ebook img

The John Zink Hamworthy Combustion Handbook, Second Edition: Volume 1 - Fundamentals PDF

639 Pages·2012·40.63 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The John Zink Hamworthy Combustion Handbook, Second Edition: Volume 1 - Fundamentals

www.crcpress.com K11814 ISBN: 978-1-4398-3962-1 9 781439 839621 9 0 0 0 0 FUNDAMENTALS Vol. 1 THE JOHN ZINK HAMWORTHY COMBUSTION HANDBOOK FUNDAMENTALS 1 BAUKAL THE JOHN ZINK HAMWORTHY COMBUSTION HANDBOOK 2nd Edition CHARLES E. BAUKAL, JR. Editor Despite the length of time it has been around, its importance, and vast amounts of research, combustion is still far from being completely understood. Issues regarding the environment, cost, and fuel consumption add further complexity, particularly in the process and power generation industries. Dedicated to advancing the art and science of industrial combustion, The John Zink Hamworthy Combustion Handbook, Second Edition: Volume 1 — Fundamentals gives you a strong understanding of the basic concepts and theory. Under the leadership of Charles E. Baukal, Jr., top combustion engineers and technologists from John Zink Hamworthy Combustion examine the interdisciplinary fundamentals — including chemistry, fluid flow, and heat transfer — as they apply to industrial combustion. What’s New in This Edition • Expanded to three volumes, with Volume 1 focusing on fundamentals • Extensive updates and revisions throughout • Updated information on HPI/CPI industries, including alternative fuels, advanced refining techniques, emissions standards, and new technologies • Expanded coverage of the physical and chemical principles of combustion • New practices in coal combustion, such as gasification • The latest developments in cold-flow modeling, CFD-based modeling, and mathematical modeling • Greater coverage of pollution emissions and NOx reduction techniques • New material on combustion diagnostics, testing, and training • More property data useful for the design and operation of combustion equipment • Coverage of technologies such as metallurgy, refractories, blowers, and vapor control equipment The first of three volumes in the expanded second edition of the bestselling The John Zink Combustion Handbook, this comprehensive volume — featuring color illustrations throughout — helps you broaden your understanding of industrial combustion to better meet the challenges of this field. The John Zink Hamworthy Combustion Handbook, Second Edition: Volume 1 — Fundamentals Edited by Charles E. Baukal, Jr., John Zink Company, LLC, Tulsa, Oklahoma, USA Combustion K11814_COVER_final_revised.indd 1 10/1/12 11:13 AM THE JOHN ZINK HAMWORTHY COMBUSTION HANDBOOK SECOND EDITION Volume 1 FUNDAMENTALS IndustrIal combustIon serIes Series Editors: Charles E. Baukal, Jr. The John Zink Hamworthy Combustion Handbook, Second Edition Volume 1— Fundamentals Volume II— Design and Operations Volume II1— Applications Charles E. Baukal, Jr. Industrial Burners Handbook Charles E. Baukal, Jr. The John Zink Combustion Handbook Charles E. Baukal, Jr. Computational Fluid Dynamics in Industrial Combustion Charles E. Baukal, Jr., Vladimir Gershtein, and Xianming Jimmy Li Heat Transfer in Industrial Combustion Charles E. Baukal, Jr. Oxygen-Enhanced Combustion Charles E. Baukal, Jr. THE JOHN ZINK HAMWORTHY COMBUSTION HANDBOOK SECOND EDITION Volume 1 FUNDAMENTALS Edited by Charles E. Baukal, Jr. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 2012920 International Standard Book Number-13: 978-1-4398-3963-8 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Dedication This book is dedicated to the memory of Richard T. Waibel, PhD. From 1961 to 1969, Dick attended Penn State University, where he received his BA and his PhD in fuel science. He started his career as an assistant director of industrial energy utilization at the Institute of Gas Technology in Chicago as it was known at that time. During his tenure there from 1975 to 1983, Dick developed industrial scale combustion research projects with industrial clients, the U.S. Department of Energy, and the U.S. Environmental Protection Agency. Projects included combustion of coal, low heating value gases, oil and slurries, as well as pollutant emission studies. He continued his career with John Zink Company, LLC, in Tulsa, Oklahoma, where he was instrumental in establishing John Zink as a world leader in low emissions technology. Dick authored numerous publications and is listed as inventor on 11 U.S. patents. During many years as chairman of the American Flame Research Committee (AFRC) and president of the International Flame Research Foundation (IFRF), he developed numerous valuable relationships between the industrial and academic combustion worlds, making friends all over the world. In addition to his academic and industrial achievements “Dr. Dick,” as he was known by many, was an avid and accomplished fly fisherman, photographer, and world traveler. This page intentionally left blank This page intentionally left blank vii Contents List of Figures............................................................................................................................................................................ix List of Tables ..........................................................................................................................................................................xxix Foreword to the First Edition ...........................................................................................................................................xxxiii Preface to the First Edition................................................................................................................................................. xxxv Preface to the Second Edition..........................................................................................................................................xxxvii Acknowledgments ............................................................................................................................................................. xxxix Editor..........................................................................................................................................................................................xli Contributors...........................................................................................................................................................................xliii Prologue................................................................................................................................................................................. xlvii 1. Introduction........................................................................................................................................................................ 1 Charles E. Baukal, Jr. 2. Refining and Petrochemical Industries ...................................................................................................................... 31 Erwin Platvoet, Rasik Patel, David Brown, Jason D. McAdams, and James G. Seebold 3. Fuels.................................................................................................................................................................................... 