ebook img

Sun-2017 PDF

29 Pages·2017·0.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sun-2017

Sun with sunspots and limb darkening as seen in visible light with solar filter. Observation data Mean distance from Earth 1 au ≈ 1.496 × 108 km 8 min 19 s at light speed Visual brightness (V) −26.74[1] Absolute magnitude 4.83[1] Spectral classification G2V[2] Metallicity Z = 0.0122[3] Angular size 31.6–32.7 minutes of arc[4] Adjectives Solar Orbital characteristics Mean distance from Milky Way core ≈ 2.7 ×1017 km 27,200 light-years Galactic period (2.25–2.50) × 108 yr The Sun From Wikipedia, the free encyclopedia The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma,[13][14] with internal convective motion that generates a magnetic field via a dynamo process.[15] It is by far the most important source of energy for life on Earth. Its diameter is about 109 times that of Earth, and its mass is about 330,000 times that of Earth, accounting for about 99.86% of the total mass of the Solar System.[16] About three quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron.[17] The Sun is a G-type main-sequence star (G2V) based on its spectral class, and is informally referred to as a yellow dwarf. It formed approximately 4.6 billion[a][9][18] years ago from the gravitational collapse of matter within a region of a large molecular cloud. Most of this matter gathered in the center, whereas the rest flattened into an orbiting disk that became the Solar System. The central mass became so hot and dense that it eventually initiated nuclear fusion in its core. It is thought that almost all stars form by this process. The Sun is roughly middle-aged: it has not changed dramatically for more than four billion[a] years, and will remain fairly stable for more than another five billion years. After hydrogen fusion in its core has stopped, the Sun will undergo severe changes and become a red giant. It is calculated that the Sun will become sufficiently large to engulf the current orbits of Mercury, Venus, and possibly Earth. The enormous effect of the Sun on Earth has been recognized since prehistoric times, and the Sun has been regarded by some cultures as a deity. The synodic rotation of Earth and its orbit around the Sun are the basis of the solar calendar, which is the predominant calendar in use today. 1 Name and etymology 1.1 Religious aspects Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 1 of 29 1/2/2017 9:27 PM Velocity ≈ 220 km/s (orbit around the center of the Milky Way) ≈ 20 km/s (relative to average velocity of other stars in stellar neighborhood) ≈ 370 km/s[5] (relative to the cosmic microwave background) Physical characteristics Equatorial radius 695,700 km[6] 109 × Earth[7] Equatorial circumference 4.379 × 106 km[7] 109 × Earth[7] Flattening 9 ×10−6 Surface area 6.09 × 1012 km2[7] 12,000 × Earth[7] Volume 1.41 × 1018 km3[7] 1,300,000 × Earth Mass (1.988 55 ±0.000 25) × 1030 kg[1] 333,000 × Earth[1] Average density 1.408 g/cm3[1][7][8] 0.255 × Earth[1][7] Center density (modeled) 162.2 g/cm3[1] 12.4 × Earth Equatorial surface gravity 274.0 m/s2[1] 27.94 g 27,542.29 cgs 28 × Earth[7] Escape velocity (from the surface) 617.7 km/s[7] 55 × Earth[7] Temperature Center (modeled): 1.57 ×107 K[1] Photosphere (effective): 5,772 K[1] Corona: ≈ 5 × 106 K Luminosity (Lsol) 3.828 × 1026 W[1] ≈ 3.75 ×1028 lm ≈ 98 lm/W efficacy Mean radiance (Isol) 2.009 × 107 W·m−2·sr−1 Age ≈ 4.6 billion years[9][10] Rotation characteristics 2 Characteristics 3 Sunlight 4 Composition 4.1 Singly ionized iron-group elements 4.2 Isotopic composition 5 Structure 5.1 Core 5.2 Radiative zone 5.3 Tachocline 5.4 Convective zone 5.5 Photosphere 5.6 Atmosphere 5.7 Photons and neutrinos 6 Magnetism and activity 6.1 Magnetic field 6.2 Variation in activity 6.3 Long-term change 7 Life phases 7.1 Formation 7.2 Main sequence 7.3 After core hydrogen exhaustion 8 Motion and location 8.1 Orbit in Milky Way 9 Theoretical problems 9.1 Coronal heating problem 9.2 Faint young Sun problem 10 History of observation 10.1 Early understanding 10.2 Development of scientific understanding 10.3 Solar space missions 11 Observation and effects 12 See also 13 Notes 14 References 15 Further reading 16 External links The English proper name Sun developed from Old English sunne and may be related to south. Cognates to English sun appear in other Germanic languages, including Old Frisian sunne, sonne, Old Saxon sunna, Middle Dutch sonne, modern Dutch zon, Old High German sunna, modern German Sonne, Old Norse sunna, and Gothic sunnō. All Germanic terms for the Sun stem from Proto-Germanic Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 2 of 29 1/2/2017 9:27 PM Obliquity 7.25°[1] (to the ecliptic) 67.23° (to the galactic plane) Right ascension of North pole[11] 286.13° 19 h 4 min 30 s Declination of North pole +63.87° 63° 52' North Sidereal rotation period (at equator) 25.05 d[1] (at 16° latitude) 25.38 d[1] 25 d 9 h 7 min 12 s[11] (at poles) 34.4 d[1] Rotation velocity (at equator) 7.189 × 103 km/h[7] Photospheric composition (by mass) Hydrogen 73.46%[12] Helium 24.85% Oxygen 0.77% Carbon 0.29% Iron 0.16% Neon 0.12% Nitrogen 0.09% Silicon 0.07% Magnesium 0.05% Sulfur 0.04% *sunnōn.[19][20] The English weekday name Sunday stems from Old English (Sunnandæg; "Sun's day", from before 700) and is ultimately a result of a Germanic interpretation of Latin dies solis, itself a translation of the Greek ἡμέρα ἡλίου (hēméra hēlíou).[21] The Latin name for the Sun, Sol, is not common in general English language use; the adjectival form is the related word solar.[22][23] The term sol is also used by planetary astronomers to refer to the duration of a solar day on another planet, such as Mars.[24] A mean Earth solar day is approximately 24 hours, whereas a mean Martian 'sol' is 24 hours, 39 minutes, and 35.244 seconds.[25] Religious aspects Solar deities and Sun worship can be found throughout most of recorded history in various forms, including the Egyptian Ra, the Hindu Surya, the Japanese Amaterasu, the Germanic Sól, and the Aztec Tonatiuh, among others. From at least the 4th Dynasty of Ancient Egypt, the Sun was worshipped as the god Ra, portrayed as a falcon-headed divinity surmounted by the solar disk, and surrounded by a serpent. In the New Empire period, the Sun became identified with the dung beetle, whose spherical ball of dung was identified with the Sun. In the form of the Sun disc Aten, the Sun had a brief resurgence during the Amarna Period when it again became the preeminent, if not only, divinity for the Pharaoh Akhenaton.[26][27] The Sun is viewed as a goddess in Germanic paganism, Sól/Sunna.[20] Scholars theorize that the Sun, as a Germanic goddess, may represent an extension of an earlier Proto- Indo-European Sun deity because of Indo-European linguistic connections between Old Norse Sól, Sanskrit Surya, Gaulish Sulis, Lithuanian Saulė, and Slavic Solntse.[20] In ancient Roman culture, Sunday was the day of the Sun god. It was adopted as the Sabbath day by Christians who did not have a Jewish background. The symbol of light was a pagan device adopted by Christians, and perhaps the most important one that did not come from Jewish traditions. In paganism, the Sun was a source of life, giving warmth and illumination to mankind. It was the center of a popular cult among Romans, who would stand at dawn to catch the first rays of sunshine as they prayed. The celebration of the winter solstice (which influenced Christmas) was part of the Roman cult of the unconquered Sun (Sol Invictus). Christian churches were built with an orientation so that the congregation faced toward the sunrise in the East.[28] Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 3 of 29 1/2/2017 9:27 PM The Sun is a G-type main-sequence star that comprises about 99.86% of the mass of the Solar System. The Sun has an absolute magnitude of +4.83, estimated to be brighter than about 85% of the stars in the Milky Way, most of which are red dwarfs.[29][30] The Sun is a Population I, or heavy-element-rich,[b] star.[31] The formation of the Sun may have been triggered by shockwaves from one or more nearby supernovae.[32] This is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium, relative to the abundances of these elements in so-called Population II, heavy-element-poor, stars. The heavy elements could most plausibly have been produced by endothermic nuclear reactions during a supernova, or by transmutation through neutron absorption within a massive second-generation star.[31] The Sun is by far the brightest object in the sky, with an apparent magnitude of −26.74.[33][34] This is about 13 billion times brighter than the next brightest star, Sirius, which has an apparent magnitude of −1.46. The mean distance of the Sun's center to Earth's center is approximately 1 astronomical unit (about 150,000,000 km; 93,000,000 mi), though the distance varies as Earth moves from perihelion in January to aphelion in July.[35] At this average distance, light travels from the Sun's horizon to Earth's horizon in about 8 minutes and 19 seconds, while light from the closest points of the Sun and Earth takes about two seconds less. The energy of this sunlight supports almost all life[c] on Earth by photosynthesis,[36] and drives Earth's climate and weather. The Sun does not have a definite boundary, and in its outer parts its density decreases exponentially with increasing distance from its center.[37] For the purpose of measurement, however, the Sun's radius is considered to be the distance from its center to the edge of the photosphere, the apparent visible surface of the Sun.[38] By this measure, the Sun is a near-perfect sphere with an oblateness estimated at about 9 millionths,[39] which means that its polar diameter differs from its equatorial diameter by only 10 kilometres (6.2 mi).[40] The tidal effect of the planets is weak and does not significantly affect the shape of the Sun.[41] The Sun rotates faster at its equator than at its poles. This differential rotation is caused by convective motion due to heat transport and the Coriolis force due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at the poles. Viewed from Earth as it orbits the Sun, the apparent rotational period of the Sun at its equator is about 28 days.[42] The solar constant is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 1,368 W/m2 (watts per square meter) at a distance of one astronomical unit (AU) from the Sun (that is, on or near Earth).[43] Sunlight on the surface of Earth is attenuated by Earth's atmosphere, so that less power arrives at the surface (closer to 1,000 W/m2) in clear conditions when the Sun is near the zenith.[44] Sunlight at the top of Earth's atmosphere is composed (by total energy) of about 50% infrared light, 40% visible light, and 10% ultraviolet light.[45] The atmosphere in particular filters out over 70% of solar ultraviolet, especially at the shorter wavelengths.[46] Solar ultraviolet radiation ionizes Earth's dayside upper atmosphere, creating the electrically conducting ionosphere.[47] The Sun's color is white, with a CIE color-space index near (0.3, 0.3), when viewed from space or when the Sun is high in the sky. When measuring all the photons emitted, the Sun is actually emitting more photons in the green portion of the spectrum than any other.[48][49] When the Sun is low in the sky, atmospheric scattering renders the Sun yellow, red, orange, or magenta. Despite its typical whiteness, most people mentally picture the Sun as yellow; the reasons for this are the subject of debate.[50] The Sun is a G2V star, with G2 indicating its surface temperature of approximately 5,778 K (5,505 °C, 9,941 °F), and V that it, like most stars, is a main-sequence star.