Survey on the Possibilities of Utilizing Metal Additive Manufacturing at an Industrial Company Jasperi Kuikka Bachelor’s thesis May 2018 Technology Degree Programme in Mechanical and Production Engineering (UAS) Description Author(s) Type of publication Date Kuikka, Jasperi Bachelor’s thesis May 2018 Language of publication: English Number of pages Permission for web publi- 97 cation: Yes Title of publication Survey on the Possibilities of Utilizing Metal Additive Manufacturing at an Industrial Company Degree programme Degree programme in Mechanical and Production Engineering Supervisor(s) Matilainen, Jorma & Parviainen, Miikka Assigned by Valmet Technologies Ltd Abstract The assignment for the bachelors’ thesis was given by Valmet Jyväskylä. The topic was to survey the possibility of utilizing metal additive manufacturing at the company. The goal was to find potential applications, evaluate the manufacturing costs and define the factors that need to be considered when designing metal additive manufacturing. Surveying the applications started with studying the theoretical background. Based on this a presentation of the possibilities and the limitations of metal Additive Manufacturing (AM) was presented to several groups to give Valmet personnel a basic understanding of metal AM. A questionnaire was used to collect ideas. Additional ideas were produced through observations and interviews. They were grouped, and the suitability of the candi- dates was evaluated using a weighted criteria evaluation chart. Two potential ideas were selected for an experimental study to prove the benefits of AM. Requirement lists, simula- tion software and professionals in the industry were used to support the design. The results included a list of potential applications and a calculation tool, which were used in three different scenarios. Both experimental study parts benefitted from AM and the functionality improved without increasing the costs of the manufacturing to an unreasona- ble level. Based on the results, a proposal of the aspects to be further developed was made. Based on the results, investing in a metal AM machine could not be justified even though there were many suitable applications. Metal additive manufacturing offered possibilities that traditional manufacturing methods were not able to and therefore the development work should be continued in co-operation with the service providers. Keywords/tags (subjects) 3D printing, metal 3D printing, metal additive manufacturing, designing for additive manu- facturing, evaluation tool, surveying ideas, manufacturing cost calculation Miscellaneous (Confidential information) Appendices 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 are confidential and they have been removed from the public thesis. Grounds for secrecy: Publicity law 621/1999 24§, 17, Business or professional secret. The period of secrecy is five years and it ends 22.5.2023. Kuvailulehti Tekijä(t) Julkaisun laji Päivämäärä Kuikka, Jasperi Opinnäytetyö, AMK Toukokuu 2018 Julkaisun kieli Englanti Sivumäärä Verkkojulkaisulupa 97 myönnetty: Kyllä Työn nimi Metallin ainetta lisäävien menetelmien hyödynnettävyyden kartoitus teollisuusyrityksessä Tutkinto-ohjelma Kone- ja Tuotantotekniikka Työn ohjaaja(t) Jorma Matilainen & Miikka Parviainen Toimeksiantaja(t) Valmet Technologies Oy Tiivistelmä Opinnäytetyön toimeksianto tuli Valmetin Jyväskylän toimipisteestä. Aiheena oli kartoittaa metallin Ainetta lisäävien Menetelmien hyödynnettävyys (AM) Rautpohjan toiminnoissa. Ta- voitteena oli löytää sopivia käyttökohteita, arvioida valmistuskustannuksia ja löytää suunnit- teluun vaikuttavat tekijät suunniteltaessa ainetta lisääville menetelmille. Käyttökohteiden kartoitus aloitettiin perehtymällä teoriataustaan. Sen pohjalta valmisteltiin esitys metallin AM mahdollisuuksista ja rajoitteista, joka pidettiin useille ryhmille, jotta työn- tekijät osasivat arvioida tuotteiden sopivuutta omatoimisesti. Ideoiden kerääminen toteutet- tiin pääasiassa sähköisellä kyselylomakkeella, mutta lisää ideoita tuotettiin havainnoimalla ja haastattelemalla henkilöstöä. Ideat ryhmiteltiin ja soveltuvuuden arviointi toteutettiin arvo- taulukolla. Potentiaalisimmista ideoista valittiin kaksi tapaustutkimukseen, jolla pyrittiin osoittamaan AM:n hyötyjä. Suunnittelun tukena käytettiin vaatimuslistaa, simulointiohjelmia ja alan ammattilaisia. Tuloksena syntyi lista sopivista käyttökohteista ja kustannuslaskelma valmistuskustannuk- sista kolmessa eri tapauksessa. Molempiin tapaustutkimuksen kohteisiin saatiin tuotettua lisäarvoa suunnittelemalla ne valmistettavaksi AM menetelmillä ilman, että kustannukset nousivat kohtuuttomiksi. Lopuksi tehtiin perusteltu ehdotus jatkotoimenpiteistä. Työn perusteella ei voitu ehdottaa investointia metallitulostimeen, vaikka sopivia käyttökoh- teita löytyi runsaasti. Kuitenkin, metallin ainetta lisäävät menetelmät tarjoavat mahdolli- suuksia, joita muut valmistusmenetelmät ei tarjoa ja siksi kehitystyötä tulisi jatkaa yhteis- työssä alan toimijoiden kanssa. Avainsanat (asiasanat) Ainetta lisäävä valmistaminen, 3D tulostus, metallin 3D tulostaminen, suunnittelu ainetta li- sääville menetelmille, arviointityökalu, ideoiden kartoitus, valmistuskustannuslaskenta Muut tiedot (salassa pidettävät liitteet) Opinnäytetyön liitteet 2, 3, 4, 5, 6, 7, 8, 9, 10 ja 11 ovat salassa pidettäviä ja piilotettu julkisesta versiosta. Salassa- pidon perusteena on Julkisuuslain 621/1999 24§, kohta 17, mukainen yrityksen liike- tai ammattisalaisuus. Salas- sapitoaika viisi (5) vuotta. 