45 John Ackland, Jeff White, and Richard T. Waibel 4. Combustion Fundamentals ........................................................................................................................................... 79 Steve Londerville, Joseph Colannino, and Charles E. Baukal, Jr. 5. Solid Fuel Combustion in Suspension...................................................................................................................... 125 Steve Londerville and Timothy Webster 6. Catalytic Combustion................................................................................................................................................... 137 Klaus-Dieter Zschorsch 7. Heat Transfer .................................................................................................................................................................. 159 Jay Karan and Charles E. Baukal, Jr. 8. Flare Radiation............................................................................................................................................................... 207 Wes Bussman and Jeff White 9. Fundamentals of Fluid Dynamics.............................................................................................................................. 227 Wes Bussman, Zachary L. Kodesh, and Robert E. Schwartz 10. Oil Atomization ............................................................................................................................................................. 309 I.-Ping Chung and Steve Londerville 11. Cold Flow Modeling ..................................................................................................................................................... 327 Christopher Q. Jian 12. Thermal Efficiency ........................................................................................................................................................ 339 Charles E. Baukal, Jr. and Wes Bussman 13. CFD-Based Combustion Modeling ........................................................................................................................... 353 Michael A. Lorra and Shirley X. Chen viii Contents 14. Pollutant Emissions....................................................................................................................................................... 381 Charles E. Baukal, Jr., I.-Ping Chung, Steve Londerville, James G. Seebold, and Richard T. Waibel 15. NOx Emissions............................................................................................................................................................... 417 Charles E. Baukal, Jr. and Wes Bussman 16. Noise................................................................................................................................................................................. 479 Wes Bussman, Jay Karan, Carl-Christian Hantschk, and Edwin Schorer 17. Combustion Training ................................................................................................................................................... 513 Charles E. Baukal, Jr. and Myra N. Crawford-Fanning Appendix A: Units and Conversions ................................................................................................................................ 551 Appendix B: Physical Properties of Materials................................................................................................................ 555 Appendix C: Properties of Gasses and Liquids.............................................................................................................. 563 Appendix D: Properties of Solids ..................................................................................................................................... 583 Index........................................................................................................................................................................................ 587 ix Figure 1.1 Operating refineries capacity and gross input (thousands of barrels per day) and number of operating refineries in the United States from 1949 to 2011....................................................................... 3 Figure 1.2 Product mix for U.S. refineries from 1949 to 2011........................................................................................ 3 Figure 1.3 Annual final energy consumption for U.S. refineries from 1986 to 2010................................................. 4 Figure 1.4 Energy cost for U.S. refineries from 1988 to 2005 ........................................................................................ 4 Figure 1.5 Typical petroleum refinery. ............................................................................................................................ 5 Figure 1.6 Offshore oil rig flare. .......................................................................................................................................6 Figure 1.7 Flare pilot. ......................................................................................................................................................... 6 Figure 1.8 Duct burner flame............................................................................................................................................6 Figure 1.9 Schematic of a duct burner used to enhance the power from a gas turbine........................................... 6 Figure 1.10 Front of a boiler burner. .................................................................................................................................. 7 Figure 1.11 Thermal oxidizer drawing.............................................................................................................................. 7 Figure 1.12 Vapor combustor system.................................................................................................................................7 Figure 1.13 Biogas flare system...........................................................................................................................................8 Figure 1.14 Vapor recovery system. ................................................................................................................................... 8 Figure 1.15 Flare gas recovery system............................................................................................................................... 8 Figure 1.16 Schematics of (a) side- and (b) top-fired reformers ................................................................................... 11 Figure 1.17 Down-fired burner commonly used in top-fired reformers.................................................................... 11 Figure 1.18 Elevation view of a terrace-wall-fired furnace........................................................................................... 11 Figure 1.19 Schematic of a process heater....................................................................................................................... 12 Figure 1.20 Schematic of a typical process heater ......................................................................................................... 12 Figure 1.21 Fired heater size distribution....................................................................................................................... 13 Figure 1.22 Schematic of center or target wall firing configuration. .......................................................................... 14 Figure 1.23 Horizontal floor-fired burners firing toward a center wall..................................................................... 14 Figure 1.24 Wall-fired burner. .......................................................................................................................................... 14 Figure 1.25 Schematic of a horizontally mounted, vertically fired burner configuration....................................... 14 Figure 1.26 Examples of process heaters......................................................................................................................... 15 Figure 1.27 Typical heater types....................................................................................................................................... 16 Figure 1.28 Cabin heater.................................................................................................................................................... 17 Figure 1.29 Crude unit burners........................................................................................................................................ 18 Figure 1.30 Typical burner arrangements....................................................................................................................... 19 Figure 1.31 Drawing of a typical combination oil and gas burner. ............................................................................ 20 Figure 1.32 Process heater heat balance.......................................................................................................................... 20 List of Figures x List of Figures Figure 1.33 Schematic of a burner (B) arrangement in the floor of vertical cylindrical furnaces. ......................... 20 Figure 1.34 Schematic of a burner (B) arrangement in the floor of rectangular cabin heaters............................... 21 Figure 1.35 Adiabatic equilibrium NO and CO as a function of the equivalence ratio for an air/CH4 flame...... 21 Figure 1.36 Schematic of an oxy/fuel burner..................................................................................................................22 Figure 1.37 Schematic of an oxygen-enriched air/fuel burner. ...................................................................................22 Figure 1.38 Schematic of a burner using oxygen + recycled combustion products. ................................................ 23 Figure 1.39 Schematic of flue gas recirculation.............................................................................................................. 23 Figure 1.40 HALO®™ burner designed to entrain furnace gases into the flame....................................................... 23 Figure 1.41 Schematic of a premix burner. ..................................................................................................................... 24 Figure 1.42 Drawing of a typical premix (radiant wall) gas burner. .......................................................................... 24 Figure 1.43 Painting of a diffusion flame........................................................................................................................ 24 Figure 1.44 Schematic of a diffusion burner................................................................................................................... 25 Figure 1.45 Schematic of a partially premixed burner.................................................................................................. 25 Figure 1.46 Schematic of a staged-air burner. ................................................................................................................ 25 Figure 1.47 Drawing of a typical staged-air combination oil and gas burner........................................................... 25 Figure 1.48 Schematic of a staged-fuel burner. .............................................................................................................. 25 Figure 1.49 Drawing of a typical staged-fuel gas burner. ............................................................................................ 25 Figure 1.50 Drawing of a typical natural draft gas burner. ......................................................................................... 26 Figure 1.51 Natural draft burner...................................................................................................................................... 26 Figure 1.52 Flames impinging on tubes in a cabin heater............................................................................................ 27 Figure 1.53 Flames pulled toward the wall.................................................................................................................... 27 Figure 1.54 Oil burner needing service........................................................................................................................... 27 Figure 1.55 Highly lifted down-fired burner flame. ..................................................................................................... 27 Figure 1.56 John Zink Co. LLC (Tulsa, Oklahoma) R&D Test Facility........................................................................ 28 Figure 1.57 Cold flow testing............................................................................................................................................ 28 Figure 1.58 Example of CFD model result...................................................................................................................... 28 Figure 1.59 Virtual reality engineering simulation....................................................................................................... 29 Figure 2.1 Typical refinery process flow diagram. ......................................................................................................34 Figure 2.2 Simplified crude distillation flow diagram................................................................................................ 35 Figure 2.3 Typical visbreaking flow diagram. ............................................................................................................. 35 Figure 2.4 Typical hydrotreating flow diagram........................................................................................................... 36 Figure 2.5 Catalytic reforming process flow diagram. ............................................................................................... 37 Figure 2.6 Simplified process diagram for delayed coking........................................................................................ 37 Figure 2.7 Simplified process diagram of a steam reforming based hydrogen plant. ........................................... 39 Figure 2.8 Typical PSA system flow diagram............................................................................................................... 40 Figure 2.9 Typical flow diagram of an ammonia plant............................................................................................... 40 Figure 2.10 Typical methanol plant process flow diagram .......................................................................................... 41 xi List of Figures Figure 3.1 Capping a burning oil well........................................................................................................................... 46 Figure 3.2 Refinery flow diagram .................................................................................................................................. 49 Figure 3.3 Flow diagram of UOP fluid catalytic cracking complex .......................................................................... 50 Figure 3.4 Simplified process flow diagram for hydrogen reforming/pressure swing adsorption .................... 53 Figure 3.5 Simplified process flow diagram for Flexicoking .....................................................................................54 Figure 3.6 Viewing oil flame through a burner plenum............................................................................................. 56 Figure 3.7 Burner firing heavy oil (1)............................................................................................................................. 56 Figure 3.8 Burner firing heavy oil (2)............................................................................................................................. 56 Figure 3.9 Naphtha distillation curve............................................................................................................................ 57 Figure 3.10 Flame speed for various gases .....................................................................................................................64 Figure 3.11 Crude oil distillation curve...........................................................................................................................65 Figure 3.12 Viscosity of fuel oils....................................................................................................................................... 67 Figure 3.13 100% TNG flame............................................................................................................................................. 69 Figure 3.14 80% TNG/20% N2 flame................................................................................................................................ 69 Figure 3.15 90% TNG/10% N2 flame. ............................................................................................................................... 70 Figure 3.16 90% TNG/10% H2 flame................................................................................................................................ 70 Figure 3.17 75% TNG/25% H2 flame................................................................................................................................ 70 Figure 3.18 25% TNG/75% H2 flame................................................................................................................................ 70 Figure 3.19 50% TNG/50% H2 flame................................................................................................................................ 71 Figure 3.20 100% H2 flame................................................................................................................................................. 71 Figure 3.21 50% TNG/25% H2/25% C3H8 flame............................................................................................................. 71 Figure 3.22 100% C3H8 flame............................................................................................................................................. 71 Figure 3.23 50% TNG/50% C3H8 flame............................................................................................................................ 72 Figure 3.24 100% C4H10 flame............................................................................................................................................ 72 Figure 3.25 Simulated cracked gas flame........................................................................................................................ 72 Figure 3.26 Simulated FCC gas flame.............................................................................................................................. 72 Figure 3.27 Simulated coking gas flame.......................................................................................................................... 73 Figure 3.28 Simulated reforming gas flame. .................................................................................................................. 73 Figure 3.29 100% Tulsa natural gas.................................................................................................................................. 73 Figure 3.30 100% hydrogen............................................................................................................................................... 73 Figure 3.31 100% propane.................................................................................................................................................. 74 Figure 3.32 50% hydrogen/50% propane........................................................................................................................ 74 Figure 3.33 50% hydrogen/50% Tulsa natural gas. ....................................................................................................... 74 Figure 3.34 50% propane/50% Tulsa natural gas........................................................................................................... 74 Figure 3.35 25% hydrogen/75% propane........................................................................................................................ 75 Figure 3.36 75% hydrogen/25% propane........................................................................................................................ 75 Figure 3.37 25% hydrogen/75% Tulsa natural gas. ....................................................................................................... 75 xii List of Figures Figure 3.38 75% hydrogen/25% Tulsa natural gas. ....................................................................................................... 75 Figure 3.39 25% propane/75% Tulsa natural gas........................................................................................................... 76 Figure 3.40 75% propane/25% Tulsa natural gas........................................................................................................... 76 Figure 3.41 25% hydrogen/25% propane/50% Tulsa natural gas................................................................................ 76 Figure 3.42 50% hydrogen/25% propane/25% Tulsa natural gas................................................................................ 76 Figure 4.1 Typical cabin-style process heater. .............................................................................................................. 81 Figure 4.2 Carbon atom with six protons, neutrons, and electrons.......................................................................... 82 Figure 4.3 Periodic table. .................................................................................................................................................83 Figure 4.4 Composition of air by volume...................................................................................................................... 86 Figure 4.5 Species concentration versus excess air for the following fuels ............................................................. 90 Figure 4.6 Adiabatic flame temperature versus equivalence ratio for air/H2, air/CH4, and air/C3H8 flames where the air and fuel are at ambient temperature and pressure. .......................................... 104 Figure 4.7 Adiabatic flame temperature versus air preheat temperature for stoichiometric air/H2, air/CH4, and air/C3H8 flames where the fuel is at ambient temperature and pressure.................... 104 Figure 4.8 Adiabatic flame temperature versus fuel preheat temperature for stoichiometric air/H2, air/CH4, and air/C3H8 flames where the air is at ambient temperature and pressure...................... 105 Figure 4.9 Adiabatic flame temperature versus fuel blend (CH4/H2 and CH4/N2) composition for stoichiometric air/fuel flames where the air and fuel are at ambient temperature and pressure. ..........................................................................................................................................106 Figure 4.10 Adiabatic flame temperature versus fuel blend (CH4/H2) composition and air preheat temperature for stoichiometric air/fuel flames where the fuel is at ambient temperature and pressure. ................................................................................................................................................ 107 Figure 4.11 Sample Sankey diagram showing distribution of energy in a combustion system........................... 107 Figure 4.12 Available heat versus gas temperature for stoichiometric air/H2, air/CH4, and air/C3H8 flames where the air and fuel are at ambient temperature and pressure. .......................................... 108 Figure 4.13 Available heat versus air preheat temperature for stoichiometric air/H2, air/CH4, and air/C3H8 flames at an exhaust gas temperature of 2000°F (1100°C) where the fuel is at ambient temperature and pressure. ......................................................................................................................... 109 Figure 4.14 Available heat versus fuel preheat temperature for stoichiometric air/H2, air/CH4, and air/C3H8 flames at an exhaust gas temperature of 2000°F (1100°C) where the air is at ambient temperature and pressure. ...........................................................................................................110 Figure 4.15 Graphical representation of ignition and heat release.............................................................................110 Figure 4.16 Species concentration versus stoichiometric ratio for the following fuels ...........................................113 Figure 4.17 Adiabatic equilibrium reaction process.....................................................................................................116 Figure 4.18 Adiabatic equilibrium calculations for the predicted gas composition as a function of the O2:CH4 stoichiometry for air/CH4 flames where the air and CH4 are at ambient temperature and pressure. .................................................................................................................................................116 Figure 4.19 Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the major species as a function of the air preheat temperature for air/CH4 flames where the CH4 is at ambient temperature and pressure....................................................................................................117 Figure 4.20 Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the minor species as a function of the air preheat temperature for air/CH4 flames where the CH4 is at ambient temperature and pressure....................................................................................................118 xiii List of Figures Figure 4.21 Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the major species as a function of the fuel preheat temperature for air/CH4 flames where the air is at ambient temperature and pressure....................................................................................................119 Figure 4.22 Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the minor species as a function of the fuel preheat temperature for air/CH4 flames where the air is at ambient temperature and pressure................................................................................................... 120 Figure 4.23 Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the major species as a function of the fuel blend (H2 + CH4) composition for air/fuel flames where the air and fuel are at ambient temperature and pressure........................................................ 120 Figure 4.24 Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the minor species as a function of the fuel blend (H2 + CH4) composition for air/fuel flames where the air and fuel are at ambient temperature and pressure........................................................ 121 Figure 4.25 Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the major species as a function of the fuel blend (N2 + CH4) composition for air/fuel flames where the air and fuel are at ambient temperature and pressure........................................................ 121 Figure 4.26 Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the minor species as a function of the fuel blend (N2 + CH4) composition for air/fuel flames where the air and fuel are at ambient temperature and pressure........................................................ 122 Figure 4.27 Equilibrium calculations for the predicted gas composition of the major species as a function of the combustion product temperature for air/CH4 flames where the air and fuel are at ambient temperature and pressure........................................................................................................... 122 Figure 4.28 Equilibrium calculations for the predicted gas composition of the minor species as a function of the combustion product temperature for air/CH4 flames where the air and fuel are at ambient temperature and pressure........................................................................................................... 123 Figure 5.1 Subbituminous char burnout Coen code A = 60 and E = 17,150. .......................................................... 129 Figure 5.2 Pet coke char burnout Coen Code A = 15 and E = 19,000. ..................................................................... 129 Figure 5.3 Coal dust flame velocity versus equivalence ratio.................................................................................. 129 Figure 5.4 Fuel introduction for conveying options.................................................................................................. 131 Figure 5.5 Front of Coen biomass burner.................................................................................................................... 132 Figure 6.1 Catalyst’s function. ...................................................................................................................................... 138 Figure 6.2 (a) Bulk materials: pellets catalyst–spheres and rings (balls, rings, and cylinders) and (b) types of monolith catalyst monolith (honeycomb) material. ................................................... 140 Figure 6.3 Typical horizontal catalytic system with a preheat exchanger. ............................................................ 143 Figure 6.4 Typical compact catalytic waste gas cleaning system. ........................................................................... 144 Figure 6.5 Typical required reactor inlet/reaction temperature, Tc. ....................................................................... 145 Figure 6.6 The arrangement is a catalyst facility consisting of ceramic monoliths.............................................. 147 Figure 6.7 Reactor designs and flows: (a) Single-bed reactor, (b) vertical two-bed reactor (operating temperature > 480°C, ΔTc > 150 K), (c) horizontal cylinder two-bed reactor (operating temperature > 480°C, ΔTc > 150 K), and (d) multiple-bed reactor.......................................................... 148 Figure 6.8 Simple catalytic waste gas cleaning system............................................................................................. 152 Figure 6.9 Catalytic waste gas cleaning system with a burner and blower........................................................... 153 Figure 6.10 Catalytic waste gas cleaning system with a heat exchanger. ................................................................ 153 Figure 6.11 Catalytic waste gas cleaning system with hot water/air production................................................... 154 xiv List of Figures Figure 6.12 Catalytic waste gas cleaning system with steam production and waste liquid injection................. 154 Figure 6.13 Simple catalytic waste gas cleaning system with regenerative heat transfer system. ....................... 155 Figure 6.14 Regenerative heat transfer system, temperature profile......................................................................... 155 Figure 6.15 Catalytic waste gas cleaning system with regenerative heat transfer system including back purge flow system........................................................................................................................................ 156 Figure 6.16 Catalytic waste gas cleaning system with regenerative heat transfer system, one-way flow reactor. ........................................................................................................................................................... 157 Figure 7.1 Typical fired heater........................................................................................................................................161 Figure 7.2 Heat transfer through a plane wall: (a) temperature distribution and (b) equivalent thermal circuit ............................................................................................................................................................. 164 Figure 7.3 Equivalent thermal circuit for a series composite wall .......................................................................... 164 Figure 7.4 Temperature drop due to thermal contact resistance. ............................................................................ 165 Figure 7.5 Temperature distribution for a composite cylindrical wall................................................................... 166 Figure 7.6 Thermal conductivity of (a) some commonly used steels and alloys and (b) some refractory materials. ....................................................................................................................................................... 169 Figure 7.7 Temperature–thickness relationships corresponding to different thermal conductivities............... 170 Figure 7.8 Thermal boundary layer development in a heated circular tube......................................................... 171 Figure 7.9 Orthogonal oscillations of electric and magnetic waves in the propagation of electromagnetic waves.............................................................................................................................................................. 177 Figure 7.10 Spectrum of electromagnetic radiation..................................................................................................... 177 Figure 7.11 Spectral blackbody emissive power........................................................................................................... 179 Figure 7.12 Radiation transfer between two surfaces approximated as gray bodies............................................. 180 Figure 7.13 Network representation of radiative exchange between surface i and the remaining surfaces of an enclosure.............................................................................................................................................. 181 Figure 7.14 View factor of radiation exchange between faces of area dAi and dAj.................................................. 181 Figure 7.15 View factor for aligned parallel rectangles............................................................................................... 184 Figure 7.16 View factor for coaxial parallel disks ........................................................................................................ 184 Figure 7.17 View factor for perpendicular rectangles with a common edge........................................................... 185 Figure 7.18 Infrared thermal image of a flame in a furnace....................................................................................... 185 Figure 7.19 Emission bands of (a) CO2 and (b) H2O..................................................................................................... 186 Figure 7.20 Total emissivity of water vapor at the reference state of a total gas pressure p = 1 bar and a partial pressure of H2O pa → 0......................................................................................................... 188 Figure 7.21 Total emissivity of carbon dioxide at the reference state of a total gas pressure p = 1 bar and a partial pressure of CO2 pa → 0 ......................................................................................................... 188 Figure 7.22 Radiation heat transfer correction factor for mixtures of water vapor and carbon dioxide............. 189 Figure 7.23 Photographic view of a luminous flame................................................................................................... 192 Figure 7.24 Photographic view of a nonluminous flame............................................................................................ 192 Figure 7.25 Photographic view of a radiant wall burner. ........................................................................................... 193 Figure 7.26 Vertical heat flux distribution for oil and gas firing in a vertical tube furnace.................................. 193

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.