A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: ASTROPHYSICS 20(04.19.1; 11.06.2; 11.04.1; 11.19.3; 11.03.2) The Hamburg/SAO Survey for Emission–Line Galaxies III. The Third List of 81 Galaxies U. Hopp1,9, D. Engels2, R.F. Green3, A.V. Ugryumov4, Y.I. Izotov5,10, H.-J. Hagen2, A.Y. Kniazev4, V.A. Lipovetsky4,⋆, S.A. Pustilnik4, N. Brosch6, J. Masegosa7, J.-M. Martin8, and I. M´arquez7 0 1 Universit¨atssternwarte Mu¨nchen, ScheinerStr. 1, D-81679 Mu¨nchen, Germany 0 2 Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg,Germany 0 3 National Optical Astronomy Observatories, Tucson, AZ,85726-6732, USA 2 4 Special Astrophysical Observatory,NizhnijArkhyz,Karachai-Circessia, 357147, Russia n 5 Main Astronomical Observatory,Goloseevo, Kiev-127, 03680, Ukraine a 6 Wise Observatory,Tel-AvivUniversity,Tel-Aviv 69978, Israel J 7 Instituto deAstrofisica deAndalucia, CSIC, Aptdo.3004, 18080, Granada, Spain 5 8 D´epartement de Radioastronomie ARPEGES, Observatoire de Paris, F-92195 Meudon Cedex, France 9 Visiting astronomer at Calar AltoObservatory,Spain 1 10 Visiting astronomer at Kitt Peak Observatory,USA v 4 Received ;Accepted 5 0 1 1 0 Abstract. We present the third list with results of the Key words: surveys – galaxies: fundamental parameters 0 Hamburg/SAO Survey for Emission-Line Galaxies (HSS – galaxies: distances and redshifts – galaxies: starburst – 0 therein, SAO – Special Astrophysical Observatory, Rus- galaxies: compact / h sia). This survey is based on the digitized objective- p prismphotoplatedatabaseoftheHamburgQuasarSurvey - (HQS). o 1. Introduction r Here, we present new spectroscopic results of candi- t Objectiveprismsurveysforemission-linegalaxies(ELGs) s dates which were obtained in 1998 with the 2.1m KPNO a are the main source of large samples of both AGNs and and the 2.2m Calar Alto telescopes. All candidates are : v selected in the declination band +35◦ to +40◦. galaxies with enhanced star formation (SF) activity. Sev- i eral large samples of ELGs were published since the end X The follow-up spectroscopy with the 2m class tele- of the 1980s. They include the samples of the Univer- r scopes confirmed 85 emission-line objects out of 113 ob- a sity of Michigan (UM) survey (Salzer & MacAlpine 1988; served candidates and allowed their quantitative spectral Salzer1989;Salzeretal.1989)neartheequator,theTololo classification.For80ofthem,theredshiftsaredetermined and C´alan-Tololo survey samples (Terlevich et al. 1991; for the first time. For 5 previously known ELGs, line ra- Maza et al. 1991) and the recent Marseille Schmidt sur- tios are presented for the first time. We could classify 55 vey (Surace & Comte 1998) of the Southern sky. out of the 85 emission-line objects as BCG/Hii galaxies In the Northern sky, large samples of ELGs have ap- or probable BCGs, 4 – as QSOs, 6 – as Seyfert galaxies, peared during the last decade thanks to such objective 1 – as super-association in a subluminous spiral galaxy, prismsurveysastheFirstandtheSecondByurakan(SBS) and 11 are low-excitation objects – either starburst nu- surveys(Markarianetal.1983;Izotovetal.1993a;Stepa- clear (SBN), or dwarf amorphous nuclei starburst galax- nian1994;Pustilniketal.1995),theCasesurvey(Peschet ies (DANS). We could not classify 8 ELGs. Further, for 8 al.1995;Salzeretal.1995;Ugryumovetal.1998),andthe more galaxies we did not detect any significant emission Heidelberg void survey (Popescu et al. 1996, 1997, 1998). lines. All these projects employed detection of strong emission lines on blue-sensitive photoplates. A complementary ap- proach was based on the search of strong Hα-emission on Send offprint requests to: [email protected] redobjectiveprismplatesase.g.intheUniversidadCom- ⋆ Deceased 1996 September22. plutensedeMadrid(UCM)survey(Zamoranoetal.1994; 1 Tables 2 to 6 are available only in electronic form at the Zamorano et al. 1996; Gallego et al. 1997), and the MBC CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orviahttp://cdsweb.u-strasbg.fr/Abstract.html.FiguresA1to (Montreal) survey (Coziol et al. 1993, 1994). A9will bemadeavailable only in theelectronic version of the Despite the large effort to establish the above men- journal. tionedsurveys,theyyieldedonlyrelativelysmallcomplete 2 U.Hopp et al.: The Hamburg/SAOSurveyfor Emission-Line Galaxies. III Table 1. Journal of observations Date Telescope Instrument Grating Wavelength Dispersion Observed [˚A/mm] range [˚A] [˚A/pixel] number (1) (2) (3) (4) (5) (6) (7) 22.05-25.05.1998 2.1 m KPNO GoldCam 165 3600–7400 2.7 69 27.05-01.06.1998 2.2 m CAHA CAFOS 187 3700–8100 8.9 44 samplesonthe orderof102 blue compactgalaxies(BCGs ofthis workistosearchfornew extremelylow-metallicity hereafter, e.g. Thuan et al., 1999). This is related to the galaxies. relativelylowsurfacedensityofthe objectsinthe surveys This is the third article of a series devoted to follow- ofabout0.2-0.3persq.deg.(e.g.Popescuetal.1997).But up spectroscopy results of HSS ELG candidates. It deals ◦ only complete samples of sufficient size will allow study- with 113 candidates selected in the band between +35 ◦ ing the distribution of the inherent physical parameters and +40 in declination which is complementary to the of BCGs.The experience ofall these surveyscan be sum- zone +40◦÷+50◦ studied in our previous papers.The ba- marized as follows. To push progress in statistical studies sic ideas of the HSS and its selection methods of ELG oflow-massgalaxieswithstar formationbursts,a reason- candidates are described along with the first results of ablylargevolumehastobesurveyedandtheselectionhas thefollow-upspectroscopyinUgryumovetal.(1999)(Pa- to be done by well understood selection procedures. Es- perI).Thefinalselectionwasslightlymodifiedtoimprove pecially for BCGs of extremely low chemical abundances, significantlythe detectionrateofELGsinfollow-upspec- which seem to be very rare objects in the local universe troscopyasdescribedinPaperII.Inshort,theELGcandi- after all we have learned so far, a coverage of several 103 dateselectioncriteriaappliedareablueorflatcontinuum squaredegreesdownto the technicallimits of the surveys (near λ 4000 ˚A) and the presence of strong or moder- is essential.These limits areatmagnitudes asfaintas mb ate[Oiii]λλ4959,5007˚Aemissionlinesrecognizedondig- = 18 – 19 mag. To derive a statistically robust sample itized prism spectra. Candidates accepted are restricted of sufficient sizes from a very large field survey, objective to the B-magnitude range 16m−19m. 5. selection procedures for the ELGs have to be applied. Thearticleisorganizedasfollows.Insection2wegive the details of the spectroscopic observations and of the With the data described below and in papers I and datareduction.Insection3theresultsoftheobservations II (Ugryumov et al. 1999; Pustilnik et al. 1999) of this arepresentedinseveraltables.Alongwithgeneralparam- series,the authorspursue the goalofcreatinga new large sample of Hii galaxies, or BCGs in a zone with a total etersfortheemission-linegalaxiesandseveralquasars,the parametersofthestrongestemissionlinesoftheELGsare area of the order 1500 square degrees. This region will summarized in a separate table. The information on two fill the gap between the zones of the SBS and the region non-emission-line galaxies is presented as well. In section covered by the Case survey. The SBS is situated at α = 7h40m÷17h20m, δ =+49◦÷+61◦, while the Case covers 4 we briefly discuss the new data and summarize the cur- α=8h00m÷16h20m, δ =+29◦÷+38◦. For a description rent state of the Hamburg/SAO survey. Throughout this paper a Hubble constant H0 = 75 kms−1 Mpc−1 is used. of the BCGs found in these two surveys, see Izotov et al. (1993a, 1993b), Thuan et al. (1994) and Pustilnik et al. (1995) for the SBS and Salzer et al. (1995), Ugryumov 2. Spectral observations and data reduction (1997), Ugryumovet al.(1998) for the Case surveywhich Allresultspresentedbelowwereobtainedbyobservations is still in progress. inasnap-shotmodeduringtworunswiththeKPNO2.1m Thus, the new Hamburg/SAO Survey (HSS) for telescopeandtheCalarAlto2.2mtelescope(seeTable1). emission-line galaxies leads, firstly, to the creation of a newBCG/Hiigalaxysampleinalargeskyregionwiththe 2.1. Observations with the KPNO 2.1m telescope h m h m ◦ boundaries 7 20 to 17 40 in right ascension and +35 ◦ to+50 indeclination.Secondly,aftercombiningthethree The observations were made with the GoldCam spectro- BCG samples in the SBS, the Case and the HSS zones, a graphusedinconjunctionwiththe3K×1KCCDdetector. large Northern BCG sample covering about 3000 square We used a 2′′×229′′ slit with the grating 09 (316 grooves degrees will be available. The main goal of the project mm−1) in its first order, and a GG 375 order separation is the search for emission-line galaxies (ELG) in order to filter. This filter cuts off all second-order contamination create a new deep sample of blue compact/Hii galaxies for wavelengths blueward of 7400˚A which is the wave- (BCG) in a large area of the sky. Another important goal length region of interest here. This instrumental set-up The Hamburg/SAOSurvey.III 3 gave a spatial scale along the slit of 0′.′75 pixel−1, a scale correctionfor distortionand tilt for eachframe. Then the perpendicular to the slit of 2.7˚A pixel−1, a spectralrange one-dimensional spectra were extracted from each frame of 3700–7500˚A and a spectral resolution of ∼ 5˚A. These using the APALL routine without weighting. For all ob- parameters permitted cover simultaneous coverage of the jectsweextractedthebrightestpartofthegalaxycovering ′′ blueandredspectralrangewithallthelinesofinterestin a spatial size of 7 . All extracted spectra from the same a single exposure and with enough spectral resolution to object were then co-added. Cosmic ray hits have been separate important emission lines such as Hγ λ4340 and removed manually. To derive the instrumental response [Oiii] λ4363, and Hα λ6563 and [Nii] λ6584. Normally, function, we have fitted the observed spectral energy dis- short exposures were used (5 minutes) in order to detect tribution of the standard star Feige 34 with a high-order strongemissionlines,tomeasureredshiftsandmakesome polynomial. crude classification. ReferencespectraofanAr–Ne–Helampwererecorded 2.3.2. Reduction of the Calar Alto 2.2m telescope data to provide a wavelength calibration. The spectrophoto- metric standard star Feige 34 from Massey et al. (1988) This reduction was fully done at SAO with the standard wasobservedforthefluxcalibrationatleastonceanight. reduction system MIDAS (Munich Image Data Analysis No effort was made to orient the slit along the parallac- System, Grosbøl1989). We applied the context LONG as tic angle, so line flux ratios could be spectrophotometri- follows:biasanddarksubtraction,flat-fielding,cosmic-ray cally inaccurate.The observationswere complementedby removal. After the wavelength mapping, a night sky 2-D dome flats, bias-, and dark frames. The seeing was about background subtraction was performed. 