009CB824800), the of such instability considered in this work should be signif- NSFC (grants 11173043,11121062and 11233006),and the icantly lower than the dynamicaltimescale of the disk. The CAS/SAFEA InternationalPartnershipProgramforCreative detailed calculation of the instability is beyondthe scope of ResearchTeams(KJCX2-YW-T23). Thelargescalemagneticfieldsofthinaccretiondisks 9 REFERENCES Anderson,J.M.,Li,Z.-Y.,Krasnopolsky,R.,&Blandford,R.D.2005,ApJ, Mestel,L.2012,Stellarmagnetism,secondedition.Oxfordscience 630,945 publications(Internationalseriesofmonographsonphysics154) Beckwith,K.,Hawley,J.F.,&Krolik,J.H.2009,ApJ,707,428 Narayan,R.,&Yi,I.1994,ApJ,428,L13 Bisnovatyi-Kogan,G.S.,&Ruzmaikin,A.A.1974,Ap&SS,28,45 Narayan,R.,&Yi,I.1995,ApJ,452,710 Bisnovatyi-Kogan,G.S.,&Ruzmaikin,A.A.1976,Ap&SS,42,401 Ogilvie,G.I.,&Livio,M.2001,ApJ,553,158 Blandford,R.D.1976,MNRAS,176,465 Parker,E.N.1979,inChapter17,CosmicalMagneticFields Blandford,R.D.,&Payne,D.G.1982,MNRAS,199,883 (Oxford:ClarendonPress) Cao,X.2011,ApJ,737,94 Pudritz,R.E.,Ouyed,R.,Fendt,C.,&Brandenburg,A.2007,Protostars Cao,X.,&Spruit,H.C.1994,A&A,287,80 andPlanetsV,277 Cao,X.,&Spruit,H.C.2002,A&A,385,289(CS02) Spruit,H.C.1996,NATOASICProc.477:EvolutionaryProcessesin Fromang,S.,Papaloizou,J.,Lesur,G.,&Heinemann,T.2009,Numerical BinaryStars,249 ModelingofSpacePlasmaFlows:ASTRONUM-2008,406,9 Spruit,H.C.2010,LectureNotesinPhysics,BerlinSpringerVerlag,794, Fromang,S.,&Stone,J.M.2009,A&A,507,19 233 Guan,X.,&Gammie,C.F.2009,ApJ,697,1901 Spruit,H.C.,Stehle,R.,&Papaloizou,J.C.B.1995,MNRAS,275,1223 Guilet,J.,&Ogilvie,G.I.2012a,MNRAS,424,2097 Spruit,H.C.,&Uzdensky,D.A.2005,ApJ,629,960 Guilet,J.,&Ogilvie,G.I.2012b,arXiv:1212.0855 Stehle,R.,&Spruit,H.C.2001,MNRAS,323,587 Igumenshchev,I.V.,Narayan,R.,&Abramowicz,M.A.2003,ApJ,592, vanBallegooijen,A.A.1989,AccretionDisksandMagneticFieldsin 1042 Astrophysics,156,99 Kippenhahn,R.,&Schlüter,A.1957,ZAp,43,36 Yousef,T.A.,Brandenburg,A.,Rüdiger,G.2003,A&A,411,321 Konigl,A.,&Pudritz,R.E.2000,ProtostarsandPlanetsIV,759 Lesur,G.,&Longaretti,P.-Y.2009,A&A,504,309 Lubow,S.H.,Papaloizou,J.C.B.,&Pringle,J.E.1994,MNRAS,267,235 Lubow,S.H.,Papaloizou,J.C.B.,&Pringle,J.E.1994,MNRAS,268, 1010

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.