ebook img

Swimming Anatomy PDF

343 Pages·2009·11.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Swimming Anatomy

Table of Contents Title Page Copyright Page CHAPTER 1 - THE SWIMMER IN MOTION Freestyle Butterfly Backstroke Breaststroke Dryland Training Programs Dryland Training for Young Swimmers CHAPTER 2 - ARMS Standing Double-Arm Triceps Pushdown Dumbbell Kickback Close-Grip Push-Up Close-Grip Bench Press Medicine Ball Chest Pass Tate Press Barbell Biceps Curl Dumbbell Biceps Curl Concentration Curl CHAPTER 3 - SHOULDERS Forward Dumbbell Deltoid Raise Lateral Dumbbell Deltoid Raise T Exercise Dumbbell Shoulder Press Bent-Over Reverse Dumbbell Fly Prone T, Y, A (Blackburn) Scapular Push-Up Scapular Dip Internal Rotation With Tubing External Rotation With Tubing Crabwalk Overhead Single-Arm Bounce CHAPTER 4 - CHEST Push-Up Feet-Elevated Push-Up Medicine Ball Push-Up Barbell Flat Bench Press Dumbbell Physioball Bench Press Barbell Incline Bench Press Dip (Chest Version) Standing Double-Arm Medicine Ball Throw Down Supine Medicine Ball Partner Pass and Catch Wheelbarrow CHAPTER 5 - ABDOMEN Hollow Hold Watch TV V-Up Flutter Kicks Physioball Crunch Cable Crunch Seated Physioball Abdominal Hold Russian Twist Kneeling Chop Physioball Prayer Roll Physioball Upper-Trunk Rotation Physioball Jackknife CHAPTER 6 - BACK Chin-Up Pull-Up Lat Pull-Down Standing Straight-Arm Pull-Down Double-Arm Seated Machine Row Bent-Over Single-Arm Row Standing Zeus Lumbar Extension Physioball Back Extension Physioball Prone Superman Progression Physioball Prone Streamline Physioball Bridge CHAPTER 7 - LEGS Back Squat Single-Leg Squat Dumbbell Step-Up Lunge Standing Hip Internal Rotation Standing Hip External Rotation Romanian Deadlifts (RDLs) Physioball Hamstring Curl Leg Curl Leg Extension Band Lateral Shuffle Standing Hip Adduction Inversion and Eversion Ankle Band Strengthening CHAPTER 8 - WHOLE-BODY TRAINING Single-Arm Lawn Mower Burpee Block Jump Start Into Streamlined Position Band-Resisted Start Box Jump Diagonal Cable Column Lift EXERCISE FINDER ABOUT THE AUTHOR Library of Congress Cataloging-in-Publication Data McLeod, Ian. Swimming anatomy / Ian McLeod. p. cm. ISBN-13: 978-0-7360-7571-8 (soft cover) ISBN-10: 978-0-736-09385-9 (soft cover) 1. Swimming--Training. 2. Swimming--Physiological aspects. 3. Aquatic sports injuries. I. Title. GV837.7.M37 2010 797.2’1--dc22 2009016094 ISBN-10: 978-0-736-09385-9 (print) ISBN-10: 0-7360-8627-7 (Adobe PDF) ISBN-13: 978-0-7360-7571-8 (print) ISBN-13: 978-0-7360-8627-1 (Adobe PDF) Copyright © 2010 by Ian A. McLeod All rights reserved. Except for use in a review, the reproduction or utilization of this work in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including xerography, photocopying, and recording, and in any information storage and retrieval system, is forbidden without the written permission of the publisher. This publication is written and published to provide accurate and authoritative information relevant to the subject matter presented. It is published and sold with the understanding that the author and publisher are not engaged in rendering legal, medical, or other professional services by reason of their authorship or publication of this work. If medical or other expert assistance is required, the services of a competent professional person should be sought. Acquisitions Editor:Tom Heine; Developmental Editor:Leigh Keylock; Assistant Editor:Laura Podeschi; Copyeditor:Bob Replinger; Permission Manager:Martha Gullo; Graphic Designer:Fred Starbird; Graphic Artist: Tara Welsch; Cover Designer: Keith Blomberg; Photographer (for illustration references): Neil Bernstein; Photo Asset Manager:Laura Fitch; Visual Production Assistant:Joyce Brumfield; Art Manager:Kelly Hendren; Associate Art Manager:Alan L. Wilborn; Illustrator (cover):Jennifer Gibas; Illustrators (interior):Jennifer Gibas and Becky Oles; Printer:United Graphics Human Kinetics books are available at special discounts for bulk purchase. Special editions or book excerpts can also be created to specification. For details, contact the Special Sales Manager at Human Kinetics. Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 The paper in this book is certified under a sustainable forestry program. Human Kinetics Web site: www.HumanKinetics.com United States:Human Kinetics P.O. Box 5076 Champaign, IL 61825-5076 800-747-4457 e-mail: [email protected] Canada:Human Kinetics 475 Devonshire Road Unit 100 Windsor, ON N8Y 2L5 800-465-7301 (in Canada only) e-mail: [email protected] Europe:Human Kinetics 107 Bradford Road Stanningley Leeds LS28 6AT, United Kingdom +44 (0) 113 255 5665 e-mail: [email protected] Australia:Human Kinetics 57A Price Avenue Lower Mitcham, South Australia 5062 08 8372 0999 e-mail: [email protected] New Zealand:Human Kinetics Division of Sports Distributors NZ Ltd. P.O. Box 300 226 Albany North Shore City Auckland 0064 9 448 1207 e-mail: [email protected] E4563 CHAPTER 1 THE SWIMMER IN MOTION Swimming Anatomy is both a visual guide to the role of the musculoskeletal system in the four competitive swim strokes and a catalog of swimming- oriented dryland and weight-room exercises. The exercises in the text will help you maximize your performance and gain a competitive edge. Specific examples will help you choose exercises that target the most-used muscles for each stroke, starts, and turns to ensure that you are getting the best results from your program. Included are exercises that may help you prevent injuries by strengthening key stabilizing muscles and decreasing muscle imbalances. To help you understand how these exercises enhance performance, descriptions of the roles that various muscles play in propelling a swimmer through the water and guidance in using selected exercises to target those muscles are included. This chapter features an overview of the primary muscles used in the kicking motions and during the pull-through and recovery phases of freestyle, butterfly, backstroke, and breaststroke. The chapter also addresses some strength and conditioning principles and how they relate to designing a swimming-specific dryland program. Chapters 2 through 8, organized according to major body parts, each contain exercises with accompanying illustrations and easy-to-follow descriptions and instructions. The anatomical illustrations that accompany the exercises are color-coded to indicate the primary and secondary muscles and connective tissues featured in each exercise and swimming-specific movement. Primary muscles Secondary muscles Connective tissues Swimmers face several unique challenges that athletes in most land-based sports do not encounter. The first challenge is the total-body nature of all four competitive strokes, which involve movements of both the upper and lower extremities. A coordinated effort of the musculoskeletal system is required to keep each body part moving correctly to maximize efficiency of movement through the water. To visualize this coordinated effort, think of the body as a long chain and each body segment as a link in the chain. Because all the segments are linked together, movement in one segment affects all the other segments. This linkage, commonly referred to as the kinetic chain, allows the power generated by the arms to be transferred through the torso to the legs. But if a link in the chain is weak, a loss of power transfer can occur, bodily movements can become uncoordinated, and the risk of injury can increase. Another unique demand of swimming is that swimmers are required to create their own base of support. Unlike land-based athletes, who have a stable surface to push off from, you have to generate your own base of support, because most training takes place in a fluid environment. The key to linking the movement of the upper and lower extremities in the water, and at the same time generating a firm base of support, is a strong and stable core. The core is best thought of as the foundation on which the muscles of the upper and lower body are built. Even a strong and well-designed house will eventually deteriorate if the foundation is weak. Without a doubt, swimming itself is the most effective way to become a better and faster swimmer, but several components outside the water play an important role in how you develop as a swimmer. One of those is a well-designed dryland program based on an appreciation of the relationship between the body’s muscular framework and stroke mechanics. While engaged in swimming, muscles primarily function as either the mover of a body segment or a stabilizer of a body segment. An example of a muscle functioning as a mover is the latissimus dorsi, commonly known as the lats, moving the arm through the water during the propulsive phase of all four competitive strokes. The near-constant activity of the core abdominal musculature is a prime example of a group of muscles functioning as a stabilizing mechanism. Both functions are vital to proper stroke mechanics and efficient movement through the water. Descriptions of the muscle recruitment patterns for each of the four strokes are categorized as those that are active during the propulsive phase, the recovery phase, and kicking. Throughout the exercise descriptions in the subsequent chapters you will see a series of five icons, one for each of the strokes and one for starts and turns. The purpose of these icons is to identify the exercises that are particularly well suited to a specific stroke or starts and turns. Freestyle As the hand enters into the water, the wrist and elbow follow and the arm is extended to the starting position of the propulsive phase. Upward rotation of the shoulder blade allows the swimmer to reach an elongated position in the water. From this elongated position, the first part of the propulsive phase begins with the catch. The initial movements are first generated by the clavicular portion of the pectoralis major. The latissimus dorsi quickly joins in to assist the pectoralis major. These two muscles generate a majority of the force during the underwater pull, mostly during the second half of the pull. The wrist flexors act to hold the wrist in a position of slight flexion for the entire duration of the propulsive phase. At the elbow, the elbow flexors (biceps brachii and brachialis) begin to contract at the start of the catch phase, gradually taking the elbow from full extension into approximately 30 degrees of flexion. During the final portion of the propulsive phase the triceps brachii acts to extend the elbow, which brings the hand backward and upward toward the surface of the water, thus ending the propulsive phase. The total amount of extension taking place depends on your specific stroke mechanics and the point at which you initiate your recovery. The deltoid and rotator cuff (supraspinatus, infraspinatus, teres minor, and subscapularis) are the primary muscles active during the recovery phase, functioning to bring the arm and hand out of the water near the hips and return them to an overhead position for reentry into the water. The arm movements during freestyle are reciprocal in nature, meaning that while one arm is engaged in propulsion, the other is in the recovery process. Several muscle groups function as stabilizers during both the propulsive phase and the recovery phase. One of the key groups is the shoulder blade stabilizers (pectoralis minor, rhomboid, levator scapula, middle and lower trapezius, and the serratus anterior), which as the name implies serve to anchor or stabilize the shoulder blade. Proper functioning of this muscle group is important because all the propulsive forces generated by the arm and hand rely on the scapula’s having a firm base of support. Additionally, the shoulder blade stabilizers work with the deltoid and rotator cuff to reposition the arm during the recovery phase. The core stabilizers (transversus abdominis, rectus abdominis, internal oblique, external oblique, and erector spinae) are also integral to efficient stroke mechanics because they serve as a link between the movements of the upper and lower extremities. This link is central to coordination of the body roll that takes place during freestyle swimming. Like the arm movements, the kicking movements can be categorized as a propulsive phase and a recovery phase; these are also referred to as the downbeat and the upbeat. The propulsive phase (downbeat) begins at the hips by activation of the iliopsoas and rectus femoris muscles. The rectus femoris also initiates extension of the knee, which follows shortly after hip flexion begins. The quadriceps (vastus lateralis, vastus intermedius, and vastus medialis) join the rectus femoris to help generate more forceful extension of the knee. Like the propulsive phase, the recovery phase starts at the hips with contraction of the gluteal muscles (primarily gluteus maximus and medius) and is quickly followed by contraction of the hamstrings (biceps femoris, semitendinosus, and semimembranosus). Both muscle groups function as hip extensors. Throughout the entire kicking motion the foot is maintained in a plantarflexed position secondary to activation of the gastrocnemius and soleus and pressure exerted by the water during the downbeat portion of the kick. Butterfly The primary difference between freestyle and butterfly is that the arms move in unison during butterfly whereas reciprocal movements take place with freestyle. Because butterfly and freestyle have the same underwater pull pattern, the muscle recruitment patterns are almost identical. As with freestyle, the swimmer’s arms in butterfly are in an elongated position when they initiate the propulsive underwater portion of the stroke. Muscles active during the entire propulsive phase are the pectoralis major and latissimus dorsi, which function as the primary movers, and the wrist flexors, which act to maintain the wrist in a neutral to slightly flexed position. The biceps brachii and brachialis are active as the elbow moves from being fully extended at the initiation of the catch to approximately 40 degrees of flexion during the midpart of the pull. Unlike in freestyle, a forceful extension of the elbow is emphasized during the final portion of the pull, resulting in greater demands being placed on the triceps brachii. As in the freestyle stroke, both the rotator cuff and deltoid are responsible for moving the arm during the recovery phase, but the mechanics are somewhat different. Butterfly lacks the body roll that aids the recovery process during freestyle; instead, an undulating movement of the torso occurs, which brings the entire upper torso out of the water to aid in the recovery process. Again, the shoulder blade stabilizing muscles are extremely important, because they function to provide a firm anchor point for the propulsive forces generated by the arms and help reposition the arms during the recovery phase of the stroke. Although butterfly lacks the body roll present in freestyle, the core stabilizers are still important in linking the movements of the upper and lower extremities and have an important role in creating the undulating motion that allows the swimmer to get the upper torso and arms out of the water during the recovery process. The undulating movement is initiated with contraction of the paraspinal muscles that run in multiple groups from the lower portion of the back to the base of the skull. This contraction results in an arching of the back, at which time the arms are moving through the recovery process. Contraction of the abdominal muscles quickly follows, which prepares the upper body to follow the entry of the hands into the water to initiate the propulsive phase of the stroke. As with the arms, the muscles used in generating the kicking movements during the butterfly kick are identical to those used during the freestyle kick; the only difference in kick mechanics is that the legs move in unison. The propulsive downbeat begins with contraction of the iliopsoas and rectus femoris, acting as hip flexors. The rectus femoris also initiates knee extension, and associated firing of the quadriceps muscle group further aids in extension of the knee. The gluteal muscle group drives the recovery phase of the kick. Concomitant contraction of the hamstring muscles also works to extend the hip. The foot is maintained in a plantarflexed position through a combination of the resistance from the water and activation of the gastrocnemius and soleus, acting as plantarflexors. The dolphin kick that is used at the start of the race and off each turn wall recruits a larger group of muscles than the smaller, more isolated kick tied into the arm movements. Besides the movements generated at the hips and knee, the dolphin kick ties in the undulating movements of the torso through activation of the core stabilizers and the paraspinal musculature. Backstroke Although backstroke is unique in body positioning among the competitive strokes, the stroke phases can still be divided into a propulsive phase that consists of hand entry into the water, a catch component, a finishing component, and a recovery phase. Rotation at the shoulder puts the hands in a position in which the little finger is the first to enter the water. Combined with extension of the elbow, the swimmer is in an elongated position to begin the underwater propulsion phase of the stroke. A difference between backstroke and freestyle or butterfly is that the initial catch component is dominated by the latissimus dorsi. The pectoralis major makes a smaller contribution. Despite these differences the latissimus dorsi and the pectoralis major are still the prime movers and are active to some degree throughout the entire propulsive phase. Although the wrist flexors are still an integral part of the entire propulsion phase, the wrist is maintained in a neutral to slightly extended position. Through a combination of pressure forces from the water and activation of the biceps brachii and brachialis, the elbow transitions into approximately 45 degrees of flexion at the start of the catch. By the end of the catch the elbow may be flexed as much as 90 degrees just before transitioning into the finishing component. As with the finishing component in butterfly, more emphasis is placed on forceful extension of the elbow, placing high demand on the triceps brachii during the final portion of the propulsive phase. The role of the stabilizing musculature during backstroke is similar to the role that it plays in freestyle, largely because of the similar reciprocal arm movement and the integration of body roll into both strokes. The kicking motion seen in backstroke is a combination of movements that we have seen in freestyle and butterfly kicking mechanics. Like freestyle, backstroke uses reciprocal kicking movements. The major difference is that the position of the swimmer causes most of the force to be generated during the upbeat portion of the kick as opposed to the downbeat in freestyle. Backstroke also uses the dolphin kick off the start of a race and off each wall. The muscle recruitment patterns are the same in each case; the only change is in the direction because of the swimmer’s body position.

Description:
See how to achieve stronger starts, more explosive turns, and faster times! Swimming Anatomy will show you how to improve your performance by increasing muscle strength and optimizing the efficiency of every stroke. Swimming Anatomy includes 74 of the most effective swimming exercises, each with ste
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.