1 Contents 1 Introduction ................................................................................................... 6 1.1 Subject ......................................................................................................... 6 1.2 Company ...................................................................................................... 7 1.3 Topic ............................................................................................................ 7 1.4 Earlier studies .............................................................................................. 8 1.5 Survey of current state ................................................................................ 9 1.6 General strategy ........................................................................................ 11 2 Research methods ........................................................................................ 12 2.1 Action research .......................................................................................... 13 2.2 Gathering data ........................................................................................... 14 2.3 Reliability factors ....................................................................................... 14 2.3.1 Quantitative and qualitative reliability factors .................................... 15 2.3.2 Triangulation ......................................................................................... 15 3 Additive manufacturing ................................................................................ 16 3.1 Examples of current use in industrial manufacturing ............................... 17 3.2 Process categories ..................................................................................... 17 3.2.1 Binder jetting ........................................................................................ 18 3.2.2 Powder bed fusion ................................................................................ 19 3.2.3 Material Jetting (MJ) ............................................................................. 20 3.2.4 Direct energy depostition ..................................................................... 21 3.2.5 Bound metal deposition ....................................................................... 22 3.3 Post-processing ......................................................................................... 23 3.3.1 Powder removal ................................................................................... 24 3.3.2 Support material removal..................................................................... 24 3.3.3 Shot peening ......................................................................................... 25 2 3.3.4 Abrasive Flow Method (AFM) ............................................................... 26 3.4 Available materials .................................................................................... 27 3.5 Material behavior under load of SLM produced parts .............................. 28 3.6 Development of costs ................................................................................ 30 3.7 The future of AM ....................................................................................... 31 4 Design for Additive Manufacturing (DFAM) ................................................... 33 4.1 Self-supportive geometries ....................................................................... 33 4.2 Part orientation ......................................................................................... 34 4.3 Deformations ............................................................................................. 36 5 Determination of costs ................................................................................. 37 5.1 Cost models ............................................................................................... 37 5.2 Direct and indirect costs ............................................................................ 40 5.3 Sub-contractor scenario ............................................................................ 41 6 Survey of potential use ................................................................................. 41 6.1 Internet inquiry ......................................................................................... 42 6.2 Target group .............................................................................................. 43 6.3 Limiting the potential applications ............................................................ 43 6.4 Final trade-off ............................................................................................ 45 7 Experimental study ....................................................................................... 46 7.1 Case 1: Flow manifold ............................................................................... 47 7.2 Designing process: Flow manifold ............................................................. 48 7.3 Case 2: Tail blower..................................................................................... 50 7.3.1 Designing process ................................................................................. 50 7.3.2 Manufacturing the prototype ............................................................... 55 7.4 Evaluating the entire concepts .................................................................. 56 3 8 Results ......................................................................................................... 57 8.1 The most potential applications ................................................................ 57 8.2 Investment profitability review ................................................................. 58 8.3 Factors to consider in DFAM ..................................................................... 61 8.4 Conclusions ................................................................................................ 64 8.5 Further development proposal ................................................................. 65 9 Discussion .................................................................................................... 66 References ........................................................................................................... 68 Appendices .......................................................................................................... 72 Appendix 1. The internet questionnaire used to idea screening process ....... 72 Appendix 2. Results from internet questionnaire ........................................... 77 Appendix 3. Idea evaluation criterias and results ............................................ 83 Appendix 4. Cost evaluation tool ..................................................................... 86 Appendix 5. Requirements list for Tail blower ................................................ 90 Appendix 6. Requirements list for flow manifold ............................................ 91 Appendix 7. The first desing of flow manifold ................................................. 92 Appendix 8. Final desing of the flow manifold ................................................ 93 Appendix 9. Flow manifold simulation results ................................................. 94 Appendix 10. Nozzle-manifold pipe self-locking geometry ............................. 96 Appendix 11. Tail blower simulation results .................................................... 97 4 Figures Figure 1. Manufacturing of refiner segments with traditional methods ..................... 10 Figure 2. General strategy of the work (Lindemann & others 2014, 938 modified) ... 12 Figure 3. The main research problem and related entities.......................................... 14 Figure 4. Metal additive manufacturing technologies and examples of machine suppliers (Redwood N.d. Modified) ............................................................................. 18 Figure 5. Schematic of a Binder Jetting 3D printer (Varotis N.d.) ................................ 19 Figure 6. The main operating principle of Direct Metal Laser Sintering (Direct Metal Laser Sintering. N.d.) .................................................................................................... 20 Figure 7. Basic principle of NanoParticle Jetting (High Level Processes: Material Jetting N.d.) .................................................................................................................. 21 Figure 8. Directed energy deposition process based on wire feeder system and laser (Advantages of Wire AM vs. Powder AM. N.d.) ........................................................... 22 Figure 9. Support structure with teeth interface ......................................................... 24 Figure 10. Parts processed with different shot peening materials .............................. 25 Figure 11. Metal part before and after shot peening (Nonabrasive Cleaning N.d.) .... 26 Figure 12. AFM material removal mechanism (Kumar & Hiremath 2016, 1298) ........ 27 Figure 13. Tested AlSi10Mg rods in different build directions (Brandl and others 2011) ...................................................................................................................................... 29 Figure 14. SLM building direction effect to crack behavior ......................................... 30 Figure 15. Engine nozzle in as build state with complicated geometry produced by Matsuura hybrid machine ............................................................................................ 32 Figure 16. Self-supporting geometries for overhanging and holes ............................. 34 Figure 17. Surface roughness of down-facing surfaces (Southway 2017) ................... 35 Figure 18. Illustration of surfaces and down-facing surface with convex shape (Thomas 2009, 163, modified) ..................................................................................... 35 Figure 19. Section view of part orientation effect to support material usage (blue=part, grey=support material) ............................................................................. 36 Figure 20. Shadowgraph pictures of minimum gap thicknesses with cylindrical and cuboid pillars produced with SLM process (Thomas 2009, 93) ................................... 37 Figure 21. Cost model (Ruffo & others 2006) .............................................................. 39 5 Figure 22. Direct and indirect costs in machine purchase and leasing contract situtations ..................................................................................................................... 40 Figure 23. Companies used to have the pricing information ....................................... 41 Figure 24. Likeness model of concerned flow manifold .............................................. 48 Figure 25. The first design of flat pattern air nozzle .................................................... 