[51][52] The average luminance of the Sun is about 1.88 giga candela per square metre, but Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 4 of 29 1/2/2017 9:27 PM as viewed through Earth's atmosphere, this is lowered to about 1.44 Gcd/m2.[d] However, the luminance is not constant across the disk of the Sun (limb darkening). The Sun is composed primarily of the chemical elements hydrogen and helium; they account for 74.9% and 23.8% of the mass of the Sun in the photosphere, respectively.[53] All heavier elements, called metals in astronomy, account for less than 2% of the mass, with oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%) being the most abundant.[54] The Sun inherited its chemical composition from the interstellar medium out of which it formed. The hydrogen and helium in the Sun were produced by Big Bang nucleosynthesis, and the heavier elements were produced by stellar nucleosynthesis in generations of stars that completed their stellar evolution and returned their material to the interstellar medium before the formation of the Sun.[55] The chemical composition of the photosphere is normally considered representative of the composition of the primordial Solar System.[56] However, since the Sun formed, some of the helium and heavy elements have gravitationally settled from the photosphere. Therefore, in today's photosphere the helium fraction is reduced, and the metallicity is only 84% of what it was in the protostellar phase (before nuclear fusion in the core started). The protostellar Sun's composition is believed to have been 71.1% hydrogen, 27.4% helium, and 1.5% heavier elements.[53] Today, nuclear fusion in the Sun's core has modified the composition by converting hydrogen into helium, so the innermost portion of the Sun is now roughly 60% helium, with the abundance of heavier elements unchanged. Because heat is transferred from the Sun's core by radiation rather than by convection (see Radiative zone below), none of the fusion products from the core have risen to the photosphere.[57] The reactive core zone of "hydrogen burning", where hydrogen is converted into helium, is starting to surround an inner core of "helium ash". This development will continue and will eventually cause the Sun to leave the main sequence, to become a red giant.[58] The solar heavy-element abundances described above are typically measured both using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and are thus not affected by settling of heavy elements. The two methods generally agree well.[17] Singly ionized iron-group elements In the 1970s, much research focused on the abundances of iron-group elements in the Sun.[59][60] Although significant research was done, until 1978 it was difficult to determine the abundances of some iron-group elements (e.g. cobalt and manganese) via spectrography because of their hyperfine structures.[59] The first largely complete set of oscillator strengths of singly ionized iron-group elements were made available in the 1960s,[61] and these were subsequently improved.[62] In 1978, the abundances of singly ionized elements of the iron group were derived.[59] Isotopic composition Various authors have considered the existence of a gradient in the isotopic compositions of solar and planetary Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 5 of 29 1/2/2017 9:27 PM The structure of the Sun noble gases,[63] e.g. correlations between isotopic compositions of neon and xenon in the Sun and on the planets.[64] Prior to 1983, it was thought that the whole Sun has the same composition as the solar atmosphere.[65] In 1983, it was claimed that it was fractionation in the Sun itself that caused the isotopic-composition relationship between the planetary and solar-wind-implanted noble gases.[65] Core The core of the Sun extends from the center to about 20–25% of the solar radius.[66] It has a density of up to 150 g/cm3[67][68] (about 150 times the density of water) and a temperature of close to 15.7 million kelvins (K).[68] By contrast, the Sun's surface temperature is approximately 5,800 K. Recent analysis of SOHO mission data favors a faster rotation rate in the core than in the radiative zone above.[66] Through most of the Sun's life, energy is produced by nuclear fusion in the core region through a series of steps called the p–p (proton–proton) chain; this process converts hydrogen into helium.[69] Only 0.8% of the energy generated in the Sun comes from the CNO cycle, though this proportion is expected to increase as the Sun becomes older.[70] The core is the only region in the Sun that produces an appreciable amount of thermal energy through fusion; 99% of the power is generated within 24% of the Sun's radius, and by 30% of the radius, fusion has stopped nearly entirely. The remainder of the Sun is heated by this energy as it is transferred outwards through many successive layers, finally to the solar photosphere where it escapes into space as sunlight or the kinetic energy of particles.[51][71] The proton–proton chain occurs around 9.2 × 1037 times each second in the core, converting about 3.7 × 1038 protons into alpha particles (helium nuclei) every second (out of a total of ~8.9 ×1056 free protons in the Sun), or about 6.2 × 1011 kg/s.[51] Fusing four free protons (hydrogen nuclei) into a single alpha particle (helium nuclei) releases around 0.7% of the fused mass as energy,[72] so the Sun releases energy at the mass–energy conversion rate of 4.26 million metric tons per second, for 384.6 yottawatts (3.846 × 1026 W),[1] or 9.192 × 1010 megatons of TNT per second. Theoretical models of the Sun's interior indicate a power density of approximately 276.5 W/m3,[73] a value that more nearly approximates reptile metabolism than a thermonuclear bomb.[e] Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 6 of 29 1/2/2017 9:27 PM The fusion rate in the core is in a self-correcting equilibrium: a slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the density and hence the fusion rate and correcting the perturbation; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the density and increasing the fusion rate and again reverting it to its present rate.[74][75] Radiative zone From the core out to about 0.7 solar radii, thermal radiation is the primary means of energy transfer.[76] The temperature drops from approximately 7 million to 2 million kelvins with increasing distance from the core.[68] This temperature gradient is less than the value of the adiabatic lapse rate and hence cannot drive convection, which explains why the transfer of energy through this zone is by radiation instead of thermal convection.[68] Ions of hydrogen and helium emit photons, which travel only a brief distance before being reabsorbed by other ions.[76] The density drops a hundredfold (from 20 g/cm3 to only 0.2 g/cm3) from 0.25 solar radii to the 0.7 radii, the top of the radiative zone.[76] Tachocline The radiative zone and the convective zone are separated by a transition layer, the tachocline. This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear between the two—a condition where successive horizontal layers slide past one another.[77] Presently, it is hypothesized (see Solar dynamo) that a magnetic dynamo within this layer generates the Sun's magnetic field.[68] Convective zone The Sun's convection zone extends from 0.7 solar radii (200,000 km) to near the surface. In this layer, the solar plasma is not dense enough or hot enough to transfer the heat energy of the interior outward via radiation. Instead, the density of the plasma is low enough to allow convective currents to develop and move the Sun's energy outward towards its surface. Material heated at the tachocline picks up heat and expands, thereby reducing its density and allowing it to rise. As a result, an orderly motion of the mass develops into thermal cells that carry the majority of the heat outward to the Sun's photosphere above. Once the material diffusively and radiatively cools just beneath the photospheric surface, its density increases, and it sinks to the base of the convection zone, where it again picks up heat from the top of the radiative zone and the convective cycle continues. At the photosphere, the temperature has dropped to 5,700 K and the density to only 0.2 g/m3 (about 1/6,000 the density of air at sea level).[68] The thermal columns of the convection zone form an imprint on the surface of the Sun giving it a granular appearance called the solar granulation at the smallest scale and supergranulation at larger scales. Turbulent convection in this outer part of the solar interior sustains "small-scale" dynamo action over the near-surface volume of the Sun.[68] The Sun's thermal columns are Bénard cells and take the shape of hexagonal prisms.[78] Photosphere The visible surface of the Sun, the photosphere, is the layer below which the Sun becomes opaque to visible light.[79] Above the photosphere visible sunlight is free to propagate into space, and its energy escapes the Sun entirely. The change in opacity is due to the decreasing amount of H− ions, which absorb visible light easily.[79] Conversely, the visible light we see is produced as electrons react with hydrogen atoms to produce H− Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 7 of 29 1/2/2017 9:27 PM The effective temperature, or black body temperature, of the Sun (5,777 K) is the temperature a black body of the same size must have to yield the same total emissive power. During a total solar eclipse, the solar corona can be seen with the naked eye, during the brief period of totality. ions.[80][81] The photosphere is tens to hundreds of kilometers thick, and is slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as limb darkening.[79] The spectrum of sunlight has approximately the spectrum of a black-body radiating at about 6,000 K, interspersed with atomic absorption lines from the tenuous layers above the photosphere. The photosphere has a particle density of ~1023 m−3 (about 0.37% of the particle number per volume of Earth's atmosphere at sea level). The photosphere is not fully ionized—the extent of ionization is about 3%, leaving almost all of the hydrogen in atomic form.[82] During early studies of the optical spectrum of the photosphere, some absorption lines were found that did not correspond to any chemical elements then known on Earth. In 1868, Norman Lockyer hypothesized that these absorption lines were caused by a new element that he dubbed helium, after the Greek Sun god Helios. Twenty-five years later, helium was isolated on Earth.[83] Atmosphere During a total solar eclipse, when the disk of the Sun is covered by that of the Moon, parts of the Sun's surrounding atmosphere can be seen. It is composed of four distinct parts: the chromosphere, the transition region, the corona and the heliosphere. The coolest layer of the Sun is a temperature minimum region extending to about 500 km above the photosphere, and has a temperature of about 4,100 K.[79] This part of the Sun is cool enough to allow the existence of simple molecules such as carbon monoxide and water, which can be detected via their absorption spectra.[84] The chromosphere, transition region, and corona are much hotter than the surface of the Sun.[79] The reason is not well understood, but evidence suggests that Alfvén waves may have enough energy to heat the corona.[85] Above the temperature minimum layer is a layer about 2,000 km thick, dominated by a spectrum of emission and absorption lines.[79] It is called the chromosphere from the Greek root chroma, meaning color, because the chromosphere is visible as a colored flash at the beginning and end of total solar eclipses.[76] The temperature of the chromosphere increases gradually with altitude, ranging up to around 20,000 K near the top.[79] In the upper part of the chromosphere helium becomes partially ionized.