ebook img

The Economics of Continuous-Time Finance PDF

641 Pages·2017·14.503 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Economics of Continuous-Time Finance

TheEconomicsofContinuous-TimeFinance TheEconomicsofContinuous-TimeFinance BernardDumasandElisaLuciano TheMITPress Cambridge,Massachusetts London,England ©2017MassachusettsInstituteofTechnology Allrightsreserved.Nopartofthisbookmaybereproducedinanyformbyanyelectronicormechanicalmeans (includingphotocopying,recording,orinformationstorageandretrieval)withoutpermissioninwritingfromthe publisher. This book was set in Times Roman by diacriTech, Chennai. LibraryofCongressCataloging-in-PublicationData Names:Dumas,Bernard,author.|Luciano,Elisa,author. Title:Theeconomicsofcontinuous-timefinance/BernardDumasandElisaLuciano. Description:Cambridge,MA:MITPress,[2017]|Includesbibliographical referencesandindex. Identifiers:LCCN2016051903|ISBN9780262036542(hardcover:alk.paper) Subjects:LCSH:Finance–Mathematicalmodels.|Finance–Econometricmodels. Classification:LCCHG106.D862017|DDC332.01/519233–dc23LCrecordavailableat https://lccn.loc.gov/2016051903 10 9 8 7 6 5 4 3 2 1 Tothosewhogavemeasecondchance. Tomykids,whosmileandfight. —Elisa TothememoryofProfessorJackHirshleiferwhosetextbookInvestment,Interestand CapitalilluminatedmyPh.D.years. —Bernard Contents 1 Introduction 1 1.1 Motivation 1 1.2 Outline 3 1.3 HowtoUseThisBook 4 1.4 Apologies 5 1.5 Acknowledgments 5 I DISCRETE-TIMEECONOMIES 7 2 PricingofRedundantSecurities 9 2.1 Single-PeriodEconomies 10 2.1.1 TheMostElementaryProbleminFinance 10 2.1.2 Uncertainty 13 2.1.3 SecuritiesPayoffsandPrices,andInvestors’BudgetSet 14 2.1.4 AbsenceofArbitrageandRisk-NeutralPricing 16 2.1.5 CompleteversusIncompleteMarkets 22 2.1.6 CompleteMarketsandState-PriceUniqueness 23 2.1.7 BenchmarkExample 24 2.1.8 ValuationofRedundantSecurities 25 2.2 MultiperiodEconomies 27 2.2.1 InformationArrivaloverTimeandStochasticProcesses 28 2.2.2 Self-FinancingConstraintandRedundantSecurities 33 2.2.3 Arbitrage,NoArbitrage,andRisk-NeutralPricing 35 2.2.4 ValuationofRedundantSecurities 40 2.2.5 StaticallyversusDynamicallyCompleteMarkets 40 2.2.6 BenchmarkExample 42 2.3 Conclusion 50 viii Contents 3 InvestorOptimalityandPricingintheCaseofHomogeneousInvestors 53 3.1 One-PeriodEconomies 54 3.1.1 InvestorOptimalityandSecurityPricingunderCertainty 54 3.1.2 InvestorOptimalityandSecurityPricingunderUncertainty 57 3.1.3 Arrow-DebreuSecurities 58 3.1.4 ComplexorReal-WorldSecurities 63 3.1.5 RelationwiththeNo-ArbitrageApproach 66 3.1.6 TheDualProblem 68 3.2 ABenchmarkExample 69 3.2.1 IsoelasticUtility 69 3.2.2 SecuritiesPricing 70 3.2.3 FromSecurityPricestoStatePrices,Risk-Neutral Probabilities,andStochasticDiscountFactors 71 3.3 MultiperiodModel 72 3.3.1 OptimizationMethods 74 3.3.2 RecursiveApproach 74 3.3.3 GlobalApproach 77 3.3.4 SecuritiesPricing 81 3.4 BenchmarkExample(continued) 85 3.5 Conclusion 87 4 EquilibriumandPricingofBasicSecurities 91 4.1 One-PeriodEconomies 91 4.2 CompetitiveEquilibrium 94 4.2.1 EqualizationofStatePrices 99 4.2.2 RiskSharing 101 4.2.3 SecurityPricingbytheRepresentativeInvestorandtheCAPM 103 4.2.4 TheBenchmarkExample(continued) 106 4.3 IncompleteMarket 107 4.4 Multiple-PeriodEconomies 110 4.4.1 RadnerEquilibrium 110 4.4.2 StatePricesandRepresentativeInvestor:FromRadnerto Arrow-DebreuEquilibria 112 4.4.3 SecuritiesPricing 113 4.4.4 RiskSharing 115 4.4.5 ASideCommentonTime-AdditiveUtilityFunctions 116 4.5 Conclusion 117 Contents ix II PRICINGINCONTINUOUSTIME 119 5 BrownianMotionandItôProcesses 121 5.1 MartingalesandMarkovProcesses 121 5.2 ContinuityforStochasticProcessesandDiffusions 123 5.3 BrownianMotion 125 5.3.1 IntuitiveConstruction 125 5.3.2 AFinancialMotivation 130 5.3.3 Definition 131 5.4 ItôProcesses 133 5.5 BenchmarkExample(continued) 135 5.5.1 TheBlack-ScholesModel 135 5.5.2 ConstructionfromDiscrete-Time 138 5.6 Itô’sLemma 140 5.6.1 Interpretation 142 5.6.2 Examples 144 5.7 DynkinOperator 145 5.8 Conclusion 146 6 Black-ScholesandRedundantSecurities 149 6.1 Replicating-PortfolioArgument 151 6.1.1 BuildingtheBlack-ScholesPDE 151 6.1.2 SolvingtheBlack-ScholesPDE 154 6.2 Martingale-PricingArgument 155 6.3 Hedging-PortfolioArgument 157 6.3.1 ComparingtheArguments:Intuition 159 6.4 Extensions:Dividends 160 6.4.1 DividendPaidontheUnderlying 160 6.4.2 DividendPaidontheOption 162 6.5 Extensions:APartiallyGeneralizedBlack-ScholesModel 163 6.5.1 Replicating-PortfolioArgument 163 6.5.2 Martingale-PricingArgument 165 6.5.3 HedgingArgument 165 6.6 ImpliedProbabilities 165 6.7 ThePriceofRiskofaDerivative 166 6.8 BenchmarkExample(continued) 168 6.9 Conclusion 172

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.