51 Figure 26. Basic idea of V notched spherical outlet causing water to spread along X- axis ................................................................................................................................ 52 Figure 27. General idea of the third design of flat fan nozzle ...................................... 53 Figure 28. Final design of flat fan nozzle ...................................................................... 54 Figure 29. Produced plastic prototypes of flat fan nozzle ........................................... 55 Figure 30. Bronze flat fan nozzle produced with EOS M400 SLM machine ................. 56 Figure 31. Machine hour cost distribution in estimated investment scenarios .......... 59 Figure 32. Manufacturing costs of flat fan nozzle ........................................................ 60 Figure 33. Manufacturing costs of flow manifold ........................................................ 60 Figure 34. Total lifetime cost in three different scenarios ........................................... 61 Figure 35. DFAM process chart with three different approaches ............................... 63 Tables Table 1. Available materials according to AM machine manufacturers ...................... 28 6 1 Introduction 1.1 Subject Additive manufacturing (AM) has recently become a reckoned method to produce parts alongside the traditional manufacturing methods among industrial operators. In spoken language, the term 3D printing is generally used. Originally additive manu- facturing was used for rapid prototyping, RP, to create physical examples of the prod- ucts that were designed. Obviously, the physical model is much more applicable for a designer in order to improve the design. The technology improved with big steps and AM materials and machines achieved the needed quality to be used in assemblies. This offered the possibility to produce objects with small enough tolerances so the products could be used to form the whole system and eventually evaluating the func- tionality of a system became possible. (Gibson 2010, 3-4.) Nowadays quality of the AM process has reached the level to be suitable for end use applications in manufacturing industry. The development of the technology has been furious. It is presumable that in the next years the competition will increase and pur- chase prices of metal additive manufacturing machines will decrease to a more rea- sonable level because of many significant patents have expired during 2010s (Hornick & Bhushan 2016). Even though the perceptions diverge among the authorities the possibilities of AM technology must be surveyed now. Additive manufacturing corresponds with many of the global megatrends. Interna- tional consulting and engineering company Pöyry has studied the global megatrends in paper industry. 3D printing is listed as one of the technological trends and many related topics are pointed out under different categories. For example, competition on limited resources motivates companies to invest material saving technologies which is typical for AM. Less material is used more wisely during shorter manufactur- ing process and therefore it serves customers’ responsible consumption trend. (World Paper Market up to 2030, 2014.) Still, Pöyry did not define more precisely the possible uses which offered more possible outcomes for this thesis. 7 1.2 Company Valmet is a multinational company that employ over 12 000 employees globally. The activities are based on four business lines: paper, services, automation and pulp and energy. With over 220 years of history in industry and many fusions with other oper- ators has spread Valmet all over the world. The services cover 33 countries, 120 ser- vice centers and 34 production units. EMEA (Europe, the Middle East and Africa) con- sist the most of employees and current customers. (Valmet general presentation 2017.) The turnover increased to 3,159 billion euros in 2017 from 2,926 billion euros in 2016 (Laine & Saarinen 2018). Valmet’s mission is to convert renewable resources into sustainable results. The long-term vision is to become global champion in serv- ing their customers. (Valmet general presentation 2017.) 1.3 Topic As the competition in the paper machine manufacturing is extremely tight, Valmet must pursue new technologies to upkeep their technology superiority and find new ways to achieve price competitiveness. Valmet has seen the additive manufacturing as a potential field to study and get deeper understanding for a long time. Even though multiple studies and new applications pop up constantly, it is challenging to get to the latest information. Studies are made mainly by companies that do not want the information to leak to their competitors. Valmet has faced the same prob- lem and the reasonable solution was to start the investigation by bachelor’s thesis. “A Survey of Possibilities to Utilize Metal Additive Manufactur- ing in an Industrial Company” The topic offers widely different point of views to approach the matter. For example, sales person would be interested of how additive manufacturing could increase sales directly or indirectly. At the same time the manufacturing department would like to shorten the manufacturing time and amount of needed operations. Designers are re- stricted to follow the limitations of traditional manufacturing methods but additive manufacturing offers totally new degrees of freedom to improve the functionality.
Description: