ebook img

the 11th conference of phd students in computer science PDF

216 Pages·2017·5.41 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview the 11th conference of phd students in computer science

T 11 C P D HE TH ONFERENCE OF H S TUDENTS IN C S OMPUTER CIENCE Volume of short papers 2 CS OrganizedbytheInstituteofInformaticsoftheUniversityofSzeged June25–June27,2018 Szeged,Hungary ScientificCommittee: JánosCsirik(Co-Chair,SZTE) LajosRónyai(Co-Chair,SZTAKI,BME) AndrásBenczúr(ELTE) AndrásBenczúr(SZTAKI) HassanCharaf(BME) TiborCsendes(SZTE) LászlóCser(BCE) ErzsébetCsuhaj-Varjú(ELTE) JózsefDombi(SZTE) IstvánFazekas(DE) ZoltánFülöp(SZTE) AurélGalántai(ÓE) ZoltánGingl(SZTE) TiborGyimóthy(SZTE) KatalinHangos(PE) ZoltánHorváth(ELTE) MárkJelasity(SZTE) ZoltánKása(SapientiaEMTE) LászlóKóczy(SZE) JánosLevendovszki(BME) GyöngyvérMárton(SapientiaEMTE) BrankoMilosavljevic(UNS) ValerieNovitzka(TUKE) LászlóNyúl(SZTE) MariusOtesteanu(UPT) AttilaPetho˝ (DE) VladoStankovski(UNILJ) TamásSzirányi(SZTAKI) PéterSzolgay(PPKE) JánosSztrik(DE) JánosTapolcai(BME) JánosVégh(ME) DanielaZaharie(UVT) OrganizingCommittee: AttilaKertész,BalázsBánhelyi,TamásGergely,ZoltánKincses AddressoftheOrganizingCommittee c/o. AttilaKertész UniversityofSzeged,InstituteofInformatics H-6701Szeged,P.O.Box652,Hungary Phone: +3662546396,Fax: +3662546397 E-mail: [email protected] URL:http://www.inf.u-szeged.hu/ cscs/ ∼ Sponsors Supported by the project "Integrated program for training new generation of scientists in the fieldsofcomputerscience", No. EFOP-3.6.3-VEKOP-16-2017-00002. Theprojecthasbeensup- portedbytheEuropeanUnionandco-fundedbytheEuropeanSocialFund. UniversityofSzeged,InstituteofInformatics PolygonPublisher AssociationofHungarianPhDandDLAStudents,ScientificSectionofMathematicsandInfor- matics valami Preface Thisconferenceistheeleventhinaseries. TheorganizersaimedtobringtogetherPhDstudents working on any field of computer science and its applications to help them publishing one of their first abstracts and papers, and provide an opportunity to hold a scientific talk. As far as we know, this is one of the few such conferences. The aims of the scientific meeting were determinedonthecouncilmeetingoftheHungarianPhDSchoolsinInformatics: itshould • provideaforumforPhDstudentsincomputersciencetodiscusstheirideasandresearch results; • give a possibility to have constructive criticism before they present the results at profes- sionalconferences; • promotethepublicationoftheirresultsintheformoffullyrefereedjournalarticles; and finally, • promotehopefullyfruitfulresearchcollaborationamongtheparticipants. Thepapersemergingfromthepresentedtalkswillbeinvitedtobeconsideredforfullpaper publicationtheActaCyberneticajournal. The organizers hope that the conference will be a valuable contribution to the research of theparticipants,andwishapleasantstayinSzeged. Szeged,June2018 AttilaKertész BalázsBánhelyi TamásGergely ZoltánKincses i Contents Preface i Contents ii Program iv Plenarytalks 1 BálintDaróczy: RiemannManifoldsandHierarchicalStructures . . . . . . . . . . . . . . . . . 1 MichaelC.Mackey: Understanding,TreatingandAvoidingHematologicalDisease: BetterMedicine ThroughMathematics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 MassimilianoDiPenta: EmpiricalAssessmentofSoftwareEngineeringResearch: PitfallsandSolu- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Shortpapers 4 Abigél Mester, Emilia Heinz, Balázs Bánhelyi, Elvira D. Antal, Edit Mikóné Jónás, József Horváth,TiborCsendes: Decisionsupportheuristicfordairyfarms . . . . . . . . . . . . . 4 AbrarHussain,JózsefDombi: AnewApproachtoFuzzyControlusingDistendingFunction . . . 8 ÁdámBelákovics,ArnoldCzémán,ImreSzeberényi: DesigningandtestingVMallocationalgo- rithmsfortheCIRCLECloudmanager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 ÁdámBudai,KristófCsorba: DeepReinforcementLearning: AstudyoftheCartPoleproblem . . . 17 ÁkosTóth,RolandKunkli: Anapproximativeandsemi-automatedmethodtocreateMPEG-4com- plianthumanfacemodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 András Kicsi, Viktor Csuvik: Feature Level Metrics Based on Size and Similarity in Software ProductLineAdoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 AndrásMárkus,AttilaKertész: Multi-CloudManagementStrategiesforSimulatingIoTApplica- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 AndreaHuszti,NorbertOláh: Identity-BasedCloudAuthenticationProtocol . . . . . . . . . . . 33 BiswajeebanMishra: EvaluatingthePerformanceofMQTTBrokers . . . . . . . . . . . . . . . . 37 Bouafia Khawla, Bálint Molnár: Dynamic business process: comparative models and workflow patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ChamanVerma,VeronikaStoffová,ZoltánIllés,SanjayDahiya: Binarylogisticregressionclas- sifyingthegenderofstudenttowardsComputerLearninginEuropeanschools . . . . . . . . . 45 CsabaBálint,GáborValasek: OperationsonSignedDistanceFunctions . . . . . . . . . . . . . 49 Dániel Lukács, Gergely Pongrácz, Máté Tejfel: Keeping P4 switches fast and fault-free through automaticverification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 DávidNagy,TamásMihálydeák,LászlóAszalós: DifferentTypesofSearchAlgorithmsforRough Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 DénesBartha: ReconstructionofRootedDirectedTrees . . . . . . . . . . . . . . . . . . . . . . 60 Dóra Mattyasovszky-Philipp, Bálint Molnár: Cognitive Enterprise and Cognitive Information Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 EditPengo˝,ZoltánSágodi,ErvinKóbor: WhoAreYounotgonnaCall? ADefinitiveComparison ofJavaStaticCallGraphCreatorTools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Eniko˝ Ilyés: Agilemethodineducation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 GáborHorváth,RékaKovács,PéterSzécsi: TowardsProperDifferentialAnalysisofStaticAnaly- sisEngineChanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 GáborLékó,PéterBalázs,LászlóG.Varga: Projectionselectionwithsequentialselectionmethods usingdifferentevaluationmeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 GabriellaTóth,MátéTejfel: Axiom-basedpropertyverificationforP4programs . . . . . . . . . . 80 ii GergelyPap,TamásGrósz,LászlóTóth: Semi-SupervisedTrainingofCell-ClassifierNeuralNet- works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 GyörgyKalmár,AlexandraBüki,GabriellaKékesi,GyöngyiHorváth,LászlóG.Nyúl: Feature extractionandclassificationforpupillaryimagesofrats . . . . . . . . . . . . . . . . . . . . 88 IstvánOrosz,AttilaSelmeci: SoftwareasaServiceoperationmodelincloudbasedERPsystems . . 92 JuditSzu˝cs,PéterBalázs: StripConstrainedBinaryTomography . . . . . . . . . . . . . . . . . 96 KittiGelle,SzabolcsIván: Lookaheadcanhelpinmaximalmatching . . . . . . . . . . . . . . . 97 KrisztiánIlku,JuditTamás: Topology-basedClassificationErrorCalculationbasedonIndoorGML Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 LászlóPéterPusztai,BalázsKocsis,IstvánBudai,LajosNagy: Industrialprocessmodellingwith operationsresearchmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 LászlóTóth: PreliminaryConceptsforRequirementsMiningandClassificationusingHiddenMarkov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 MártonVéges,ViktorVarga: MonocularEstimationof3DPosesfromaDistance . . . . . . . . . 114 MátéCsákvári,AndrásSárkány: Towardstheunderstandingofobjectmanipulationsbymeansof combiningcommonsenserulesanddeepnetworks . . . . . . . . . . . . . . . . . . . . . . . 118 Nadera Aljawabrah, Tamás Gergely: Visualization of test-to-code relations to detect problems of unittests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 NorbertLuksa,TamásKozsik: ParallelisationofHaskellProgramsbyRefactoring . . . . . . . . 126 PéterGál: JavaScript-onlyParallelProgrammingofEmbeddedSystems . . . . . . . . . . . . . . 130 PéterGál,EditPengo˝: PrimitiveEnthusiasm: ARoadtoPrimitiveObsession . . . . . . . . . . . 134 PéterHudoba,PéterBurcsi: Multipartycomputationmotivatedbythebirthdayproblem . . . . . 138 Róbert Adrian Rill, Kinga Bettina Faragó: Gaze-based Cursor Control Impairs Performance in DividedAttention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 SándorBácsi,GergelyMezei: TowardsaClassificationtoFacilitatetheDesign ofDomain-SpecificVisualLanguages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 SándorBalázsDomonkos,NémethTamás: Usedataminingmethodsinqualitymeasurementin theeducationsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Szabolcs Szekér, Ágnes Vathy-Fogarassy: Measuring the similarity of two cohorts in the n- dimensionalspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Thanh-BinhV.Lam: Shouldweomitthepracticalaspectsinmodelingtheserverclusters? . . . . . 155 TiborBrunner,PéterSzécsi,ZoltánPorkoláb: Bugpathreductionstrategiesforsymbolicexecution 159 Tibor Kovács, Gábor Simon, Gergely Mezei: Benchmarking Graph Database Backends—What WorksWellwithWikidata? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 ViktorHomolya: Graph-basedanalysisofInfluenceSpread . . . . . . . . . . . . . . . . . . . . 167 ViktorVarga,MártonVéges: Exploitingtemporalcontextin2dto3dhumanposeregression . . . 169 YangyuanLi,TienVanDO:RegressionModelstoPredicttheResourceUsageofMapReduceAppli- cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 YangyuanLi,TienVanDO:LongShort-termMemoryRecurrentNeuralNetworksModelstoFore- casttheResourceUsageofMapReduceApplications . . . . . . . . . . . . . . . . . . . . . 176 ZoltánRichárdJánki,VilmosBilicki: Full-stackFHIR-basedMBaaSwithServer-andClient-side CachingCapableWebDAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 ZoltánSzabó,VilmosBilicki: AFHIR-basedhealthcaresystembackendwithdeepcloudsidesecurity 184 Zsolt Mihály, Zsombor Sentes, Zoltán Lelkes: Ant Colony Optimization Based Algorithm For SolvingSchedulingProblemswithSetupTimesonParallelMachines . . . . . . . . . . . . . 188 ZsoltParragi,ZoltánPorkoláb: InstantiationcontextawaretypesinC++ . . . . . . . . . . . . . 192 ZsomborParóczi: LZbasedcompressionbenchmarkonPEfiles . . . . . . . . . . . . . . . . . . 195 ListofAuthors 199 iii Program Monday,June25 08:00–09:00 Registration 09:00–09:15 Opening 09:15–10:35 Talks–ArtificalIntelligence(4x20min.),StaticAnalysis(4x20min.) 10:35–11:00 Break 11:00–12:40 Talks–CloudComputingI.(5x20min.),Testing(4x20min.) 12:40–14:00 Lunch 14:00–14:50 PlenaryTalk 14:50–15:10 Break 15:10–16:30 Talks–CloudComputingII.(4x20min.),ImageProcessingI.(4x20min.) 16:30–18:10 Talks–Education(3x20min.),ImageProcessingII.(4x20min.) 19:00–21:00 ReceptionattheRector’sBuilding Tuesday,June26 09:00–09:15 Registration 08:30–10:35 Talks–Optimization(4x20min.) 10:35–11:00 Break 11:00–13:00 Talks–Algorithms(6x20min.) 13:00–14:00 Lunch 14:00–14:50 PlenaryTalk 15:00–19:00 Socialprogram 19:00–22:00 GalaDinnerattheRector’sBuilding iv Wednesday,June27 09:00–09:15 Registration 09:15–10:35 Talks–ProgrammingLanguages(4x20min.) 10:35–11:00 Break 11:00–11:50 PlenaryTalk 11:50–12:00 Break 12:00–13:00 Talks–Evaluation(3x20min.) 13:00–14:00 Lunch 14:00–15:00 Talks–BusinessProcess(3x20min.) 15:00–15:30 Closing v Detailed program Monday,June25 08:30 Registration 09:00 Opening Session1 ArtificialIntelligence-Sessionchair: MárkJelasity,Room: Szo˝kefalvi-Nagy 09:15 GergelyPap,TamásGrósz,LászlóTóth: Semi-SupervisedTrainingofCell-ClassifierNeuralNetworks 09:35 LászlóTóth: Preliminary Concepts for Requirements Mining and Classification using Hidden Markov Model 09:55 YangyuanLi,TienVanDo: LongShort-termMemoryRecurrentNeuralNetworksModelstoForecasttheResourceUs- ageofMapReduceApplications 10:15 ÁdámBudai,KristófCsorba: DeepReinforcementLearning: AStudyoftheCartPoleProblem Session2 StaticAnalysis-sessionchair: JuditJász,Room: Vályi 09:15 PéterGál,EditPengo˝: PrimitiveEnthusiasm: ARoadtoPrimitiveObsession 09:35 AndrásKicsi,ViktorCsuvik: FeatureLevelMetricsBasedonSizeandSimilarityinSoftwareProductLineAdoption 09:55 EditPengo˝,ZoltánSágodi,ErvinKóbor: WhoAreYounotgonnaCall? ADefinitiveComparisonofJavaStaticCallGraphCreator Tools 10:15 TiborBrunner,PéterSzécsi,ZoltanPorkoláb: BugPathReductionStrategiesforSymbolicExecution 10:35 Break Session3 CloudComputingI.-sessionchair: RichárdFarkas,Room: Szo˝kefalvi-Nagy 11:00 BiswajeebanMishra: EvaluatingPerformanceofMQTTBrokers 11:20 YangyuanLi,TienVanDo: RegressionModelstoPredicttheResourceUsageofMapReduceApplications 11:40 AndrásMárkus,AttilaKertész: Multi-CloudManagementStrategiesforSimulatingIoTApplications 12:00 BinhLamVanThanh: ShouldweIgnorethePracticalAspectsinModellingServerClusters? 12:20 ÁdámBelákovics,ArnoldCzémán,ImreSzeberényi: DesigningandTestingVMAllocationAlgorithmsfortheCIRCLECloudManager Session4 Testing-sessionchair: ÁkosKiss,Room: Vályi 11:00 DánielLukács,GergelyPongrácz,MátéTejfel: KeepingP4SwitchesFastandFault-freethroughAutomaticVerification 11:20 GabriellaTóth,MátéTejfel: Axiom-basedPropertyVerificationforP4Programs 11:40 NaderaAljawabrah,TamásGergely: VisualizationofTest-to-codeRelationstoDetectProblemsofUnitTests 12:00 GáborHorváth,RékaKovács,PéterSzécsi: TowardsProperDifferentialAnalysisofStaticAnalysisEngineChanges 12:40 Lunch 14:00 PlenaryTalk-Room: Bolyai BálintDaróczy: Riemannmanifoldsandhierarchicalstructures 14:50 Break vi

Description:
[4] J. P. Ottinger, S. Guruzu and G. Mak Hibernate Recipes: A Problem-Solution Approach, 2nd Edition,. 2015, Apress, United States. [5] D. An, Find out
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.