[86] Above the chromosphere, in a thin (about 200 km) transition region, the temperature rises rapidly from around 20,000 K in the upper chromosphere to coronal temperatures closer to 1,000,000 K.[87] The temperature increase is facilitated by the full ionization of helium in the transition region, which significantly reduces radiative cooling of the plasma.[86] The transition region does not occur at a well-defined altitude. Rather, it forms a kind of nimbus around chromospheric features such as spicules and filaments, and is in constant, Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 8 of 29 1/2/2017 9:27 PM Taken by Hinode's Solar Optical Telescope on 12 January 2007, this image of the Sun reveals the filamentary nature of the plasma connecting regions of different magnetic polarity. chaotic motion.[76] The transition region is not easily visible from Earth's surface, but is readily observable from space by instruments sensitive to the extreme ultraviolet portion of the spectrum.[88] The corona is the next layer of the Sun. The low corona, near the surface of the Sun, has a particle density around 1015 m−3 to 1016 m−3.[86][f] The average temperature of the corona and solar wind is about 1,000,000–2,000,000 K; however, in the hottest regions it is 8,000,000–20,000,000 K.[87] Although no complete theory yet exists to account for the temperature of the corona, at least some of its heat is known to be from magnetic reconnection.[87][89] The corona is the extended atmosphere of the Sun, which has a volume much larger than the volume enclosed by the Sun's photosphere. A flow of plasma outward from the Sun into interplanetary space is the solar wind.[89] The heliosphere, the tenuous outermost atmosphere of the Sun, is filled with the solar wind plasma. This outermost layer of the Sun is defined to begin at the distance where the flow of the solar wind becomes superalfvénic—that is, where the flow becomes faster than the speed of Alfvén waves,[90] at approximately 20 solar radii (0.1 AU). Turbulence and dynamic forces in the heliosphere cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through the heliosphere,[91][92] forming the solar magnetic field into a spiral shape,[89] until it impacts the heliopause more than 50 AU from the Sun. In December 2004, the Voyager 1 probe passed through a shock front that is thought to be part of the heliopause.[93] In late 2012 Voyager 1 recorded a marked increase in cosmic ray collisions and a sharp drop in lower energy particles from the solar wind, which suggested that the probe had passed through the heliopause and entered the interstellar medium.[94] Photons and neutrinos High-energy gamma-ray photons initially released with fusion reactions in the core are almost immediately absorbed by the solar plasma of the radiative zone, usually after traveling only a few millimeters. Re-emission happens in a random direction and usually at a slightly lower energy. With this sequence of emissions and absorptions, it takes a long time for radiation to reach the Sun's surface. Estimates of the photon travel time range between 10,000 and 170,000 years.[95] In contrast, it takes only 2.3 seconds for the neutrinos, which account for about 2% of the total energy production of the Sun, to reach the surface. Because energy transport in the Sun is a process that involves photons in thermodynamic equilibrium with matter, the time scale of energy transport in the Sun is longer, on the order of 30,000,000 years. This is the time it would take the Sun to return to a stable state, if the rate of energy generation in its core were suddenly changed.[96] Neutrinos are also released by the fusion reactions in the core, but, unlike photons, they rarely interact with matter, so almost all are able to escape the Sun immediately. For many years measurements of the number of neutrinos produced in the Sun were lower than theories predicted by a factor of 3. This discrepancy was resolved in 2001 through the discovery of the effects of neutrino oscillation: the Sun emits the number of neutrinos predicted by the theory, but neutrino detectors were missing 2⁄3 of them because the neutrinos had Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 9 of 29 1/2/2017 9:27 PM Visible light photograph of sunspot, 13 December 2006 Butterfly diagram showing paired sunspot pattern. Graph is of sunspot area. changed flavor by the time they were detected.[97] Magnetic field The Sun has a magnetic field that varies across the surface of the Sun. Its polar field is 1–2 gauss (0.0001–0.0002 T), whereas the field is typically 3,000 gauss (0.3 T) in features on the Sun called sunspots and 10–100 gauss (0.001–0.01 T) in solar prominences.[1] The magnetic field also varies in time and location. The quasi-periodic 11-year solar cycle is the most prominent variation in which the number and size of sunspots waxes and wanes.[15][99][100] Sunspots are visible as dark patches on the Sun's photosphere, and correspond to concentrations of magnetic field where the convective transport of heat is inhibited from the solar interior to the surface. As a result, sunspots are slightly cooler than the surrounding photosphere, and, so, they appear dark. At a typical solar minimum, few sunspots are visible, and occasionally none can be seen at all. Those that do appear are at high solar latitudes. As the solar cycle progresses towards its maximum, sunspots tend form closer to the solar equator, a phenomenon known as Spörer's law. The largest sunspots can be tens of thousands of kilometers across.[101] An 11-year sunspot cycle is half of a 22-year Babcock–Leighton dynamo cycle, which corresponds to an oscillatory exchange of energy between toroidal and poloidal solar magnetic fields. At solar-cycle maximum, the external poloidal dipolar magnetic field is near its dynamo-cycle minimum strength, but an internal toroidal quadrupolar field, generated through differential rotation within the tachocline, is near its maximum strength. At this point in the dynamo cycle, buoyant upwelling within the convective zone forces emergence of toroidal magnetic field through the photosphere, giving rise to pairs of sunspots, roughly aligned east–west and having footprints with opposite magnetic polarities. The magnetic polarity of sunspot pairs alternates every solar cycle, a phenomenon known as the Hale cycle.[102][103] During the solar cycle's declining phase, energy shifts from the internal toroidal magnetic field to the external poloidal field, and sunspots diminish in number and size. At solar-cycle minimum, the toroidal field is, correspondingly, at minimum strength, sunspots are relatively rare, and the poloidal field is at its maximum strength. With the rise of the next 11-year sunspot cycle, differential rotation shifts magnetic energy back from the poloidal to the toroidal field, but with a polarity that is opposite to the previous cycle. The process carries on continuously, and in an idealized, simplified scenario, each 11-year sunspot cycle corresponds to a change, then, in the overall polarity of the Sun's large-scale magnetic field.[104][105] The solar magnetic field extends well beyond the Sun itself. The electrically conducting solar wind plasma Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 10 of 29 1/2/2017 9:27 PM In this false-color ultraviolet image, the Sun shows a C3-class solar flare (white area on upper left), a solar tsunami (wave-like structure, upper right) and multiple filaments of plasma following a magnetic field, rising from the stellar surface. The heliospheric current sheet extends to the outer reaches of the Solar System, and results from the influence of the Sun's rotating magnetic field on the plasma in the interplanetary medium.[98] Measurements of solar cycle variation during the last 30 years carries the Sun's magnetic field into space, forming what is called the interplanetary magnetic field.[89] In an approximation known as ideal magnetohydrodynamics, plasma particles only move along the magnetic field lines. As a result, the outward-flowing solar wind stretches the interplanetary magnetic field outward, forcing it into a roughly radial structure. For a simple dipolar solar magnetic field, with opposite hemispherical polarities on either side of the solar magnetic equator, a thin current sheet is formed in the solar wind.[89] At great distances, the rotation of the Sun twists the dipolar magnetic field and corresponding current sheet into an Archimedean spiral structure called the Parker spiral.[89] The interplanetary magnetic field is much stronger than the dipole component of the solar magnetic field. The Sun's dipole magnetic field of 50–400 μT (at the photosphere) reduces with the inverse-cube of the distance to about 0.1 nT at the distance of Earth. However, according to spacecraft observations the interplanetary field at Earth's location is around 5 nT, about a hundred times greater.[106] The difference is due to magnetic fields generated by electrical currents in the plasma surrounding the Sun. Variation in activity The Sun's magnetic field leads to many effects that are collectively called solar activity. Solar flares and coronal-mass ejections tend to occur at sunspot groups. Slowly changing high-speed streams of solar wind are emitted from coronal holes at the photospheric surface. Both coronal-mass ejections and high-speed streams of solar wind carry plasma and interplanetary magnetic field outward into the Solar System.[107] The effects of solar activity on Earth include auroras at moderate to high latitudes and the disruption of radio communications and electric power. Solar activity is thought to have played a large role in the formation and evolution of the Solar System. With solar-cycle modulation of sunspot number comes a corresponding modulation of space weather conditions, including those surrounding Earth where technological systems can be affected. Long-term change Long-term secular change in sunspot number is thought, by some scientists, to be correlated with long-term change in solar irradiance,[108] which, in turn, might influence Earth's long-term climate.[109] For example, in the 17th century, the solar cycle appeared to have stopped entirely for several decades; few sunspots were observed during a period known as the Maunder minimum. This coincided in time with the era of the Little Ice Age, when Europe experienced unusually cold temperatures.[110] Earlier extended minima have been discovered through analysis of tree rings and appear to have coincided with lower-than-average global temperatures.[111] Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 11 of 29 1/2/2017 9:27 PM Evolution of the Sun's luminosity, radius and effective temperature compared to the present Sun. After Ribas (2010)[118] A recent theory claims that there are magnetic instabilities in the core of the Sun that cause fluctuations with periods of either 41,000 or 100,000 years. These could provide a better explanation of the ice ages than the Milankovitch cycles.[112][113] The Sun today is roughly halfway through the most stable part of its life. It has not changed dramatically for over four billion[a] years, and will remain fairly stable for more than five billion more. However, after hydrogen fusion in its core has stopped, the Sun will undergo severe changes, both internally and externally. Formation The Sun formed about 4.6 billion years ago from the collapse of part of a giant molecular cloud that consisted mostly of hydrogen and helium and that probably gave birth to many other stars.[114] This age is estimated using computer models of stellar evolution and through nucleocosmochronology.[9] The result is consistent with the radiometric date of the oldest Solar System material, at 4.567 billion years ago.[115][116] Studies of ancient meteorites reveal traces of stable daughter nuclei of short-lived isotopes, such as iron-60, that form only in exploding, short-lived stars. This indicates that one or more supernovae must have occurred near the location where the Sun formed. A shock wave from a nearby supernova would have triggered the formation of the Sun by compressing the matter within the molecular cloud and causing certain regions to collapse under their own gravity.[117] As one fragment of the cloud collapsed it also began to rotate because of conservation of angular momentum and heat up with the increasing pressure. Much of the mass became concentrated in the center, whereas the rest flattened out into a disk that would become the planets and other Solar System bodies. Gravity and pressure within the core of the cloud generated a lot of heat as it accreted more matter from the surrounding disk, eventually triggering nuclear fusion. Thus, the Sun was born. Main sequence The Sun is about halfway through its main-sequence stage, during which nuclear fusion reactions in its core fuse hydrogen into helium. Each second, more than four million tonnes of matter are converted into energy within the Sun's core, producing neutrinos and solar radiation. At this rate, the Sun has so far converted around 100 times the mass of Earth into energy, about 0.03% of the total mass of the Sun. The Sun will spend a total of approximately 10 billion years as a main-sequence star.[119] The Sun is gradually becoming hotter during its time on the main sequence, because the helium atoms in the core occupy less volume than the hydrogen atoms that were fused. The core is therefore shrinking, allowing the outer layers of the Sun to move closer to the centre and experience a stronger gravitational force, according to the inverse-square law. This stronger force increases the pressure on the core, which is resisted by a gradual increase in the rate at which fusion occurs. This process speeds up as the core gradually becomes denser. It is estimated that the Sun has become 30% brighter in the last 4.5 billion Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 12 of 29 1/2/2017 9:27 PM The size of the current Sun (now in the main sequence) compared to its estimated size during its red-giant phase in the future Evolution of a Sun-like star. The track of a one solar mass star on the Hertzsprung–Russell diagram is shown from the main sequence to the post-asymptotic-giant-branch stage. years.[120] At present, it is increasing in brightness by about 1% every 100 million years.[121] After core hydrogen exhaustion The Sun does not have enough mass to explode as a supernova. Instead it will exit the main sequence in approximately 5 billion years and start to turn into a red giant.[122][123] As a red giant, the Sun will grow so large that it will engulf Mercury, Venus, and probably Earth. [123][124] Even before it becomes a red giant, the luminosity of the Sun will have nearly doubled, and Earth will receive as much sunlight as Venus receives today. Once the core hydrogen is exhausted in 5.4 billion years, the Sun will expand into a subgiant phase and slowly double in size over about half a billion years. It will then expand more rapidly over about half a billion years until it is over two hundred times larger than today and a couple of thousand times more luminous. This then starts the red-giant-branch phase where the Sun will spend around a billion years and lose around a third of its mass.[123] After the red-giant branch the Sun has approximately 120 million years of active life left, but much happens. First, the core, full of degenerate helium ignites violently in the helium flash, where it is estimated that 6% of the core, itself 40% of the Sun's mass, will be converted into carbon within a matter of minutes through the triple-alpha process.[125] The Sun then shrinks to around 10 times its current size and 50 times the luminosity, with a temperature a little lower than today. It will then have reached the red clump or horizontal branch, but a star of the Sun's mass does not evolve blueward along the horizontal branch. Instead, it just becomes moderately larger and more luminous over about 100 million years as it continues to burn helium in the core.[123] When the helium is exhausted, the Sun will repeat the expansion it followed when the hydrogen in the core was exhausted, except that this time it all happens faster, and the Sun becomes larger and more luminous. This is the asymptotic-giant-branch phase, and the Sun is alternately burning hydrogen in a shell or helium in a deeper shell. After about 20 million years on the early asymptotic giant branch, the Sun becomes increasingly unstable, with rapid mass loss and thermal pulses that increase the size and luminosity for a few hundred years every 100,000 years or so. The thermal pulses become larger each time, with the later pulses pushing the luminosity to as much as 5,000 times the current level and the radius to over 1 AU.[126] According to a 2008 model, Earth's orbit is shrinking due to tidal forces (and, eventually, drag from the lower chromosphere), so that it is engulfed Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 13 of 29 1/2/2017 9:27 PM Illustration of the Milky Way, showing the location of the Sun by the Sun near the tip of the red giant branch phase, 3.8 and 1 million years after Mercury and Venus have respectively suffered the same fate. Models vary depending on the rate and timing of mass loss. Models that have higher mass loss on the red-giant branch produce smaller, less luminous stars at the tip of the asymptotic giant branch, perhaps only 2,000 times the luminosity and less than 200 times the radius.