ebook img

Taibleson Operators, p-adic Parabolic Equations and Ultrametric Diffusion PDF

0.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Taibleson Operators, p-adic Parabolic Equations and Ultrametric Diffusion

TAIBLESON OPERATORS, p-ADIC PARABOLIC EQUATIONS AND ULTRAMETRIC DIFFUSION. 8 J.J.RODR´IGUEZ-VEGAANDW.A.ZU´N˜IGA-GALINDO 0 0 2 Abstract. We give a multimensional version of the p-adic heat equation, and show that its fundamental solution is the transition density of aMarkov n process. a J 6 1 1. Introduction ] h Inrecentyearsp−adicanalysishasreceivedalotofattentiondue to itsapplica- p tions in mathematical physics, see e.g. [1], [2], [4], [5], [11], [12], [13], [16], [19] and - references therein. One motivation comes from statistical physics, in particular h t in connection with models describing relaxation in glasses, macromolecules, and a proteins. Ithasbeenproposedthatthenonexponentialnatureofthoserelaxations m is a consequence of a hierarchical structure of the state space which can in turn [ be put in connection with p−adic structures ([4], [5], [16]). In [4] was demostrated 2 that the p-adic analysis is a natural basis for the construction of a wide variety of v models of ultrametric diffusion constrained by hierarchical energy landscapes. To 8 each of these models is associated a stochastic equation (the master equation). In 1 severalcases this equation is a p-adic parabolic equation of type: 0 1 . ∂u(x,t) +a(Au)(x,t)=f(x,t), x∈Qn, t∈(0,T], 2 ∂t p 1  (1.1) 7 u(x,0)=ϕ(x), 0 wherea is a positiveconstant,Ais pseudo-differentialoperator,andQ is the field v: of p-adic numbers. The simplest case occurs when n = 1 and A is thepVladimirov i X operator: ar (Dαϕ)(x)=Fξ−→1x |ξ|αp Fx→ξϕ(x) , α>0, where F is the Fourier transform. T(cid:16)he fundamenta(cid:17)l solution of (1.1) is density transition of a time- and space-homogeneous Markov process, that is consider the p−adic counterpart of the Brownian motion (see [13], [19]). Itisrelevanttomentionthatinthecasen=1,thefundamentalsolutionof(1.1) when A = Dα (also called the p−adic heat kernel) has been studied extensively, see e.g. [6], [8], [9], [10], [13], [19]. Anaturalproblemistostudytheinitialvalueproblem(1.1)inthen-dimensional case. Recently, the second author considered Cauchy’s problem (1.1) when (Aϕ)(x)=F−1 |f(ξ)|αF ϕ(x) , α>0, ξ→x p x→ξ (cid:16) (cid:17) 2000 Mathematics Subject Classification. Primary35R60,60J25; Secondary47S10,35S99. Key words and phrases. Parabolic equations, Markov processes, p-adic numbers, ultrametric diffusion. 1 2 J.J.RODR´IGUEZ-VEGAANDW.A.ZU´N˜IGA-GALINDO heref(ξ)isanelliptichomogeneouspolynomialinnvariables,andthedatumϕisa locallyconstantandintegrablefunction. Underthesehypothesesitwasestablished the existence of a unique solution to Cauchy’s problem (1.1). In addition, the fundamental solution is a transition density of a Markov process with space state Qn (see [20]). p In this paper we study Cauchy’s problem (1.1) when A is the Taiblesonpseudo- differential operator which is defined as follows: β Dβϕ (x)=F−1 max |ξ | F ϕ(x) , β >0. (1.2) T ξ→x i p x→ξ (cid:16) (cid:17) (cid:18)1≤i≤n (cid:19) ! Recently Albeverio, Khrennikov, and Shelkovich studied Dβ in the context of the T Lizorkin spaces [3]. We prove existence and uniqueness of the Cauchy problem (1.1-1.2) in spaces of increasing functions introduced by Kochubei in [14], see Theorem 1. We also associate a Markov processes to equation the fundamental solution (see Theorem 2). These results constitute an extension of the corresponding results in [13], [19]. We want to mention here a relevant comment due to the referee. There exists a procedure, developed in [13] for elliptic equations, of reducing multi-dimensional problemsoverQ toone-dimensionalproblemsoverappropriatefieldextensions. In p particular,theTaiblesonoperatorisconnectedwiththeunramifiedextensionofQ p ofdegreen(seeLemma2.1in[13]). Thefundamentalsolutionscorrespondingtothe multi-dimensional Cauchy problem and the problemover the unramified extension should be obtained from each other, up to a linear change of variables, as in the formula(2.38)of[13]fortheellipticcase. Thenmanypropertiesofthefundamental solution would follow directly from those known in the one-dimensional case. In this paper we use an elementary and independent method that has its obvious advantages. Letusexplaintheconnectionbetweentheresultsofthispaperandthoseof[20]. There are infinitely many homogeneous polynomial functions satisfying d |f(ξ)| = max |ξ | , for any ξ ∈Qn, p i p p 1≤i≤n (cid:18) (cid:19) here d denotes degree of f (c.f. Lemmas 14-15). Hence the pseudo-differential operators considered here are a subclass of the ones considered in [20]. However, the function spaces for the solutions and initial data are completely different. In this paper the initial datum and the solution to Cauchy problem (1.1-1.2) are not necessarily bounded, neither integrable, but in [20] are. Finally, our results can be extended to operators of the form n (Aϕ)(x)=a (x,t)(Dαϕ)(x)+ a (x,t)(Dαkϕ)(x)+b(x,t)ϕ(x), (1.3) 0 T k T k=1 X α > 1, 0 < α < ... < α < α, where the a (x,t) ,and b(x,t) are bounded 1 n k continuousfunctions, usingthe techniques presentedin [13]-[15]. These resultswill appear later elsewhere. Theauthorswishtothanktherefereefortherelevantcommentmentionedabove. p-ADIC PARABOLIC EQUATIONS AND ULTRAMETRIC DIFFUSION 3 2. Preliminary Results As generalreference for p-adic analysis we refer the reader to [17] and [19]. The field of p-adic numbers Q is defined as the completion of the field of rational p numbers Q with respectto the non-Archimedeanp-adic norm|·| which is defined p as follows: |0| = 0; if x ∈ Q×, x = pγa with a, b integers coprime to p, then p b |x| = p−γ. The integer γ = γ(x) is called the p-adic order of x, and it will be p denoted as ord(x). We use the same symbol, |·| , for the p-adic norm on Q . We p p extend the p-adic norm to Qn as follows: p kxk := max |x | , for x=(x ,...,x )∈Qn. p i p 1 n p 1≤i≤n Note that kxk =p−min1≤i≤n{ord(xi)}. p Any p-adic number x6=0 has a unique expansion of the form ∞ x=pγ x pj, j j=0 X where γ = ord(x) ∈ Z, and x ∈ {0,1,...,p−1}. By using the above expansion, j we define the fractional part of x∈Q , denoted as {x} , as the following rational p p number: 0, if x=0, or γ ≥0 |γ|−1 {x} := p  pγ x pj, if γ <0.  j j=0 X Denote by Bn(a) = x∈Qn |kx−ak ≤pγ , the ball of radius pγ with center γ p p at a = (a1,...,an) ∈nQnp, and Bγn(0)= Bγn, γo∈ Z. Note that Bγn(a) = Bγ(a1)× ...×B (a ), where B (a )= x ∈Q ||x −a | ≤pγ is the one-dimensional γ n γ j j p j j p ball of radius pγ with center atnaj ∈ Qp. The Ball B0noequals the product of n copies of B (0)=Z , the ring of p-adic integers. 0 p LetdnxdenotetheHaarmeasureonQn normalizedbythecondition dnx= p Bn 0 1. R A complex-valued function ϕ defined on Qn is called locally constant if for any p x∈Qn there exists an integer l(x)∈Z such that ϕ(x+x′)=ϕ(x), for x′ ∈Bn . p l(x) A function ϕ : Qn → C is called Schwartz-Bruhat function, or test function, if p it is locally constant with compact support. The C-vector space of the Schwartz- Bruhat functions is denoted by S(Qn). If ϕ ∈ S(Qn), there exist an integer l ≥ 0 p p such that ϕ(x+x′) =ϕ(x), for x′ ∈Bn , and x ∈Qn (see e.g. [19, VI.1, Lemma −l p 1]). The largestof such numbers l =l(ϕ) is called the exponent of local constancy of ϕ. Let S′(Qn) denote the set of all functionals (distributions) on S(Qn). All the p p functionals on S(Qn) are continuous (see e.g. [19, VI.3]). p Given ξ = (ξ ,...,ξ ), x = (x ,...,x ) ∈ Qn, we set ξ·x := n ξ x . The 1 n 1 n p i=1 i i Fourier transform of ϕ∈S(Qn) is defined as p P (Fϕ)(ξ)= Ψ(−ξ·x)ϕ(ξ)dnx, ξ ∈Qn, p ZQnp 4 J.J.RODR´IGUEZ-VEGAANDW.A.ZU´N˜IGA-GALINDO where Ψ(−ξ · x) = n Ψ(−ξ x ) = exp 2πi n {−ξ x } . The function i=1 i i i=1 i i p Ψ(αx ) = exp 2πi Qn {αx } is called th(cid:16)e staPndard additive(cid:17)character of Q . j i=1 j p p The Fourier Tr(cid:16)ansform is a linea(cid:17)r isomorphism from S(Qn) onto itself. P p 2.1. The Taibleson Operator. We set 1−pα−n Γ(n)(α):= , α6=0. p 1−p−α This function is called the p-adic Gamma function. The function ||x||α−n k (x)= p , α∈R\{0,n}, x∈Qn, α Γ(n)(α) p p iscalledthe multi-dimensional Riesz Kernel;itdeterminesadistributiononS(Qn) p as follows. If α6=0, n, and ϕ∈S(Qn), then p 1−p−n 1−p−α hk (x),ϕ(x)i= ϕ(0)+ ||x||α−nϕ(x)dnx α 1−pα−n 1−pα−n p Z||x||p>1 1−p−α + ||x||α−n(ϕ(x)−ϕ(0))dnx. (2.1) 1−pα−n p Z||x||p≤1 Thenk ∈S′(Qn),forR\{0,n}. Inthecaseα=0,bypassingtothelimitin(2.1), α p we obtain hk (x),ϕ(x)i:= lim hk (x),ϕ(x)i=ϕ(0), 0 α α→0 i.e., k (x)=δ(x),the Diracdeltafunction, andthereforek ∈S′(Qn),forR\{n}. 0 α p It follows from (2.1) that for α>0, 1−pα hk (x),ϕ(x)i= ||x||−α−n(ϕ(x)−ϕ(0))dnx. (2.2) −α 1−p−α−n p ZQnp Lemma1 ([17,Chap. III,Theorem4.5]). Aselementsof S′(Qn), (Fk )(x)equals p α ||x||−α, α6=n. p Definition 1. The Taibleson pseudo-differential operator Dα, α>0, is defined as T (Dαϕ)(x)=F−1 ||ξ||αF ϕ , for ϕ∈S(Qn). T ξ→x p x→ξ p As a consequence of the previous(cid:0)lemma and(cid:1)(2.2), we have (Dαϕ)(x)=(k ∗ϕ)(x)= T −α 1−pα ||y||−α−n(ϕ(x−y)−ϕ(x))dny. (2.3) 1−p−α−n p ZQnp Theright-handsideof(2.3)makessenseforawiderclassoffunctions,forexample, for locally constant functions ϕ(x) satisfying ||x||−α−n|ϕ(x)|dnx<∞. p Z||x||p≥1 p-ADIC PARABOLIC EQUATIONS AND ULTRAMETRIC DIFFUSION 5 3. The p-adic Heat Equation and the Taibleson Operator In this paper we consider the following Cauchy problem: ∂u(x,t) +a(Dαu)(x,t)=f(x,t), x∈Qn, t∈(0,T], ∂t T p (3.1)  u(x,0)=ϕ(x), wherea>0,α>0and Dα is the Taiblesonoperator. Inthis sectionwe showthat T (3.1) is a multi-dimensional analog of the p-adic heat equation introduced in [19]. 3.1. TheFundamentalSolution. Thefundamentalsolution fortheCauchyprob- lem (3.1) is defined as Z(x,t):= Ψ(x·ξ)e−at||ξ||αp dnξ. (3.2) ZQnp Lemma 2. The fundamental solution has the following properties: 1) Z(x,t)=(1−p−n)||x||−n ∞ q−kne−at(q−k||x||−p1)α −||x||−ne−at(p||x||−p1)α; p k=0 p 2) Z(x,t)= ∞ (−1)m 1−pαm (at)m||x||−αm−n for x6=0; m=1 m! 1−pP−αm−n p 3) Z(x,t)≥0, for all x∈Qn, t∈(0,T]. P p Proof. 1) By expanding Z(x,t) as ∞ Z(x,t)= Ψ(x·ξ)e−at||ξ||αp dnξ, k=−∞Z||ξ||p=pk X and applying pkn(1−p−n), if ||x|| ≤p−k p  Ψ(x·ξ)dnξ = −pknp−n, if kxk =p−k+1 Z||ξ||p=pk  p 0, if ||x|| >p−k+1, p (c.f. Lemma 4.1 in [17, Chap. III]), we obtain ∞ Z(x,t)=(1−p−n)||x||−n p−kne−at(p−k||x||−p1)α −||x||−ne−at(p||x||−p1)α. (3.3) p p k=0 X Note that by the previous expansion Z(x,t) is a real-valued function. 2) By using the Taylor expansion of ex in (3.3), and exchanging the order of summation, and sum the geometric progression,we find that ∞ (−1)m 1−pαm Z(x,t)= (at)m||x||−αm−n, for x6=0. m! 1−p−αm−n p m=1 X 3) LetΩ (x) denote the characteristicfunction of the ballBn (0). ThenFΩ = l −l l p−nlΩ . The last part follows from this observation by means of the following −l 6 J.J.RODR´IGUEZ-VEGAANDW.A.ZU´N˜IGA-GALINDO calculation: ∞ Z(x,t)= e−atplα Ψ(x·ξ)dnξ l=−∞ Z||ξ||p=pl X ∞ = e−atplα(pn(l)Ω (x)−pn(l−1)Ω (x)) −l −l+1 l=−∞ X ∞ = pnl(e−atplα −e−atp(l+1)α)Ω (x)≥0 −l l=−∞ X (cid:3) Lemma 3. Z(x,t)≤Ct(t1/α+||x|| )−α−n, t>0, x∈Qn. (3.4) p p Proof. Let l an integer such that pl−1 ≤t1/α ≤pl. Then Z(x,t)≤ e−at||ξ||αp dnξ ≤ e−apα(l−1)||ξ||αp dnξ = e−a||p−(l−1)ξ||αp dnξ ZQnp ZQnp ZQnp =p−(l−1)n e−a||η||αp dη =C0(α)p−np−ln ≤C1t−n/α. (3.5) ZQnp On the other hand, if ||x|| ≥t1/α, by applying Lemma 2 (2), we have p ∞ Cm Z(x,t)≤||x||−n 2 (t||x||−α)m ≤C t||x||−α−n. (3.6) p m! p 3 p m=1 X The result follows from (3.5-3.6) as follows. If ||x|| ≥t1/α, by (3.6), p Z(x,t)≤C t||x||−α−n ≤2α+nC t(t1/α+||x|| )−α−n. 3 p 3 p If ||x|| <t1/α, by (3.5), p Z(x,t)≤C t−n/α ≤2α+nC t(t1/α+||x|| )−α−n. 1 1 p (cid:3) Inequality (3.4) shows in particular that the function Z(x,t) belongs, with re- spect to x, to L (Qn)∩L (Qn). 1 p 2 p Corollary 1. Z(x,t)dnx=1. (3.7) Z Qn p 3.2. The Spaces M and Pseudo-differentiability of the Fundamental So- λ lution. Definition 2. Denote by M , λ>0, the set of the complex-valued locally constant λ functions ϕ(x) on Qn such that p |ϕ(x)|≤C(ϕ)(1+||x||λ). p Ifthefunctionϕdepends alsoonaparametert,weshallsaythatϕ∈M uniformly λ with respect to t, if its constant C and its exponent of local constancy l(ϕ) do not depend on t. p-ADIC PARABOLIC EQUATIONS AND ULTRAMETRIC DIFFUSION 7 Lemma 4. If ϕ∈M , λ<α, with α as in (3.1), then λ lim Z(x−ξ,t)ϕ(ξ)dnξ =ϕ(x). (3.8) t→0+ZQnp Proof. By Corollary (1) and Lemmas 2 (part 3) and 3 we have Z(x−ξ,t)ϕ(ξ)dnξ−ϕ(x) = Z(x−ξ,t)(ϕ(ξ)−ϕ(x)) dnξ (cid:12)(cid:12)ZQnp (cid:12)(cid:12) (cid:12)(cid:12)ZQnp (cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) ≤ Z(x−ξ,t)|ϕ(ξ)−ϕ(cid:12)(x)|(cid:12)dnξ (cid:12) ZQnp ≤C t(t1/α+||x−ξ|| )−α−n|ϕ(ξ)−ϕ(x)|dnξ :=I(x,t) p ZQnp Let η be the exponent of locally constancy of ϕ. Since ϕ ∈ M , λ < α, we can λ re-write I(x,t) as follows: I(x,t)=C t(t1/α+||ξ−x|| )−α−n|ϕ(ξ)−ϕ(x)|dnξ p Z||ξ−x||p>pη ≤I (x,t)+I (x,t), 1 2 with 1+||ξ||λ I (x,t):=C t p dnξ, 1 1 (t1/α+||x−ξ|| )α+n Z p ||ξ−x||p>pη I (x,t):=Ct|ϕ(x)| (t1/α+||ξ−x|| )−α−ndnξ. 2 p Z ||ξ−x||p>pη Now, since α>0, and t>0, I (x,t)≤C t|ϕ(x)|, 2 2 and since λ<α, ||x−τ||λ I (x,t)≤C t C + p dnξ ≤ 1 1 3 ||τ|| α+n Z||τ||p>pη p ! ||x−τ||λ ||x−τ||λ C t C + p dnξ+ p dnξ = 1 3 Zpη<||τ||ηp≤kxkp ||τ||pα+n Z||τ||p>kxkp ||τ||pα+n ! 1 C t C (x)+ dnξ =C (x)t. 1 4 ||τ|| α−λ+n 5 Z||τ||p>kxkp p ! Therefore lim Z(x−ξ,t)ϕ(ξ)dnξ−ϕ(x) ≤ lim C (x)t=0. 6 t→0+(cid:12)(cid:12)ZQnp (cid:12)(cid:12) t→0+ (cid:12) (cid:12) (cid:3) (cid:12) (cid:12) (cid:12) (cid:12) For further reference we summarize the properties of the fundamental solution in the following proposition. 8 J.J.RODR´IGUEZ-VEGAANDW.A.ZU´N˜IGA-GALINDO Proposition 1. The fundamental solution has the following properties: (1) Z(x,t)≥0, for all x∈Qn, t∈(0,T]. p (2) Z(x,t) dnx=1, for any t>0; Qn p (3) Rif ϕ∈S Qnp , then lim(x,t)→(x0,0) Qnp Z(x−η,t)ϕ(η)dnη =ϕ(x0); (4) Z(x,t+t′)= Z(x−y,t)Z(y,t′)dny, for t, t′ >0. (cid:0) (cid:1) Qn R p Proof. (1),(2),andR(3)arealreadyestablished(c.f. Lemma2-part(3),Corollary1, and Lemma 4). The last assertion is proved as follows: since e−at||ξ||αp ∈L1 Qn , p Z(x−y,t )Z(y,t )dny =F−1(F(Z(y,t )∗Z(y,t ))) (cid:0) (cid:1) 1 2 1 2 ZQnp =F−1 e−at1||ξ||αpe−at2||ξ||αp =Z(x,(cid:16)t +t ). (cid:17) 1 2 (cid:3) Proposition 2. If b>0, 0≤λ<α, and x∈Qn, then p I(b,x)= (b+||x−ξ|| )−α−n||ξ||λdnξ ≤Cb−α 1+||x||λ , p p p ZQnp (cid:0) (cid:1) where the constant C does not depend on b, x. Proof. Let m be an integer such that pm−1 ≤b≤pm. Then (b+||x−ξ|| )−α−n ≤ pm−1+||x−ξ|| −α−n, p p and (cid:0) (cid:1) I(b,x)≤I(pm−1,x)= pm−1| +||x−ξ|| −α−n||ξ||λdnξ p p p ZQnp (cid:0) (cid:1) =p(m−1)(−α−n) 1+||pm−1x−pm−1ξ|| −α−n||ξ||λdnξ p p ZQnp (cid:0) (cid:1) =p(m−1)(λ−α) 1+||pm−1x−η|| −α−n||η||λdnη p p ZQnp (cid:0) (cid:1) =p(m−1)(λ−α)I(1,pm−1x). (3.9) Let pm−1x=y, ||y|| =pl. We have p I(1,y)=I (y)+I (y)+I (y), 1 2 3 where l−1 I (y)= (1+||y−η|| )−α−n||η||λdnη, 1 p p k=−∞Z||η||p=pk X I (y)= (1+||y−η|| )−α−n||η||λdnη, 2 p p Z||η||p=pl ∞ I (y)= (1+||y−η|| )−α−n||η||λdnη. 3 p p k=l+1Z||η||p=pk X The results follows from the following estimations: Claim A. I (y)≤C (1+||y|| )−α−n||y||λ+n; 1 0 p p p-ADIC PARABOLIC EQUATIONS AND ULTRAMETRIC DIFFUSION 9 Claim B. I (y)≤C ||y||λ; 2 1 p Claim C. I (y)≤C . 2 2 Indeed, from the claims we have I(1,y)≤C (1+||y||λ), and by (3.9), 3 p I(b,x)≤C p(m−1)(λ−α)(1+p(1−m)λ||x||λ) 3 p ≤C p−mα(1+||x||λ)≤Cb−α 1+||x||λ . 3 p p (cid:0) (cid:1) We now prove the announced claims. Proof of Claim A. l−1 I (y)= (1+||y−η|| )−α−n||η||λdnη, 1 p p k=−∞Z||η||p=pk X l−1 =(1−p−n)(1+||y|| )−α−n p(λ+n)k p k=−∞ X ≤C (1+||y|| )−α−n||y||λ+n, 0 p p where (1−p−n)p−λ−n C = . 0 1−p−λ−n Proof of Claim B. Let y ∈Q such that |y| =pl =||y|| , then p p p I (y)= (1+||ey−η|| )−α−n||η||λednη 2 p p Z||η||p=pl =||y||λ 1+|y| ||y−1y−y−1η|| −α−n dnη p p p Z||η||p=pl (cid:0) (cid:1) =||y||λ−α ||y|e|−1+e ||u−ηe|| −α−n dnη, with u=y−1y. p p p Z||η||p=1 (cid:0) (cid:1) We set e A ={η ∈Qn |||η|| =1 and ||u−η|| =p−m}, for m∈N, m p p p and for I non-empty subset of {1,2,...,n}, A ={η ∈A ||u −η | =p−m for i∈I and |u −η | <p−m for i∈/ I}, m,I m i i p i i p where u=(u ,...,u ), η =(η ,...,η )∈Qn, with ||η|| =||u|| =1. 1 n 1 n p p p With this notation we have A ⊆ A , m I m,I vol(A )≤(p−m(S1−p−1))|I|(p−m−1)n−|I|, m,I here |I| denotes the cardinality of I, then n n vol(A )≤ (p−m(1−p−1))|I|(p−m−1)n−|I| =p−mn, m |I| |XI|=0(cid:18) (cid:19) 10 J.J.RODR´IGUEZ-VEGAANDW.A.ZU´N˜IGA-GALINDO and ∞ I (y)=||y||λ−α ||y||−1+||u−η|| −α−n dnη 2 p p p m=0ZAm X (cid:0) (cid:1) ∞ ≤||y||λ−α ||y||−1+p−m −α−np−mn p p m=0 X (cid:0) (cid:1) ||y||λ−α ∞ = p ||y||−1+||η|| −α−n dnη 1−p−n p p m=0Z||η||p=p−m X (cid:0) (cid:1) ||y||λ−α = p ||y||−1+||η|| −α−n dnη 1−p−n p p Z||η||p≤1 (cid:0) (cid:1) ≤C′||y||λ−α ||y||−1+||η|| −α−n dnη 1 p p p ZQnp (cid:0) (cid:1) =C′||y||λ−α ||y||−1+||y||−1||yη|| −α−n dnη 1 p p p p ZQnp (cid:0) (cid:1) =C′||y||λ+n (1+||yη|| )−α−n ednη 1 p p ZQnp =C′||y||λ (1+||τ||e)−α−n dτ ≤C ||y||γ. 1 p p 1 p ZQnp Proof of Claim C. ∞ I (y)= (1+||η|| )−α−n||η||λdnη, 3 p p k=l+1Z||η||p=pk X ≤ (1+||η|| )−α−n||η||λdnη =C. p p ZQnp (cid:3) Lemma 5. If α>0, then 1 ||x||α = ||y||−α−n(Ψ(−x·y)−1) dny (3.10) p (n) p Γp (−α)ZQnp for all x∈Qn. p Proof. The proof is a slightly variation of the proof of Proposition 2.3 in [13]. (cid:3) Lemma 6. Let 0<γ ≤α, then (DγZ)(x,t)= Ψ(x·η)||η||γe−at||η||αp dnη. T p ZQnp Proof. By Lemma 2 (2), Z(x−y,t) = Z(x,t), for ||y|| < ||x||. Then we can use (2.3) to calculate(DγZ)(x,t): T 1 (DγZ)(x,t)= ||y||−γ−n(Z(x−y,t)−Z(x,t))dny T Γ(pn)(−γ)ZQnp p 1 = ||y||−γ−n(Z(x−y,t)−Z(x,t))dny. (n) p Γp (−γ)Z||y||p≥||x||p

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.