1-D spectra were 3′′ (FWHM). extracted by adding the consecutive CCD rows centered on the object intensity peak along the slit. Then the cor- rections for atmospheric extinction and flux calibration 2.2. Calar Alto 2.2m telescope observations were applied. Despite of the non-photometric observing Follow-upspectroscopywiththistelescopewasconducted conditions, we corrected the spectra for the instrumental asaback-upforamainprogramwhichneededphotomet- responsewitharesponsecurveestablishedbyobservations ◦ ric conditions. So, the observations presented here were of the spectrophotometric standard star BD+33 2642. obtained in non-photometric conditions and the absolute flux calibration of the data is unreliable. 2.3.3. Line parameter measurements TheCassegrainfocalreducerCAFOSofthe2.2mtele- scopewasusedwithalongslitof300′′×3′′ andagrismof Inthe finalspectra,redshiftsandlinefluxesaremeasured 187 ˚A mm−1 linear dispersion. Spectra were recorded on within MIDAS, applying Gaussian fitting to the emis- a2K×2KSite CCDoperatedina 2×1binned mode(bin- sion lines. To determine redshifts for individual galaxies, ning only along the dispersion direction), resulting in a averages are taken over the prominent individual emis- spectral resolution of about 20 ˚A (FWHM), and a wave- sion lines (mostly Hβ, Hα, [Oiii]λ4959,5007˚A). The line length coverage λ = 3700−8100 ˚A. No order separa- [Oii]λ3727˚Aisnotincludedintheredshiftdetermination tion filter was installed. The slit orientation was again sinceformostoftheobjectsitsobservedwavelengthisde- not aligned with the parallactic angle to keep the duty- terminedwithsignificantlylargeruncertaintiesdue tothe cycle high. The exposure times varied between 10 and 15 extrapolationof the linear scale below the first line of the minutesdependingontheobjectbrightness.Theobserva- referencespectrum(Heiλ3889˚A).However[Oii]λ3727˚A tions were complemented by standard star flux measure- was used to determine the redshift in rare cases where it ments,Hg–He–Cdlampexposuresforwavelengthcalibra- is the only strongemission line. The errorsofthe redshift tion, dome flat-, bias-, and dark-frames. The seeing was in such cases can be several times larger than the typical between 1.5 and 2.5 ′′ (FWHM). one (compare Table 2). To improve the accuracy of the redshift determina- tion for the Calar Alto spectra, and further, to reduce 2.3. Data reduction possible small systematic shifts in the zero point of the 2.3.1. Reduction of the KPNO 2.1m telescope data wavelengthcalibration,weadditionallycheckedthe wave- lengths of night sky emission lines on the 2-D spectra at The KPNOtwo-dimensionalspectrawerebiassubtracted the position of the object spectrum. If some measurable and flat-field corrected. We then use the IRAF2 soft- shiftwasdetecteditwasincorporatedinmeasurementsof ware routines IDENTIFY, REIDENTIFY, FITCOORD, emission line positions. TRANSFORM to do the wavelength calibration and the Theemissionline fluxesarecomputedbysumming up 2 IRAFisdistributedbyNationalOpticalAstronomicalOb- the pixel intensities inside the line region applying stan- servatories,whichisoperatedbytheAssociationofUniversities dardMIDASprogramtools.Forallspectra,theindividual for Researchin Astronomy,Inc.,undercooperative agreement emission line fluxes of the Hα, [Nii]λλ6548,6583 ˚A and with theNational Science Foundation [Sii]λλ6716,6731˚A line blends are obtained by summing 4 U.Hopp et al.: The Hamburg/SAOSurveyfor Emission-Line Galaxies. III uppixelintensitiesoverthetotalblendandthenmodeling SBN arethe brighterfractionofthis type.We here follow the individual line fluxes using Gaussian fitting. the notation of Salzer et al. (1989). Seyfert galaxies are separated mainly on diagnostic diagrams as AGN. But if theiremissionlinesarequitenarrow,theyprobablyshould 3. Results of follow–up spectroscopy be classifiedas Sy2. SA is a probable super-associationat Intotal108newcandidatesand5knownELGshavebeen the rim of an edge-on nearby disc galaxy. Six objects are observed.Amongthem,81areneworconfirmedemission- difficult to classify. They are coded as NON. line galaxies,4arequasars(allwithredshiftsinthe range column 8: One or more alternative names, according to 3.07 to 3.20), and 8 are galaxies without emission lines. the information from NED.2 Only 2 of the latter have good enough S/N ratio to iden- The spectra of all emission-line galaxies are shown in tify absorption features enabling measurements of their Appendix A, which is available only in the electronic ver- redshifts. The remaining 20 objects appearedto be either sion of the journal. starswithcharacteristicabsorptionlinesorstellarobjects The results of line flux measurements are given in withfeaturelessspectrawherethesignal-to-noiseratiowas Table 4. It contains the following information: insufficient to identify lines. column 1: The object’s IAU-type name with the prefix HS. By asterisk we note the objects observed during non-photometric conditions. 3.1. Emission-line galaxies column 2: Observed flux (in 10−16ergs−1cm−2) of the The new emission line galaxies are listed in Table 2 con- Hβ line. For the few objects without an Hβ emission line taining the following information: the fluxes are given for Hα marked by a “plus”. For the column1:Theobject’sIAU-typenamewiththeprefixHS. objects observed on Calar Alto during non-photometric We note by asterisk objects observed at Calar Alto. conditionsthisparameterisunreliableandmarkedby(:). column 2: Right ascension for equinox B1950. columns 3,4,5: The observed flux ratios [Oii]/Hβ, column3:DeclinationforequinoxB1950.Thecoordinates [Oiii]/Hβ and Hα/Hβ. were measured on direct plates of the HQS and are accu- columns 6,7: The observed flux ratios [Nii]λ6583 ˚A/Hα, rate to ∼ 2′′ (Hagen et al. 1995). and ([Sii]λ6716 ˚A + λ6731 ˚A)/Hα. column 4: Heliocentric velocity and its r.m.s. uncertainty columns 8,9,10: Equivalent widths of the lines in km s−1. [Oii]λ3727 ˚A, Hβ and [Oiii]λ5007 ˚A. For the few column 5:ApparentB-magnitudeobtainedbycalibration objects without a detected Hβ emission line the equiva- of the digitized photoplates with photometric standard lent widths are given for Hα marked by a “plus”. stars (Engels et al. 1994), having an r.m.s. accuracy of ∼ 0m. 5 for objects fainter than mB = 16m. 0 (Popescu et al. Below we give notes on several individual objects: 1996).Sincethealgorithmtocalibratetheobjectiveprism HS1015+3717:Inthespectrumofthisobjectacosmicray spectra is optimized for point sources the brightnesses of hit is exactly on the line [Oiii]λ4959˚A. This was not cor- extended galaxies are underestimated. The resulting sys- rected in the figure shown in Appendix A. tematicuncertaintiesareexpectedtobeaslargeas2mag HS1214+3801: This is seemingly a supergiant Hii-region (Popescu et al. 1996). For about 1/3 of our objects, B- at the very rim of the nearby edge-on disc galaxy magnitudesareunavailableatthemoment.Wepresentfor (SA(s)cd) NGC 4244(Vhel = 224kms−1 andBT=10.88). them blue magnitudes obtained from the APM database. AttheaccepteddistanceofNGC4244(D=4.5Mpc)MB They are marked by a “plus” before the value in the cor- of HS1214+3801 is about –11m. 8. The difference between responding column. According to our estimate they are the systemic radial velocity of the host galaxy and Hii- systematically brighter by 0m. 92 than the B-magnitudes region is small (32 kms−1) and does not contradict that obtainedbycalibrationofthedigitizedphotoplates(r.m.s. HS1214+3801belongs to NGC 4244. However, the veloc- 1m. 02). ityfieldofNGC4244nearthepositionoftheHii-regionis column 6:AbsoluteB-magnitude,calculatedfromtheap- unkown. Both, the single-dish Hi-measurements as sum- parentB-magnitudeandtheheliocentricvelocity.Nocor- marizedinHuchtmeier&Richter(1989),andanestimate rection for galactic extinction is made as all objects are of the maximum rotational velocity Vrot ≤ 130 kms−1 located at high galactic latitudes and because the correc- (whichweobtainedthroughtheTully-Fisherrelationfrom tionsaresignificantlysmallerthantheuncertaintiesofthe theabsoluteB-bandmagnitudeofNGC4244of∼–17m. 8), magnitudes. yield a range of expected velocity differences between the column 7: Preliminary spectral classificationtype accord- galaxian material and HS 1214+3801 of up to +160 or – ing to the spectral data presented in this article. BCG 100kms−1.Butsincethe2-DspectrumofHS1214+3801 meansthatthegalaxyposessesacharacteristicHii-region spectrumandthattheluminosityislowenough.SBNand 2 NEDisoperatedbytheJetPropulsionLaboratory,Califor- DANS are galaxiesof lower excitation with a correspond- nia Institute of Technology, under contract with the National ingpositioninlineratiodiagrams,asdiscussedinPaperI. Aeronautics and SpaceAdministration. The Hamburg/SAOSurvey.III 5 with a total spatialextent of about 20′′ (≈0.5 kpc) shows them intermediate between F and G. The data for these evidence of internal motions with an amplitude of about stars are presented in Table 6. 50 kms−1 we need to consider an alternative interpreta- tion for this object as a companion BCG. Its SF burst 3.3.3. Non-classified objects may be triggered due to the tidal effect from the more massive galaxy, similar to the case of HS 1717+4955 de- Thirteen non emission-line objects are hard to classify at scribed in Kniazev et al. (2000). To check this option one all. Their continua have too low signal-to-noise ratio to needs a detailed map of the NGC 4244 velocity field in- detect trustworthy absorption features, or the equivalent cluding HS 1214+3801. width of the emission lines is too small. Six of them are HS1214+3922:ThisBCGwasreobservedwithhigherS/N certainlynon-stellaronDSS images,andclassifiedaswell ratio in order to measure the flux of the [Oiii]λ4363line, as non-stellar in the APM database. From our spectra in necessary to determine unambiguously the electron tem- the range ≈ 4000 to ≈ 7300–8000 ˚A, we can exclude the peratureT ([Oiii])oftheHii-regionandtheoxygenabun- presence ofstrong Hα. The remaining7 objects areindis- e dance.Apreliminary determinationaccordingto the pro- tinguishablefromstellarones,andwesuggestthatmostof cedure described by Izotov et al. (1997) shows that it has them are galactic stars. One of the galaxies – namely HS the low oxygen abundance of log(O/H) + 12 = 7.76. 1232+3609, was presented after our observations in the paperbyPopescuetal.(1998)asanELGwithz=0.2529. Our spectrum is too noisy, and we could not identify any 3.2. Quasars significant emission with this redshift. In the course of our follow-up spectroscopy, four QSOs were discovered with a strong emission line in the wave- 4. Discussion length region between 5000 ˚A and the sensitivity break of the Kodak IIIa-J photoemulsion near 5400 ˚A. In all of Altogether we have observed 113 objects preselected as them, we identified Lyαλ1216 redshifted to z ∼ 3 as the ELG candidates on HQS objective prism plates, of which responsibleline.Thisstronglineproducesaneasilyvisible 108 had no previous spectroscopic information. Of those emissionpeak inthe digitized prismspectraevenfor very 85objects(75%)arefoundtobeeitherELGs,orquasars. faint objects (B ∼ 19m. 0−20m. 0) which is hard to distin- Of 81 detected ELGs, 55 were classified based on the guish from low-redshift [Oiii] features. Else, QSOs were character of their spectra and their absolute magnitudes not selected as candidates for follow-up spectroscopy. as Hii/BCGs or probable BCGs. According to their line The data for these four new high-redshift quasars intensity ratios, six galaxies are of the Sy type, five of are presented in Table 3. Finding charts and plots them probably of type Sy2, while the continuum bump of their spectra can be found on the www-site blueward to Hβ in the spectrum of HS 1526+3729 sug- of the Hamburg Quasar Survey (http://www.hs.uni- gests an identification as the Fe II emission line blend hamburg.de/hqs.html). typical for Sy1 galaxies. But we caution the relatively low S/N ratio in that part of the spectrum. One very 3.3. Non-emission-line objects faintobject(HS1214+3801)ofabsolutemagnitudeMB = −11m. 8 is probably a super-associationin the dwarf spiral Intotal,for 28candidates no(trustworthy)emissionlines NGC 4244,oraBCGcompaniontothis subluminousspi- are detected. We divided them into three categories. ral galaxy. Eight candidates are difficult to classify. The remaining 11 ELGs are objects of lower excitation: either starburstnucleigalaxies(SBNandprobableSBN)ortheir 3.3.1. Absorption-line galaxies lower mass analogs, dwarf amorphous nuclear starburst For two brightnon-ELG galaxies the signal-to-noiseratio galaxies (DANS or probable DANS). Since the main goal of spectra was sufficient to detect absorption lines, allow- of the HSS is an efficient search for new BCGs, the frac- ingthedeterminationofredshifts.Thedataarepresented tion of this type among all new detected ELGs (∼68 %, in Table 5. or 65 % among all emission-line objects) is encouraging. The distributions of the new HSS ELGs in the line- ratio diagrams [Oiii]λ5007/Hβ versus [Nii]λ6583/Hα 3.3.2. Stellar objects and [Oiii]λ5007/Hβ versus [Oii]λ3727/[Oiii]λ5007 (see To separate the stars among the objects missing de- Baldwin et al. (1981), Veilleux & Osterbrock (1987) for tectable emission lines we cross-correlated a list of the details) in general are similar to those shown in Paper I. most common stellar features with the observed spectra. ComparedtoPaperII,wepickedupsignificantlyfewer In total, 13 objects with definite stellar spectra and red- low-luminosity ELGs (MB ≤ −15). This is partly con- shifts close to zero were identified. Four of them are obvi- nected to the modest size of the telescopes used (2m ver- ous K or M-stars. The rest were classified roughly in cat- sus 6m in Paper II) and the range of apparent bright- egoriesfromdefinite A-starstoForG-stars,withmostof ness ofELGcandidatesobservedforthis paper.Probably 6 U.Hopp et al.: The Hamburg/SAOSurveyfor Emission-Line Galaxies. III more important is that the Calar Alto observations pref- Engels D., Cordis L., K¨ohler T., 1994, Proc. IAU Symp. 161, ered apparently bright objects (only 4 fainter than 18.5) eds. H.T. MacGillivray, Kluwer, Dordrecht, p.317 due tothe back-upstatusofthe measurementswhichwas Gallego J., Zamorano J., Rego M., Vitores A.G., 1997, ApJ prompted by a modest weather quality. 475, 502 Grosbøl P., Reviews in modern astronomy, 1989, ed. G.Clark, Altogether in Papers I through III, we discovered 257 2, 242. new emission-line objects (14 of them QSOs), and for 35 Hagen H.-J., Groote D., Engels, D., Reimers D., 1995, A&AS more galaxies we got quantitative data for their emission 111, 195 lines.Preliminaryclassificationofthe278ELGsyields206 HuchtmeierW.,RichterO.,AGeneralCatalogofHIObserva- confidentorprobablebluecompact/low-massHiigalaxies. tions of Galaxies, 1989, New York,Springer-Verlag ThusalargefractionofBCGsrelativetoallELGsisfound Izotov Y.I., Guseva N.G., Lipovetsky V.A. et al., 1993a, As- (∼ 74 %) demonstrating the high efficiency of this survey tronomy & Astrophysics Transactions 3, 179 to find galaxies with Hii-type spectra on the Hamburg Izotov Y.I., Lipovetsky V.A., Guseva N.G., 1993b, in: “The Feedback of Chemical Evolution on the Stellar Content of Quasar Survey photoplates. A statistical analysis of this Galaxies”, eds. D.Alloin & G.Stasinska, 127 BCG sample, supplemented with galaxies from the next IzotovYu.I.,ThuanT.X.,LipovetskyV.A.,1997, ApJS108, 1 slices of the survey, is underway. KniazevA.Yu.,PustilnikS.A.,UgryumovA.V.,KniazevaT.F. 2000, Astronomy Letters, v.26, issue 2 (in press).. Markarian B.E., Lipovetsky V.A., Stepanian J.A., 1983, Afz 5. Conclusions 19, 29 We conducted follow-up spectroscopy within the third Massey P., Strobel K., Barnes J.V., Anderson E., 1988, ApJ declination slice of candidates from the Hamburg/SAO 328, 315 Survey for ELGs. Summarizing the results presented, the Maza J., Ruiz M.T., Gonz´alez L.E., Wischnjewsky M., Pen˜a M., 1991, A&AS89, 389 analysisofthecontentofvarioustypesofobjects,andthe Pesch P., Stephenson C.B., MacConnell D.J., 1995, ApJS 98, discussion above, we draw the following conclusions: 41 Popescu C.C., Hopp U., Els¨asser H., 1997, A&A328, 756 – The intended methods to detect ELG candidates on PopescuC.C.,HoppU.,HagenH.-J.,Els¨asserH.,1996,A&AS the plates of the Hamburg Quasar Survey give a rea- 116, 43 sonably high detection rate of emission-line objects Popescu C.C., HoppU.,HagenH.J.,Els¨asser H.,1998, A&AS (∼ 75 %) (85 objects of 113 observed in this third 133, 13 part). Pustilnik S.A., Engels D., Ugryumov A.V., Lipovetsky V.A., – Besides ELGs, we found also 4 new quasars, all with Hagen H.-J., Kniazev A.Y., Izotov Y.I., Richter G., 1999, Lyα in the wavelengthregion4950−5100 ˚A (i.e with A&AS135, 299 (Paper II) PustilnikS.A.,UgryumovA.V.,LipovetskyV.A.,ThuanT.X., 3.07 < z < 3.2) near the red boundary of the IIIa-J GusevaN.G., 1995, ApJ 443, 499 photoplates. Salzer J.J., 1989, ApJ347, 152 – The high fraction of BCG/Hii galaxies among all Salzer J.J., McAlpine G.M., 1988, AJ96, 1192 newly discovered ELGs (about 68 % in this paper) is Salzer J.J., MacAlpine G.M., Boroson T.A., 1989, ApJS 70, in line with our main goal — to pick up a deep BCG 479 sample in the sky region under analysis. Salzer J.J., Moody J.W., Rosenberg J.L., Gregory S.A., New- berry M.V., 1995, AJ 109, 2376 Acknowledgements. This work was supported by the grant of Stepanian J.A., 1994, Proc. IAU Symp. 161, Kluwer, Dor- theDeutscheForschungsgemeinschaft No. 436 RUS17/77/94. drecht,eds. H.T. MacGillivray, p.731 U.A.V.isgratefultothestaffoftheHamburgObservatoryfor Surace C., Comte G., 1998, A&AS133, 171 their hospitality and kind assistance. Y.I.I.thanksthe staff of Terlevich R., Melnick J., Masegosa J., Moles M., Copetti the National Optical Astronomy Observatories for their kind M.V.F., 1991, A&AS91, 285 hospitality.SupportbytheINTASgrantNo.96-0500 wascru- ThuanT.X.,IzotovY.I.,LipovetskyV.A.,PustilnikS.A.,1994, cial to proceed with the Hamburg/SAO survey declination Proc.ESO/OHPWorkshop“DwarfGalaxies”,eds.Meylan band centered on +37.5◦. SAO authors appreciate the partial & Prugniel, p.421 Thuan T.X., Lipovetsky V.A., Martin J.-M., Pustilnik S.A., financial support from the Russian Foundation for Basic Re- 1999, A&AS,139, 1 search grant No. 96-02-16398 and from the Russian Center of Ugryumov A.V., 1997, Ph.D. Thesis, SAORAS Cosmoparticle Physics “Cosmion”. The authors acknowledge Ugryumov A.V., Engels D., Lipovetsky V.A., Hagen H.-J., theuse of the NASA/IPACExtragalactic Database (NED). HoppU.,RichterG.M., PustilnikS.A.,KniazevA.Y.,Izo- tov Y.I., Popescu C.C., 1999, A&AS135, 511 (Paper I) References Ugryumov A.V., Pustilnik S.A., Lipovetsky V.A., Izotov Y.I., RichterG.M., 1998, A&AS 131, 295 Baldwin J.A., Phillips M.M., Terlevich R., 1981, PASP93, 5 Veilleux S., Osterbrock D.E., 1987, ApJS 63, 295 Coziol R., Demers S., Pena M., Barneoud R., 1994, AJ 108, ZamoranoJ.,GallegoJ.G.,RegoM.,VitoresA.G.,AlonsoO., 405C 1996, ApJS 105, 343 Coziol R., Demers S., Pena M., Torres-Peimbert S., Fontain Zamorano J., Rego M., Gallego J. et al., 1994, ApJS 95, 387 G., Wesemael F., Lamontagne R., 1993, MNRAS261, 170 The Hamburg/SAOSurvey.III 7 Table 2. Coordinates, Velocities and Magnitudes of Emission–Line Galaxies # Name α(1950) δ(1950) va m M b Type OtherNames from NED 0 B B (1) (2) (3) (4) (5) (6) (7) (8) 1 HS 0940+3737* 09h40m10s.7 37◦37′14′′ 15655 ±107 16.1 –20.5 Sy IRASF09401+3737 2 HS 0948+3723 09 48 19.0 37 23 05 4806 ± 30 +17.8 –16.2 NON 3 HS 0954+3612 09 54 01.1 36 12 12 13602 ± 24 17.3 –19.0 BCG? 4 HS 0956+3847 09 56 51.0 38 47 54 15785 ± 21 16.7 –19.9 BCG 5 HS 1012+3655 10 12 49.0 36 55 31 10097 ± 12 18.3 –17.4 BCG 6 HS 1015+3737* 10 15 23.3 37 37 44 14533 ± 66 16.4 –20.0 Sy IRASF10154+3737 ? 7 HS 1018+3619* 10 18 11.8 36 19 16 22244 ± 65 17.3 –20.0 BCG 8 HS 1024+3648* 10 24 56.4 36 48 54 11184 ± 68 16.6 –19.3 Sy FIRSTJ102749.9+363334 9 HS 1053+3722* 10 53 43.0 37 22 55 13011 ± 61 16.7 –19.5 SBN? 10 HS 1058+3553 10 58 12.5 35 53 15 9366 ± 12 17.0 –18.5 BCG 11 HS 1103+3627* 11 03 15.9 36 27 30 13832 ± 67 15.5 –20.8 BCG CG 810, IRAS 12 HS 1103+3758* 11 03 03.4 37 58 24 13664 ± 60 18.1 –18.2 SBN 13 HS 1106+3621 11 06 35.6 36 21 52 6526 ± 60 18.4 –16.3 BCG 14 HS 1107+3524 11 07 53.1 35 24 36 8362 ± 48 17.4 –17.8 BCG 15 HS 1107+3637 11 07 04.0 36 37 16 8206 ± 18 19.5 –15.7 NON 16 HS 1107+3710* 11 07 31.5 37 10 49 8750 ± 84 17.0 –18.3 SBN 17 HS 1107+3712 11 07 17.7 37 12 21 9639 ± 13 17.6 –17.9 BCG? 18 HS 1133+3852 11 33 50.2 38 52 37 6631 ± 27 +19.8 –14.9 BCG? 19 HS 1134+3805* 11 34 28.0 38 05 10 9578 ± 70 +18.6 –16.9 BCG 20 HS 1139+3712* 11 39 01.3 37 12 19 6523 ± 60 17.0 –17.7 BCG 21 HS 1148+3827* 11 48 00.3 38 27 00 10334 ± 65 18.7 –17.0 BCG 22 HS 1158+3837 11 58 21.5 38 37 41 6898 ± 15 17.9 –16.9 BCG CG 1493 23 HS 1159+3940 11 59 52.5 39 40 59 6350 ± 41 +17.4 –17.2 NON 24 HS 1207+3957 12 07 14.2 39 57 57 11700 ± 30 18.5 –17.5 BCG 25 HS 1209+3726 12 09 20.2 37 26 57 7273 ± 54 16.9 –18.0 BCG? 26 HS 1210+3759* 12 10 13.4 37 59 40 6875 ± 84 +17.2 –17.6 DANS? 27 HS 1214+3922 12 14 30.6 39 22 22 4438 ± 12 18.2 –15.5 BCG 28 HS 1214+3801* 12 14 39.6 38 01 32 276 ± 67 +16.5 –11.3 SA in SpG part of NGC 4244 29 HS 1237+3900 12 37 04.0 39 00 00 11199 ± 21 +18.6 –17.3 BCG 30 HS 1248+3523 12 48 53.0 35 23 06 10025 ± 15 17.4 –18.2 BCG 31 HS 1249+4021* 12 49 25.1 40 21 04 9882 ± 67 17.0 –18.6 SBN? 32 HS 1254+3740 12 54 55.2 37 40 46 7635 ± 15 18.0 –17.0 BCG 33 HS 1257+3658* 12 57 45.0 36 58 05 8658 ± 84 17.1 –18.2 BCG NGP9 F269-0458422 34 HS 1302+3607 13 02 49.9 36 07 49 9561 ± 27 17.1 –18.4 BCG CG 1080 35 HS 1309+3701 13 09 50.6 37 01 54 7211 ± 30 18.1 –16.8 BCG NGP9 F269-0480622 36 HS 1311+3641* 13 11 54.7 36 41 48 28685 ± 116 17.5 –20.4 SBN NGP9 F269-0606354 37 HS 1323+3851* 13 23 43.1 38 51 25 6580 ± 61 17.5 –17.2 BCG 38 HS 1327+3731* 13 27 26.8 37 31 28 4187 ± 64 16.5 –17.2 BCG NGP9 F270-0319016 39 HS 1331+3545* 13 31 59.8 35 45 05 17661 ± 93 18.1 –18.8 BCG 40 HS 1331+3657 13 31 46.5 36 57 21 18351 ± 15 18.0 –18.9 BCG 41 HS 1333+3717* 13 33 34.6 37 17 04 17008 ± 33 18.0 –18.8 BCG HS 1333+3717 42 HS 1341+3700* 13 41 00.9 37 00 01 5882 ± 81 15.8 –18.7 SBN CG 1181=IRAS 43 HS 1347+3811 13 47 02.3 38 11 35 2828 ± 32 18.8 –14.1 NON HS 1347+3811 8 U.Hopp et al.: The Hamburg/SAOSurveyfor Emission-Line Galaxies. III Table 2. (Continued) # Name α(1950) δ(1950) va m M b Type OtherNames from NED 0 B B (1) (2) (3) (4) (5) (6) (7) (8) 44 HS 1402+3945 14h02m55s.0 39◦45′11′′ 19654 ± 18 16.6 –20.5 SBN 45 HS 1414+3605* 14 14 50.8 36 05 01 43503 ± 132 18.3 –20.5 Sy 46 HS 1424+3836 14 24 25.9 38 36 26 6708 ± 15 +18.4 –16.4 BCG CG 428=HS 1424+3836 47 HS 1425+3847* 14 25 33.8 38 47 17 6578 ± 63 16.0 –18.7 SBN? CG 436 48 HS 1428+3545 14 28 23.3 35 45 24 11858 ± 27 +18.5 –17.5 BCG 49 HS 1434+3644* 14 34 20.1 36 44 26 9385 ± 88 +18.1 –17.4 BCG 50 HS 1437+4002 14 37 58.5 40 02 29 11068 ± 31 +19.2 –16.7 BCG? 51 HS 1447+3636* 14 47 48.0 36 36 03 1861 ± 67 17.7 –14.3 BCG 52 HS 1449+3647 14 49 02.3 36 47 24 10086 ± 15 +18.6 –17.1 BCG 53 HS 1457+3652 14 57 59.6 36 52 39 11768 ± 18 +19.8 –16.2 BCG 54 HS 1458+3726* 14 58 32.4 37 26 02 32205 ± 306 +20.7 –17.5 NON 55 HS 1513+3612* 15 13 04.1 36 12 05 18466 ± 67 +17.8 –19.2 BCG 56 HS 1519+4007* 15 19 30.0 40 07 39 2625 ± 60 +16.5 –16.2 BCG CG 691 57 HS 1520+3717 15 20 30.6 37 17 56 11144 ± 78 +18.1 –17.8 NON 58 HS 1524+3536* 15 24 48.8 35 36 39 8770 ± 12 18.0 –17.3 BCG CG 720 59 HS 1526+3729* 15 26 18.7 37 29 36 9792 ± 64 +16.5 –19.1 Sy IRASF15263+3729 60 HS 1526+3634 15 26 27.2 36 34 29 18825 ± 20 +19.1 –17.9 BCG 61 HS 1527+3912 15 27 46.2 39 12 30 23004 ± 38 +15.7 –21.7 SBN CG 734 62 HS 1529+4003* 15 29 45.1 40 03 21 8379 ± 60 +16.7 –18.5 BCG? CG 749 63 HS 1530+3617 15 30 57.5 36 17 40 4666 ± 24 +17.0 –17.0 DANS? 64 HS 1535+3747* 15 35 40.6 37 47 47 7660 ± 63 +19.1 –16.0 BCG 65 HS 1536+3958 15 36 52.3 39 58 10 4367 ± 18 18.0 –15.8 BCG 66 HS 1543+3830 15 43 44.8 38 30 30 7862 ± 18 19.2 –15.9 BCG 67 HS 1557+3549* 15 57 35.8 35 49 45 12852 ± 97 16.8 –19.4 BCG? 68 HS 1558+3543 15 58 27.3 35 43 15 20377 ± 84 18.3 18.9 NON 69 HS 1558+3636* 15 58 34.1 36 36 34 12495 ± 62 17.8 –18.3 BCG 70 HS 1608+3654 16 08 31.5 36 54 42 9587 ± 18 17.3 –18.2 NON 71 HS 1613+3701 16 13 50.6 37 01 13 8844 ± 21 17.1 –18.3 BCG 72 HS 1615+3521* 16 15 48.4 35 21 07 8507 ± 70 17.5 –17.8 BCG 73 HS 1619+3557* 16 19 11.3 35 57 35 15092 ± 42 17.4 –19.1 BCG 74 HS 1624+3618 16 24 22.3 36 18 25 9484 ± 12 19.0 –16.5 BCG 75 HS 1638+3938 16 38 01.8 39 38 17 8969 ± 15 18.2 –17.2 BCG 76 HS 1643+4015 16 43 39.0 40 15 07 11617 ± 18 17.4 –18.6 BCG 77 HS 1645+3551* 16 45 51.9 35 51 57 6720 ± 61 17.7 –17.1 BCG 78 HS 1653+3634 16 53 07.2 36 34 55 845 ± 24 +16.0 –14.3 BCG 79 HS 1656+3927 16 56 34.7 39 27 58 10290 ± 42 17.7 –18.0 Sy FIRSTJ165815.4+392329 80 HS 1711+3756* 17 11 41.5 37 56 12 8273 ± 59 17.6 –17.6 BCG 81 HS 1721+3615 17 21 47.5 36 15 43 15596 ± 15 18.1 –18.5 BCG a Heliocentric velocities. b Absolutemagnitudes are not corrected for thegalactic extinction. * Objects observed with the2.2m Calar Alto telescope. + APM magnitude. Table 3. Coordinates, Redshifts and Magnitudes of QSO Name α(1950) δ(1950) za m Detected Emission Lines B (1) (2) (3) (4) (5) (6) HS 1003+3719 10h03m12s.5 37◦19 ′51′′ 3.204 17.7 Lyα 1216 ˚A,Siiv/Oiv]1400 ˚A, Civ 1549 ˚A HS 1024+3558 10 24 21.7 35 58 36 3.106 16.9 Lyα 1216 ˚A,Siiv/Oiv]1400 ˚A, Civ 1549 ˚A HS 1152+3700 11 52 50.0 37 00 20 3.069 20.0 Lyα 1216 ˚A HS 1649+3905 16 49 02.6 39 05 46 3.166 18.3 Lyα 1216 ˚A,Civ 1549 ˚A a Observed redshift. The Hamburg/SAOSurvey.III 9 Table 4. Parameters of Emission Lines of Galaxies # Name F(Hβ)a FF(λ(3H7β2)7) FF(λ(5H0β0)7) FF((HHαβ)) FF(λ(H65α8)3) FF(([HSIαI])) Wλ3727(˚A) WHβ(˚A) Wλ5007(˚A) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) ∗ 1 HS 0940+3737 48: – 14.00 22.17 0.64 0.21 – 5 73 2 HS 0948+3723 +20 – – – – – – +76 58 3 HS 0954+3612 84 1.71 3.21 3.16 0.11 0.30 55 21 72 4 HS 0956+3847 68 3.02 4.06 2.93 0.09 0.06: 295 59 225 5 HS 1012+3655 49 1.50 4.53 3.42 0.11 0.16: 67 55 302 ∗ 6 HS 1015+3737 +133: – – – 0.58 0.73 – +27 94 ∗ 7 HS 1018+3619 68: 3.78 4.15 3.38 0.06: 0.17 98 47 212 8 HS 1024+3648∗ 40: – 4.20 8.61 0.59 0.33 – 8 37 ∗ 9 HS 1053+3722 39: – 3.35 5.76 0.23 0.31 – 15 53 10 HS 1058+3553 36 4.14 5.72 5.47 0.12 0.29 43 11 68 11 HS 1103+3627∗ 109: – 2.92 5.47 0.25 0.13 – 12 35 ∗ 12 HS 1103+3758 25: – 1.51 1.96 0.10: 0.39 – 20 33 13 HS 1106+3621 14 1.04 10.51 4.92 – – 58 17 197 14 HS 1107+3524 13 5.69 4.04 4.37 – 0.39: 33 7 28 15 HS 1107+3637 +45 – – – – – – +316 144 ∗ 16 HS 1107+3710 +117: – – – 0.65 0.23 – +44 – 17 HS 1107+3712 27 3.28 4.64 4.00 – – 23 12 60 18 HS 1133+3852 15 4.04 13.92 5.04 0.07 – 146 22 332 ∗ 19 HS 1134+3805 77: 2.81 4.20 2.65 – 0.18 440 65 253 ∗ 20 HS 1139+3712 32: – 3.45 3.75 0.12 0.18 – 71 259 21 HS 1148+3827∗ 49: 0.72 5.70 4.05 0.05: 0.09 147 79 469 22 HS 1158+3837 93 2.37 3.67 3.37 0.05 0.08 75 27 105 23 HS 1159+3940 +31 – – – – – – +74 22 24 HS 1207+3957 79 1.47 3.86 2.29 – 0.07: 69 42 165 25 HS 1209+3726 9 – 11.65 9.18 – – – 4 45 ∗ 26 HS 1210+3759 +32: – – – 0.15 – – +20 9 27 HS 1214+3922 621 0.85 4.73 2.79 – 0.03: 136 105 522 ∗ 28 HS 1214+3801 683: 0.49 5.44 2.74 0.05: 0.07 101 313 1557 29 HS 1237+3900 28 0.68 3.79 2.52 0.20: – 39 36 138 30 HS 1248+3523 82 1.67 3.29 3.39 – 0.06 56 38 136 ∗ 31 HS 1249+4021 28: – 3.25 5.66 0.29 0.51 – 7 24 32 HS 1254+3740 75 1.06 6.33 3.57 – – 46 53 336 33 HS 1257+3658∗ 15: – 6.21 2.94 0.10 0.17 – 36 255 34 HS 1302+3607 88 1.70 4.05 3.25 0.14 0.17: 19 21 88 35 HS 1309+3701 26 2.15 4.77 5.04 – 0.09: 43 25 128 36 HS 1311+3641∗ +49: – – – 0.32 0.43 – +36 – ∗ 37 HS 1323+3851 15: – 4.28 4.27 0.03 0.11 – 13 56 ∗ 38 HS 1327+3731 36: – 5.90 7.26 – 0.17 – 9 53 39 HS 1331+3545∗ 74: 3.27 4.64 2.89 0.02: 0.16 114 62 295 40 HS 1331+3657 21 2.13 6.43 3.39 – 0.13: 328 140 962 ∗ 41 HS 1333+3717 193: 2.30 4.72 3.27 0.09 0.13 161 149 648 42 HS 1341+3700∗ 54: – 1.93 4.51 0.30 0.39 – 15 31 43 HS 1347+3811 +28 – – – – – 249 +51 85 10 U.Hopp et al.: The Hamburg/SAOSurveyfor Emission-Line Galaxies. III Table 4. (Continued) # Name F(Hβ)a FF(λ(3H7β2)7) FF(λ(5H0β0)7) FF((HHαβ)) FF(λ(H65α8)3) FF(([HSIαI])) Wλ3727(˚A) WHβ(˚A) Wλ5007(˚A) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 44 HS 1402+3945 19 2.05 1.53 9.37 0.48 0.30 13 6 11 ∗ 45 HS 1414+3605 +8: – – – 1.76 – – +40 61 46 HS 1424+3836 51 0.92 7.01 3.37 – 0.05: 184 73 556 ∗ 47 HS 1425+3847 59: – 3.17 4.36 0.13 0.23 – 16 50 48 HS 1428+3545 47 2.26 6.20 3.87 – – 94 41 271 49 HS 1434+3644∗ 27: – 5.93 3.02 0.02: 0.13 – 48 290 50 HS 1437+4002 12 – 4.60 3.00 – – – 30 128 ∗ 51 HS 1447+3636 61: – 4.59 1.95 0.06 0.10 – 79 408 52 HS 1449+3647 83 1.10 5.51 3.24 – 0.11 33 84 414 53 HS 1457+3652 100 – 3.82 1.66 – – – 67 279 ∗ 54 HS 1458+3726 +12: – – – – – – +11 – 55 HS 1513+3612∗ 45: 2.20 5.47 5.55 – 0.16 89 53 273 ∗ 56 HS 1519+4007 72: 0.66 5.77 2.90 – 0.10 19 34 200 57 HS 1520+3717 11 – 6.79 4.64 – – – 6 47 ∗ 58 HS 1524+3536 86: 1.54 5.41 2.70 0.08 0.09 84 74 320 59 HS 1526+3634 110 1.14 4.65 2.36 – 0.23 136 77 385 ∗ 60 HS 1526+3729 +29: – – – 1.52 0.94 – +6 10 61 HS 1527+3912 36 3.39 1.17 3.77 0.17 0.22 28 10 13 ∗ 62 HS 1529+4003 30: – 3.03 5.19 0.24 0.20 – 9 29 63 HS 1530+3617 12 – 4.29 3.38 – – – 4 19 ∗ 64 HS 1535+3747 14: – 5.20 2.95 – – – 33 178 65 HS 1536+3958 90 – 4.52 4.01 – 0.27 – 24 114 66 HS 1558+3543 +42 – – – – – 49 +73 17 67 HS 1543+3830 115 2.33 4.21 3.01 0.09 0.08: 78 27 123 68 HS 1557+3549∗ 13: – 3.72 3.98 – 0.24 – 14 54 ∗ 69 HS 1558+3636 49: – 2.64 3.63 0.04: 0.25 – 24 68 70 HS 1608+3654 +105 – – – – 0.22 – +60 80 71 HS 1613+3701 49 3.13 4.10 5.61 0.10 0.18 48 14 62 ∗ 72 HS 1615+3521 7: – 5.30 5.72 0.06 0.16 – 5 26 ∗ 73 HS 1619+3557 22: – 4.22 4.27 0.06 0.22 – 21 89 74 HS 1624+3618 31 1.07 5.96 – – – 67 70 390 75 HS 1638+3938 87 1.58 6.13 3.74 0.04: 0.19 77 62 367 76 HS 1643+4015 87 2.45 3.32 3.46 0.08 0.17 49 23 81 77 HS 1645+3551∗ 16: – 5.34 3.41 0.05: 0.09 – 23 133 78 HS 1653+3634 346 1.08 5.16 2.37 0.03 0.11 124 102 561 79 HS 1656+3927 31: – 21.41 3.33 1.59 0.58 – 4: 81 80 HS 1711+3756∗ 89: 3.46 4.38 3.98 – 0.20 108 33 146 81 HS 1721+3615 57 1.72 7.25 4.28 0.10 0.16 54 45 363 * Objects observed underpoor photometric conditions. a Flux in 10−16 ergs s−1 cm−2 ˚A−1 . + Parameters for Hαemission line. : Parameters with less confident values. Table 5. Galaxies with Nondetected Emission Lines Name α(1950) δ(1950) va m Mb Absorption lines 0 B B (1) (2) (3) (4) (5) (6) (7) HS 1639+3535 16h39m25s.7 35◦35′49′′ 21285: 18.0 –19.3 G , NaD, Hα band HS 1711+3619 17 11 05.4 36 19 50 5696 +19.2 –15.2 Hβ, Mgb, NaD, Hα a Heliocentric velocities. b Absolute magnitudes are not corrected for thegalactic extinction. + APM magnitude. : less confidentvalues.