[123] For the Sun, four thermal pulses are predicted before it completely loses its outer envelope and starts to make a planetary nebula. By the end of that phase – lasting approximately 500,000 years – the Sun will only have about half of its current mass. The post-asymptotic-giant-branch evolution is even faster. The luminosity stays approximately constant as the temperature increases, with the ejected half of the Sun's mass becoming ionised into a planetary nebula as the exposed core reaches 30,000 K. The final naked core, a white dwarf, will have a temperature of over 100,000 K, and contain an estimated 54.05% of the Sun's present day mass.[123] The planetary nebula will disperse in about 10,000 years, but the white dwarf will survive for trillions of years before fading to a hypothetical black dwarf.[127][128] Orbit in Milky Way The Sun lies close to the inner rim of the Milky Way's Orion Arm, in the Local Interstellar Cloud or the Gould Belt, at a distance of 7.5–8.5 kpc (25,000–28,000 light-years) from the Galactic Center.[129][130] [131][132][133][134] The Sun is contained within the Local Bubble, a space of rarefied hot gas, possibly produced by the supernova remnant Geminga.[135] The distance between the local arm and the next arm out, the Perseus Arm, is about 6,500 light-years.[136] The Sun, and thus the Solar System, is found in what scientists call the galactic habitable zone. The Apex of the Sun's Way, or the solar apex, is the direction that the Sun travels relative to other nearby stars. This motion is towards a point in the constellation Hercules, near the star Vega. Of the 50 nearest stellar systems within 17 light-years from Earth (the closest being the red dwarf Proxima Centauri at approximately 4.2 light-years), the Sun ranks fourth in mass.[137] The Sun is orbiting the center of the Milky Way, going in the direction of Cygnus. The Sun's orbit around the Milky Way is expected to be roughly elliptical with the addition of perturbations due to the galactic spiral arms and non-uniform mass distributions. In addition the Sun oscillates up and down relative to the galactic plane approximately 2.7 times per orbit.[138] It has been argued that the Sun's passage through the higher density spiral arms often coincides with mass extinctions on Earth, perhaps due to increased impact events.[139] It takes the Solar System about 225–250 million years to complete one orbit through the Milky Way (a galactic year),[140] so it is thought to have completed 20–25 orbits during the lifetime of the Sun. The orbital speed of the Solar System about the center of the Milky Way is approximately 251 km/s (156 mi/s).[141] At this speed, it takes around 1,190 years for the Solar System to travel a distance of 1 light-year, or 7 days to travel 1 AU.[142] The Milky Way is moving with respect to the cosmic microwave background radiation (CMB) in the direction of the constellation Hydra with a speed of 550 km/s, and the Sun's resultant velocity with respect to the CMB is about 370 km/s in the direction of Crater or Leo.[143] Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 14 of 29 1/2/2017 9:27 PM Map of the full Sun by STEREO and SDO spacecraft Coronal heating problem The temperature of the photosphere is approximately 6,000 K, whereas the temperature of the corona reaches 1,000,000–2,000,000 K.[87] The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere.[89] It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating.[87] The first is wave heating, in which sound, gravitational or magnetohydrodynamic waves are produced by turbulence in the convection zone.[87] These waves travel upward and dissipate in the corona, depositing their energy in the ambient matter in the form of heat.[144] The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through magnetic reconnection in the form of large solar flares and myriad similar but smaller events—nanoflares.[145] Currently, it is unclear whether waves are an efficient heating mechanism. All waves except Alfvén waves have been found to dissipate or refract before reaching the corona.[146] In addition, Alfvén waves do not easily dissipate in the corona. Current research focus has therefore shifted towards flare heating mechanisms.[87] Faint young Sun problem Theoretical models of the Sun's development suggest that 3.8 to 2.5 billion years ago, during the Archean period, the Sun was only about 75% as bright as it is today. Such a weak star would not have been able to sustain liquid water on Earth's surface, and thus life should not have been able to develop. However, the geological record demonstrates that Earth has remained at a fairly constant temperature throughout its history, and that the young Earth was somewhat warmer than it is today. The consensus among scientists is that the atmosphere of the young Earth contained much larger quantities of greenhouse gases (such as carbon dioxide, methane and/or ammonia) than are present today, which trapped enough heat to compensate for the smaller amount of solar energy reaching it.[147] The enormous effect of the Sun on Earth has been recognized since prehistoric times, and the Sun has been regarded by some cultures as a deity. Early understanding The Sun has been an object of veneration in many cultures throughout human history. Humanity's most fundamental understanding of the Sun is as the luminous disk in the sky, whose presence above the horizon creates day and whose absence causes night. In many prehistoric and ancient cultures, the Sun was thought to be a solar deity or other supernatural entity. Worship of the Sun was central to civilizations such as the ancient Egyptians, the Inca of South America and the Aztecs of what is now Mexico. In religions such as Hinduism, the Sun is still considered a god. Many ancient monuments were constructed with solar phenomena in mind; for example, stone megaliths accurately mark the summer or winter solstice (some of the most prominent Sun - Wikipedia https://en.wikipedia.org/wiki/Sun 15 of 29 1/2/2017 9:27 PM

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.