Algis VAliuNAs Dave Cheng (https://www.instagram.com/smiley_dafe/) 68 ~ The New ATlANTis Copyright 2017. All rights reserved. See www.TheNewAtlantis.com for more information. The Evangelist of Molecular Biology Algis Valiunas J ames D. Watson is the most famous American scientist since J. Robert Oppenheimer, and he wouldn’t have it any other way. That his name will roll throughout history in tandem with that of Francis Crick, his English collaborator at the Cavendish Laboratory in Cambridge, does not dimin- ish its luster, and may even enhance it somewhat. For an achievement like the 1953 discovery of the structure and basic function of DNA, there is glory enough to go around. It might indeed be too much for a single man to shoulder. Watson and Crick are certainly an inseparable pair in the public mind, and the associa- tion has even confused some persons who clearly ought to know better. In 1955, shortly after Nevill Francis Mott had become the new head of the Cavendish, Crick said he’d like to introduce him to Watson, who had recently returned to Cambridge from Caltech. Mott was flummoxed. “Watson? Watson? I thought your name was Watson-Crick.” It did take some time for the momentous discovery to make the rounds, even among distinguished scientists. But in due course it became common knowledge of a sort. As Crick relates in his memoir What Mad Pursuit, the physical chemist Paul Doty was traveling to New York around 1960, when lapel buttons had become the latest thing, and, in amazement, he saw one for sale proclaiming “DNA.” Certain that this was some fash- ionable slogan unknown to him — something quite different from what the letters signified to scientists — he asked the sidewalk vendor what it meant. “Get with it, Bud,” the salesman replied. “Dat’s the gene.” Watson, with characteristic acerbic brio and uncharacteristic self- effacement, said nearly fifty years after the discovery that it was Bill Clinton and O.J. Simpson who made DNA really famous. In a similarly modest mood years before, Crick had declared that he and Watson had not made DNA; it had made them. As one reviewer of Watson’s 1968 memoir The Double Helix wrote, “The Watson-Crick paper on the structure of DNA sent to Nature on 2 April 1953 is of a very small class. Which class includes, say, Galileo to Paolo Sarpi of 16 October 1604 on the law of fall- ing bodies, Einstein’s papers of 1905, Dirac’s theory of the electron....” Algis Valiunas is a New Atlantis contributing editor and a fellow at the Ethics and Public Policy Center. His writings are collected at AlgisValiunas.com. summer/FAll 2017 ~ 69 Copyright 2017. All rights reserved. See www.TheNewAtlantis.com for more information. Algis VAliuNAs The Watson – Crick discovery inaugurated the transformation of biol- ogy, from what Watson caustically dismissed as the idle agglomeration of pointless boring facts to the fruitful search for “the secret of life.” “To truly understand life, we must pursue genetics at the molecular level,” Watson once wrote. And of the Human Genome Project that he would direct until 1992, he predicted it would “find out what being human is.” He had been saying so for years, the foremost champion since his early twenties of molecular biology as the one true biological faith and the hope of mankind’s earthly salvation. He continues in that role even now, in his late eighties. In Watson’s eyes, science is “the highest form of human achievement.” In his early adolescence, excited by his love of birdwatching, the thought of a career as a naturalist had inspired him. But to pursue such a course, he later came to understand, would be to dabble in trifles. For among the sciences, molecular biology is peerless: Creatures, or to call them by their less poetic name, organisms, become worthy of the most serious interest only when they’re taken apart to their elemental components. Watson’s view of molecular biology describes an intellectual — and moral — adventure that is just getting underway. The potential of molecular biology for making human existence more agreeable and more complete — more fully human, one might say, not to say trans-human — seems nearly boundless. Thus Watson eloquently promotes and prophesies. He is our most forceful spokesman for what René Descartes called “knowledge which is most useful in life,” which will “make ourselves, as it were, masters and possessors of nature,” conducing “principally [to] the preservation of health, which is undoubtedly the first good, and the foundation of all the other goods of this life.” Like Descartes, Watson feels a moral obligation to spread the word about the new beneficial possibilities of the everlasting truth put to good use. Unlike Descartes, Watson is no philosopher, nor a writer of genius, but he is a writer of distinction about his particular branch of science, and a prolific one at that. In The Writing Life of James D. Watson, Errol C. Friedberg registers his amazement that Watson does not regard the DNA structure as his nonpareil accomplishment: “When asked what he considers his greatest achievement, Watson’s response is unhesitating: It is, he has said firmly, ‘my writing.’” For Watson epitomizes the scientist as public intellectual: He is the evangelist of molecular biology, whose mission is to inform the public of the specialized work being undertaken for their sake. 70 ~ The New ATlANTis Copyright 2017. All rights reserved. See www.TheNewAtlantis.com for more information. The eVANgelisT oF moleculAr Biology Watson considers himself responsible for educating both government and populace, and is particularly concerned with the workaday taxpayer who will fund the expensive scientific machinery. Yet it is not only the technological benefits of molecular biology that he wants the public to appreciate; he proselytizes for the disinterested nobility of the scientific calling too. As he wrote in 1976: As scientists, we shall have to spend more time educating the public, not only about our idealistic dreams, say to conquer the common cold or cancer, but also with regard to the old-fashioned idea on which I was brought up, that the pursuit of knowledge about the nature of life and about the universe in which it exists is a glorious endeavor that should be undertaken for its own sake. Yet this endeavor, in its detail, lies far beyond the public’s powers of understanding. Watson approaches the layman who comes unequipped to contend with the arcana of scientific research and wins him over with candor, and with gentle but decisive nudging toward appreciation for the recondite. Frequently he mingles his sketches of the scientific process with anecdotes of personal quirk and foible, and with reflections on the social significance of the advancement of learning, to borrow a phrase from Bacon. From his young manhood, Watson nurtured the desire to write not just like an elegant scientist but indeed like a superior artist. In an essay titled “Striving for Excellence,” he wrote, “When I was 23, I went through a phase where I wanted to understand how Linus Pauling thought well enough so I could write a paper in his style. And several years later I read The Great Gatsby and I began to dream that I might produce a novel with the class of Fitzgerald.” Watson never did write a book to rival Gatsby. Yet of The Double Helix, his account of the discovery of DNA’s structure, the formidably learned English crystallographer J.D. Bernal could exclaim, “It is an astonishing production, I could not put it down. Considered as a novel of the history of science, as it should be written, it is unequalled.” The Double Helix, not in fact a novel, has been a million-seller trans- lated into more than twenty languages, and it has reached a larger audi- ence, Errol Friedberg writes, than any other “story about scientific dis- covery.” The Modern Library, which goes in for literary rankings, listed it at number seven of the hundred most important books of the twentieth century. In 1987 Watson’s book was even adapted for the screen, with Jeff Goldblum as the hero. summer/FAll 2017 ~ 71 Copyright 2017. All rights reserved. See www.TheNewAtlantis.com for more information. Algis VAliuNAs Not every scientist shared Bernal’s excitement over The Double Helix, but Watson can boast a number of other successful entries. These include two more memoirs in the Helix vein, the too often drearily confessional Genes, Girls, and Gamow (2001) and the more serious and successful Avoid Boring People: Lessons from a Life in Science (2007); the textbook Molecular Biology of the Gene (1965), which won nearly universal acclaim and is now in its seventh edition; DNA: The Secret of Life (2003), a valuable introduc- tion to the reader with no scientific training, and the most clearly, force- fully, and gracefully written of his books, most likely thanks to its coau- thor, geneticist Andrew Berry; and the essay collection A Passion for DNA: Genes, Genomes, and Society (2000), which provides an important view of Watson’s opinions on the social implications of genetic research. Then there is Father to Son: Truth, Reason, and Decency (2014), a Watson family history, focusing on the intellectual and moral legacy bequeathed to him by his father, James D. Watson, Sr. The loving memoir details the decisive yet unpredictable interplay of nature, nurture, and chance that shapes a life story. It points toward a richer understanding of human character and fate than is suggested by Watson’s famous, perhaps notori- ous, emphasis on genetic destiny — the theme commonly seen as Watson’s own principal legacy. Through the trove of these writings, we learn that, like Descartes, Watson stands in the distinguished line of descent from Francis Bacon, who enthused, “Only let mankind regain their rights over nature, assigned to them by the gift of God, and obtain that power, whose exercise will be governed by right reason and true religion.” To Watson, sound reason will be all the religion mankind needs. He needn’t pay lip service to ortho- dox proprieties as Bacon did. The twentieth-century scientist embodies the orthodoxy of the new dispensation, and he takes the future with him. Figuring Out a Focus Born in 1928, James Dewey Watson, Jr. grew up in the bungalow belt on Chicago’s South Side, rather nearer to the U.S. Steel South Works than to the University of Chicago, as he enjoyed remembering. Watson’s mother had had to drop out of the university for want of tuition money, and she worked as a secretary there. His father had flunked out of Oberlin College after a serious illness had laid him low, and he worked as a bill collector. Both his parents were of Scots-Irish stock, his father a one-time Episcopalian, his mother a practicing Roman Catholic. After his own con- firmation at age eleven, Watson gave up church-going with his mother for 72 ~ The New ATlANTis Copyright 2017. All rights reserved. See www.TheNewAtlantis.com for more information. The eVANgelisT oF moleculAr Biology Sunday birdwatching excursions with his father. The brutal religiosity of Generalissimo Francisco Franco informed young Watson’s dim view of the Church, and the son took naturally and by nurture after his dad, who he said “couldn’t stand religion.” The great philosophers supplied Watson Sr.’s desire for the transcendent, and the house was full of serious books. Watson Jr. learned to avoid the philosophers himself, and went in for books loaded with hard facts instead, favoring the World Almanac. Watson thought of himself as a striver rather than a natural-born brainiac: Taking a forbidden glance at his IQ score on the teacher’s desk, he found it was an unexceptional 120, so that he was deficient in what is ordinarily considered the essential genetic endowment for work of genius. He was determined to make his mark with what mental powers he had, and did rather well for himself after all. At fourteen he appeared for three weeks on the national hit radio show Quiz Kids, in which children too smart for their own good competed in answering questions ranging from math to literature. After a successful run, Watson was stumped by Shakespeare and the Old Testament, and he would say he appeared on the show at all only because the producer was a next-door neighbor. He spent his prize money on a pair of ornithological binoculars. At fifteen Watson entered the University of Chicago under the early admission protocol instituted by President Robert Maynard Hutchins, who found American high schools so desolate and deforming that he believed intelligent youth ought to flee them as soon as possible. Chicago under Hutchins’s presidency was perhaps the signal glory in the history of American college education. It was the college of Great Books, and Watson delighted in reading the original scientific sources, though he abhorred the mandatory readings in philosophy — an aversion he would never get over. The Chicago style of intellectual exchange had little to do with the social graces. The readiness for combat it instilled would hone the unman- nerly edge of Watson’s manner for the rest of his life: “I had learned the need to be forthright and to call crap crap,” he would write in Avoid Boring People. Some of those dismembered by the buzzsaw of his contempt might have wished he had gone instead to gentlemanly Yale or Princeton. Most importantly, Watson learned to despise the triviality of so much in academic life — an indispensable Hutchins lesson — and to be ever on the alert for the most significant question, the intellectual main chance that would mark a scientific breakthrough and ensure a lasting reputation. Immersed in the greatness of the most renowned minds, he sought great- ness for himself — and that meant both sterling achievement and worldly summer/FAll 2017 ~ 73 Copyright 2017. All rights reserved. See www.TheNewAtlantis.com for more information. Algis VAliuNAs recognition. “Don’t think about unimportant things,” he exhorted himself, and set about becoming an important figure. His adolescent yen for ornithology would not serve. To fulfill his early ambition to become an avian curator at a great museum would be ignominious now. Birds on the wing or on the dissecting table did not line the path to glory. The big excitement awaited altogether elsewhere, and in 1945, Watson happened upon the text that would re-direct the course of his life: the 1944 book What Is Life? by Erwin Schrödinger, an Austrian quantum physicist then living in exile in Dublin. (The book also made converts to biology of Francis Crick and Maurice Wilkins, both English physicists who would go on to share the 1962 Nobel Prize with Watson.) Schrödinger had a physical scientist’s nervy understanding of biology, unnerving to traditional practitioners and revelatory to those daring to venture beyond the sharply differentiated boundaries of the disciplines. “How can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chem- istry?” he wrote. Yet “the obvious inability of present-day physics and chemistry to account for such events is no reason at all for doubting that they can be accounted for by those sciences.” Schrödinger’s understanding of the role of chromosomes is strikingly prescient to modern ears, so associated have many of the ideas become with the DNA double helix, a discovery still waiting to be made by his impressionable reader. Schrödinger wrote: It is these chromosomes, or probably only an axial skeleton fibre of what we actually see under the microscope as the chromosome, that contain in some kind of code-script the entire pattern of the individu- al’s future development and of its functioning in the mature state....In calling the structure of the chromosome fibres a code-script we mean that the all-penetrating mind, once conceived by Laplace, to which every causal connection lay immediately open, could tell from their structure whether the egg would develop, under suitable conditions, into a black cock or into a speckled hen, into a fly or a maize plant, a rhododendron, a beetle, a mouse or a woman. Henceforth, to understand as much of the genetic marvel as his mind could hold, to come as close as possible to the view of the all-penetrating mind, became the unrelenting spur in Watson’s flank. What Is Life? prompted him to sit in on a course taught by the estimable physiological geneticist Sewall Wright, who spoke as if specifically to Watson. Wright described the pathbreaking but then little-regarded work of Oswald 74 ~ The New ATlANTis Copyright 2017. All rights reserved. See www.TheNewAtlantis.com for more information. The eVANgelisT oF moleculAr Biology Avery at the Rockefeller Institute. Avery had showed that the heredi- tary fundamentals do not lie in complex proteins, as most scientists — including Schrödinger — believed. Rather, they lie in DNA, or deoxyribose nucleic acid (now called deoxyribonucleic acid), a chemical that seemed far too simple to bear such immense responsibility. In a 1992 symposium speech, Watson recalled that Wright’s lectures left him with three ques- tions: “What is the gene?...How is the gene copied?...How does the gene function?” A life’s work in embryo. At nineteen Watson had charted the course of his career. It could eas- ily have gone otherwise. In Avoid Boring People, he talks up the advantage of knowing as soon as you can the work you want to devote yourself to. That he was “initially excited by virtually all aspects of biology” could have diverted him from “the most thrilling problem of all — the DNA structure.” He adds, “If I had not figured out my focus so early, I very likely would have gone to a [graduate] school such as Cornell or Berkeley that had great programs in biology but not in genetics.” Taking the next step in his education, Watson again landed in the right place, Indiana University, after Caltech rejected him and Harvard offered him a place but no stipend. All for the best: At Harvard, genetics were piffling; at Caltech, the Linus Pauling cult of personality engulfed graduate students in the master’s preoccupations. Indiana was both strong in genetics and hospitable to a young man with a lot of catching up to do in his new specialty. At Indiana, Watson’s deficiency in mathematics was stoutly remediated, enabling him to take on the demanding physics at the heart of the new biology, especially “the forces at work in three- dimensional molecular structures [that] could not be described except with math.” But Watson’s primary mentor would be the Italian-born Salvador Luria, a medical doctor by training, and another physicist drawn to inno- vative biology, whose expertise lay in the use of bacteriophage viruses to study the gene. Watson got a particular thrill from Luria’s talk of his long collaboration with Max Delbrück, the German-born physicist whose thoughts on genetics had been the basis of Schrödinger’s What Is Life? “In learning how phages multiply,” Watson wrote, they “thought the funda- mental mechanism of how genes are copied would also become known.” This is the all-consuming question Watson had come to pursue: “We were thinking about nothing but the gene,” Luria would reminisce years later. That suited Watson perfectly. He earned his Ph.D. in 1950 with a disserta- tion on “the biological properties of x-ray inactivated bacteriophage.” He was 22. summer/FAll 2017 ~ 75 Copyright 2017. All rights reserved. See www.TheNewAtlantis.com for more information. Algis VAliuNAs Luria and Delbrück thought the next stage for Watson should include Europe and biochemistry, and they helped to arrange a fellowship for him to work with Herman Kalckar in Copenhagen. Kalckar turned out to have little interest in DNA, and, in any case, biochemistry was not the thing for Watson. A conference in Naples, however, enlivened him greatly. There Watson heard a talk by Maurice Wilkins on his DNA research, which included an X-ray diffraction photograph of the molecule. Watson tried his best to convince Wilkins to take him on in his lab, but Wilkins did not know what to make of this bumptious American, and turned him aside. The best available place for Watson, then, was the Cavendish Laboratory in Cambridge, where the finest X-ray crystallography of macromolecules was being done. Luria exploited his connection with a Cavendish friend and Watson was on his way. Honorable Ambition For the discovery of the structure of DNA we turn now to Watson’s own account in The Double Helix. The book provides a privileged view of how science is done at the very highest level, and is quite unlike any account before it. While many loved the book, a number of distinguished scientists took offense at Watson’s intellectually libertine confessions. Crick was furious at first, and one can see why. “I have never seen Francis Crick in a modest mood” is the book’s opening sentence, and the tone of slick irreverence runs throughout the work, often descending to sneering and cat-calling at lesser mortals. Watson is indeed baiting Crick here, but he is also leading with the suggestion that there are men, and minds, who have nothing to be modest about. And there is a disarming immodesty to the observation that marks the writer as every bit Crick’s equal in self-regard. The story will demonstrate that Watson is right to think so well of himself — but then, it is Watson telling the story. Well before the historic discovery, Crick exuded an atmosphere of thrilling anticipation. Great things were always just around the corner, even when on the last turn he’d hit a brick wall: Often he came up with something novel, would become enormously excited, and immediately tell it to anyone who would listen. A day or so later he would often realize that his theory did not work and return to experiments, until boredom generated another attack on theory. 76 ~ The New ATlANTis Copyright 2017. All rights reserved. See www.TheNewAtlantis.com for more information. The eVANgelisT oF moleculAr Biology This is the mental rhythm of a life structured by the tendency Nietzsche found in himself — “to make knowledge the most powerful passion.” Although Crick was still working on his doctorate at 35, trying to figure out hemoglobin, his mind did not take to the routine work that satisfies run-of-the-mill scientists. Watson broaches the matter of pride in one’s intellectual rank as a primary fact of scientific life. This pride made smaller creatures, pro- tective of their territory, wary of Crick. He showed no mercy for the mediocre, who overran even the brain-rich preserve of Cambridge. Crick claimed the university was “dominated by pedantic, middle-aged men incapable of either amusing or educating him in anything worthwhile.” And Cambridge was hardly alone in elevating the inept. To Crick, “One could not be a successful scientist without realizing that, in contrast to the popular conception supported by newspapers and mothers of scien- tists, a goodly number of scientists are not only narrow-minded and dull, but also just stupid.” As soon as Watson met Crick, he knew Cambridge was his rightful intellectual home. “Finding someone...who knew that DNA was more important than proteins was real luck,” writes Watson. And it was lucky for Crick too. For all his prowess, without Watson his intellect would have gone to waste. Enter the catalytic hero, who aroused his new colleague to the questions that ought to set the most serious scientific career aflame with passion. “Before my arrival in Cambridge, Francis only occasionally thought about deoxyribonucleic acid (DNA) and its role in heredity. This was not because he thought it uninteresting. Quite the contrary.” Rather, Crick was just beginning to be adept with proteins — the former physicist had been a biological researcher for only two years. Moreover, DNA was, “for all practical purposes, the personal property of Maurice Wilkins,” Crick’s friend at King’s College London. “The com- bination of England’s coziness — all the important people, if not related by marriage, seemed to know one another — plus the English sense of fair play would not allow Francis to move in on Maurice’s problem.” In America they ordered things differently. “One would not expect someone at Berkeley to ignore a first-rate problem merely because someone at Cal Tech had started first. In England, however, it simply would not look right.” This English innocence American experience would correct, and perhaps corrupt; Henry James is Watson’s favorite novelist, and Watson inverts the terms of James’s characteristic transatlantic moral education. Watson would convince Crick that self-seeking in the pursuit of honorable summer/FAll 2017 ~ 77 Copyright 2017. All rights reserved. See www.TheNewAtlantis.com for more information.
Description: