ebook img

Synthetic Polymer-Polymer Composites PDF

819 Pages·2012·48.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Synthetic Polymer-Polymer Composites

Debes Bhattacharyya Stoyko Fakirov Synthetic Polymer-Polymer Composites Bhattacharyya, Fakirov Synthetic Polymer-Polymer Composites Debes Bhattacharyya Stoyko Fakirov Synthetic Polymer-Polymer Composites Hanser Publishers, Munich Hanser Publications, Cincinnati The Editors: Prof. Dr. Debes Bhattacharyya, The University of Auckland, Department of Mechanical Engineering, Centre for Advanced Composite Materials (CACM), Private Bag 92019, Auckland 1142, New Zealand Prof. Dr., DSc Stoyko Fakirov, The University of Auckland, Centre for Advanced Composite Materials, Private Bag 92019, Auckland 1142, New Zealand Distributed in North and South America by: Hanser Publications 6915 Valley Avenue, Cincinnati, Ohio 45244-3029, USA Fax: (513) 527-8801 Phone: (513) 527-8977 www.hanserpublications.com Distributed in all other countries by Carl Hanser Verlag Postfach 86 04 20, 81631 München, Germany Fax: +49 (89) 98 48 09 www.hanser.de The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Library of Congress Cataloging-in-Publication Data Synthetic Polymer-Polymer Composite / Debes Bhattacharyya, Stoyko Fakirov. p. cm. Includes bibliographical references and indexes. ISBN 978-1-56990-510-4 (hardcover) -- ISBN 1-56990-510-X (hardcover) -- ISBN 978-3-446-42277-3 (hardcover) 1. Polymeric composites. I. Bhattacharyya, D. II. Fakirov, Stoyko. TA418.9.C6S96 2012 547’.7--dc23 2012001955 Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.d-nb.de> abrufbar. ISBN 978-1-56990-510-4 E-Book-ISBN 978-1-56990-525-8 All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or by any information storage and retrieval system, without permission in writing from the publisher. © Carl Hanser Verlag, Munich 2012 Production Management: Steffen Jörg Coverconcept: Marc Müller-Bremer, www.rebranding.de, München Coverdesign: Stephan Rönigk Typeset: Alexi Alexiev Printed and bound by Kösel, Krugzell Printed in Germany Preface The awareness about adverse environmental impacts of synthetic, petroleum-based poly- mers is steadily increasing and has already caused some worldwide concern. What is more, this concern is ascending because of the use of synthetic polymers is increasing rather than decreasing. A good example in this respect is the usage of poly(ethylene terephthalate) (PET) whose production has an annual growth of 10%, mostly due to its excellent prop- erties as packaging material for various products that include pressurized beverages, food articles and medicines. The expected future growth is strongly supported by the fact that a large percentage of food products is often wasted because of bad or lack of packaging. In their efforts to change the situation, many countries, such as China and India, are likely to increase the usage of plastics packaging containers. However, in many countries legislations are introduced to control the amount of plastics used. For example, in the European Union, it will be not allowed after 2015 to use in the cars manufacturing plastics having more than 5 wt% incineration quota*. A decade or so ago, researchers believed that the commonly used polymer composites, comprising about 30% glass fibers, would be replaced by nanocomposites having only 2 to 5 wt% nano-sized materials as reinforcement. Unfortunately, this expectation has turned out to be somewhat elusive and researchers have started to look for alternative ways of replacing the traditional glass fibers with natural, biodegradable materials, mostly with fibrous structure. The potential of this approach has been demonstrated in our book entitled Engineering Biopolymers: Homopolymers, Blends and Composites (Hanser Publica- tion, 2007). In this book we show another approach for replacing glass and other inorganic fibers as reinforcements for polymer composites. This replacement could be again synthetic, petroleum-based polymer but prepared as fibers, micro- or nanofibrils. Of course, this approach is not as advantageous as using natural fibers that are biodegradable and eco- friendly. At the same time, the synthetic polymer-polymer composites seem to be much more acceptable from the environmental point of view because they, being organic in * A. Bismarck et al., Plant fibres as reinforcement for green composites, in Natural Fibres, Biopolymers, and Biocomposites (Eds. A. Mohanty, M. Misra and L. T. Drzal) CRC/Taylor & Francis, 2005, pp. 37–108. nature, are prone to incineration process. In addition to their environmental advantages, compared to the polymer composites with mineral reinforcements with high weight/volume fractions, they are likely to possess much better specific mechanical properties. This positive attribute allows them to be used to manufacture lightweight products and structures, a fact that has particular importance in the transportation and packaging industries. This book is an attempt to collate information from a group internationally known researchers and demonstrate the state-of-the-art applications of synthetic, but organic in nature, materials as carbon fibers, carbon nanotubes, synthetic polymers in the forms of fibers, and micro-/nanofibrils as replacements of mineral reinforcements. We would like to thank all the contributors for their willingness to participate in this exercise and being patient during the compilation work. The editors also wish to thank the Centre for Advanced Composite Materials, University of Auckland for providing a range of facilities and the Ministry of Science and Innovation, New Zealand for financially supporting Dr. Fakirov. D. Bhattacharyya S. Fakirov Auckland, November 2011 Contents PART I INTRODUCTION Chapter 1 Manufacturing and Processing of Polymer Composites J. Schuster, M. Duhovic, D. Bhattacharyya 1.1. Introduction........................................................................................................... 3 1.2. Autoclave-processing.............................................................................................. 5 1.2.1. Introduction.................................................................................................... 5 1.2.2. Equipment...................................................................................................... 5 1.2.3. Laminate assembly......................................................................................... 5 1.2.4. Process description......................................................................................... 6 1.2.5. Further developments..................................................................................... 7 1.3. Pultrusion.............................................................................................................. 7 1.3.1. Introduction.................................................................................................... 7 1.3.2. Equipment...................................................................................................... 7 1.3.3. Process description......................................................................................... 8 1.4. Filament winding and placement techniques........................................................10 1.4.1. Filament winding...........................................................................................10 1.4.2. Tape-laying....................................................................................................15 1.5. Liquid composite molding.....................................................................................18 1.5.1. Introduction...................................................................................................18 1.5.2. LCM processes with single sided tools..........................................................19 1.5.3. Double sided tool LCM processes..................................................................23 1.6. Thermoforming of semifinished thermoplastic composite sheets..........................26 1.6.1. Double belt press forming .............................................................................26 1.6.2. Continuous compression molding..................................................................26 1.6.3. Roll forming...................................................................................................27 1.7. Combined forming processes.................................................................................29 1.7.1. Thermoforming and injection/compression molding.....................................29 1.7.2. Pultrusion/impregnation and roll forming....................................................29 1.8. Post processing of composites...............................................................................30 1.8.1. Welding of thermoplastics.............................................................................31 1.9. Conclusions and outlook.......................................................................................32 References: ....................................................................................................................32 viii Contents Chapter 2 Melting of Polymer-Polymer Composites by Particulate Heating Promoters and Electromagnetic Radiation T. Bayerl, A. Benedito Borrás, J.-I. Andrés Gallego, B. Galindo Galiana, P. Mitschang 2.1. Introduction..........................................................................................................39 2.2. State of the art .....................................................................................................40 2.2.1. Induction heating ..........................................................................................41 2.2.2. Microwave heating.........................................................................................43 2.3. Selective melting using particulate fillers .............................................................48 2.3.1. Selective melting by induction.......................................................................49 2.4. Selective melting by microwave radiation.............................................................57 2.4.1. Effect of different susceptor materials...........................................................57 2.4.2. Influence of dispersion quality.......................................................................60 2.5. Concepts for an industrial application..................................................................61 2.6. Conclusions and outlook.......................................................................................62 Acknowledgements ........................................................................................................63 References .....................................................................................................................63 Further Reading............................................................................................................64 Chapter 3 Inter-Particle Distance and Toughening Mechanisms in Particulate Thermosetting Composites H. S. Kim 3.1. Introduction..........................................................................................................65 3.2. Various conditions for fracture surface morphology.............................................66 3.3. Inter-particle/void distance and toughening mechanism......................................67 3.3.1. Theoretical inter-particle distance.................................................................68 3.3.2. Method for inter-particle distance measurement...........................................69 3.3.3. Statistical properties of inter-particle distance..............................................74 3.3.4. Experimental inter-void distance and toughness...........................................81 3.4. Toughening mechanisms in the presence of compressive stress around particles/voids ..........................................................................................89 3.4.1. Necessary conditions for cavitation...............................................................89 3.4.2. Graphical understanding of compressive stress around particles..................90 3.4.3. Creating compressive stress around modifier particles as a toughening method ................................................................................91 Contents ix 3.4.4. Production of mechanical testing specimens.................................................92 3.4.5. Mechanical properties of toughened epoxies .................................................93 3.4.6. Fracture surface morphology examination ....................................................93 3.4.7. Stress intensity factor influenced by compressive residual stress..................97 3.4.8. Mohr circle analysis for fracture surface morphology..................................100 3.4.9. Interaction of toughening mechanisms........................................................106 3.5. Conclusions.........................................................................................................111 References ...................................................................................................................112 PART II POLYMER-POLYMER COMPOSITES WITH PREMADE FIBROUS REINFORCEMENT Chapter 4 Fracture Behavior of Short Carbon Fiber Reinforced Polymer Composites S. P. Bao, G. D. Liang, S. C. Tjong 4.1. Introduction........................................................................................................119 4.2. Deformation of SCF-reinforced composites ........................................................120 4.2.1. Carbon fiber-polymer matrix interface........................................................120 4.2.2. Fiber length.................................................................................................124 4.2.3. Matrix microstructure.................................................................................126 4.2.4. Fiber orientation..........................................................................................128 4.3. Fiber hybridization.............................................................................................130 4.4. Fracture toughness of SCF-reinforced composites..............................................132 4.5. Fatigue failure.....................................................................................................138 4.6. Conclusions and outlook.....................................................................................141 References ...................................................................................................................141 Chapter 5 Polymer-Carbon Nanotube Composites: Melt Processing, Properties and Applications S. Pegel, T. Villmow. G. Kasaliwal, P. Pötschke 5.1. Introduction........................................................................................................145 5.2. Microscopy based characterization of dispersion, distribution, and alignment of nanotubes in polymer matrices...............................................148 5.2.1. Light microscopy .........................................................................................148 5.2.2. Transmission electron microscopy ...............................................................149

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.