ebook img

Sturm Bounds for Siegel Modular Forms PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sturm Bounds for Siegel Modular Forms

Sturm Bounds for Siegel Modular Forms OlavK.RichterandMartinWesterholt-Raum* Abstract 5 WeestablishSturmboundsfordegreeg Siegelmodularformsmoduloaprime p,whichare 1 vitalforexplicitcomputations.OurinductiveproofexploitsFourier-JacobiexpansionsofSiegel 0 modularformsandpropertiesofspecializationsofJacobiformstotorsionpoints.Inparticular, 2 our approachiscompletely differentfromthe proofsofthepreviously knowncases g =1,2, n whichdonotextendtothecaseofgeneralg. a MSC 2010: Primary 11F46; Secondary 11F33 J 0 3 LET p beaprime. AcelebratedtheoremofSturm[Stu87]impliesthatanellipticmodularform ] T withp-integralrationalFourierseriescoefficientsisdeterminedbyits“firstfew"Fourierseries N coefficientsmodulop.Sturm’stheoremisanimportanttoolinthetheoryofmodularforms(forex- . ample,see[Ono04;Ste07]forsomeofitsapplications). PoorandYuen[PY](andlater[CCK13]for h t p≥5)provedaSturmtheoremforSiegelmodularformsofdegree2. Theirworkhasbeenapplied a m indifferentcontexts,andforexample,itallowed[CCR11;DR10]toconfirmRamanujan-typecon- gruencesforspecificSiegelmodularformsofdegree2. In[RR],wegaveacharacterizationofU(p) [ congruencesofSiegelmodularformsofarbitrarydegree,but(lackingaSturmtheorem)wecould 1 onlydiscussoneexplicitexamplethatoccurredasaDuke-Imamog˘lu-Ikedalift.IfaSiegelmodular v 3 formdoesnotariseasalift,thenoneneedsaSturmtheoremtojustifyitsU(p)congruences. 3 In thispaper,we provide such aSturmtheoremforSiegel modularformsofdegree g ≥2. Our 7 proofis totallydifferentfromtheproofsof thecases g =1,2in [CCK13;PY;Stu87],which donot 7 0 havevisibleextensionstothecaseg >2.Moreprecisely,weperformaninductiononthedegreeg. . 1 Asin[BWR14],weemployFourier-JacobiexpansionsofSiegelmodularforms,andwestudyvanish- 0 ingordersofJacobiforms.However,incontrastto[BWR14]weconsiderrestrictionsofJacobiforms 5 totorsionpoints(insteadoftheirthetadecompositions),whichallowustorelatemodp diagonal 1 : vanishingorders(definedinSection1)ofJacobiformsandSiegelmodularforms. Wededucethe v i followingtheorem. X TheoremI. LetF beaSiegelmodularformofdegreeg ≥2,weightk,andwithp-integralrational r a Fourierseriescoefficientsc(T).Supposethat 4 g k c(T)≡0(modp) forallT =(t )with t ≤ . ij ii ³ ´ 3 16 Thenc(T)≡0(modp)forallT. IfaSiegelmodularformarisesasalift,thenonecansometimesinferthatithasintegralFourier seriescoefficients(see[PRY09]). ThesituationismorecomplicatedforSiegelmodularformsthat arenotlifts. However, ifthe“firstfewdiagonal"coefficientsofaSiegelmodularformareintegral (orp-integralrational),thenTheoremIimpliesthatallofitsFourierseriescoefficientsareintegral (orp-integralrational). ThefirstauthorwaspartiallysupportedbySimonsFoundationGrant#200765.ThesecondauthorthankstheMaxPlanck InstituteforMathematicsfortheirhospitality.Thepaperwaspartiallywritten,whilethesecondauthorwassupported bytheETHZurichPostdoctoralFellowshipProgramandbytheMarieCurieActionsforPeopleCOFUNDProgram. –1– SturmBounds—1 Preliminaries O.K.Richter,M.W.-Raum CorollaryII. Let F be a Siegel modular form of degree g ≥2, weightk, and withrationalFourier seriescoefficientsc(T).Supposethat 4 g k c(T)∈Z forallT =(t )with t ≤ . (0.1) ij ii ³ ´ 3 16 Thenc(T)∈ZforallT. Remarks. (1) TheoremIandCorollaryIIareeffectiveforexplicitcalculationswithSiegelmodular forms,sinceonlyfinitelymanyT satisfytheconditiont ≤(4)g k foralli. ii 3 16 (2) If p ≥5,thenTheorem3.2showsthatthebounds(4)g k inTheoremIandinCorollaryIIcan 3 16 bereplacedbytheslightlybetterbounds(4)g 9k . 3 160 (3) If(0.1)inCorollaryIIisreplacedbytheassumptionthatc(T)is p-integralrationalforallT = (t )witht ≤(4)g k ,thenconsideringthecaseq=pintheproofofCorollaryIIyieldsthatc(T)is ij ii 3 16 p-integralrationalforallT. (4) One can remove the assumption that c(T)∈Q in Corollary II. More precisely, if F is a Siegel modular form of degree g ≥2, weight k, and with Fourier series coefficients c(T)∈C such that (0.1)holds, thenresultsof[CF90]showthatF isalinearcombination ofSiegel modularformsof degreeg ≥2,weightk,andwithrationalFourierseriescoefficients,andapplyingCorollaryIIyields thatc(T)∈ZforallT. Thepaperisorganizedasfollows. InSection1,wegivesomebackgroundonJacobiformsand Siegel modular forms. In Section 2, we explore diagonal vanishing orders of Jacobi formsandof theirspecializationstotorsionpoints.InSection3,weinductivelyestablishdiagonalslopebounds forSiegelmodularformsofarbitrarydegree,andweproveTheoremIandCorollaryII. 1| Preliminaries Throughout,g,k,m≥1areintegers,andp isarationalprime. Weworkoverthemaximalunram- ifiedextension Qur of Q . Note thatQur contains all N-throotsof unityif N and p arerelatively p p p prime. WealwayswriteptodenoteaprimeidealinQupr,andOp standsforthelocalizationofQupr atp.Moreover,werefertotheelementsofthelocalringZ ∩Qasp-integralrationalnumbers. p Finally,letH betheSiegelupperhalfspaceofdegreeg,Sp (Z)bethesymplecticgroupofde- g g gree g overtheintegers,andρ bearepresentationofSp (Z)withrepresentationspaceV(ρ),and g suchthat kerρ:Sp (Z) <∞. £ g ¤ (g) §1.1 Siegelmodularforms. LetM (ρ)denotethevectorspaceofSiegel modularformsofde- k greeg,weightk,typeρ,andwithcoefficientsinOp(see[Shi78]).Ifρistrivial,thenwesimplywrite M(g).RecallthatanelementF ∈M(g)(ρ)isaholomorphicfunctionF :H →V(ρ)withtransforma- k k g tionlaw F (AZ+B)(CZ+D)−1 =ρ(M)det(CZ+D)kF(Z) ¡ ¢ forallM= A B ∈Sp (Z).Furthermore,F hasaFourierseriesexpansionoftheform ¡C D¢ g F(Z)= c(T)e2πitr(TZ), X T=tT≥0 wheretrdenotesthetrace, tT isthetransposeofT,andwherethesumisoversymmetric,positive semi-definite,andrationalg×g matricesT. IfF ∈M(g)(ρ)suchthatF 6≡0(modp),i.e.,ifthereexistsaFourierseriescoefficientc(T)ofF such k thatc(T)6≡0(modp),thenthemodpdiagonalvanishingorderofF isdefinedby ordpF :=max 0≤l ∈Z:∀T =(tij),tii ≤l forall1≤i ≤g :c(T)≡0(modp) . (1.1) © ª –2– SturmBounds—1 Preliminaries O.K.Richter,M.W.-Raum If F has p-integral rational coefficients such that F 6≡0(modp), then ord F is defined likewise. p Finally,themodpdiagonalslopeboundfordegreeg (scalar-valued)Siegelmodularformsisgiven by k ρ(g) :=inf inf , (1.2) diag,p k F∈M(g) ordpF k F6≡0(modp) (g) and the definition of the mod p diagonal slope bound ρ for degree g (scalar-valued) Siegel diag,p modularformswithp-integralrationalcoefficientsiscompletelyanalogous. §1.2 Jacobiforms. Ziegler [Zie89]introducedJacobi formsofhigherdegree (extending[EZ85]). (g) LetJ (ρ)denotetheringofJacobiformsofdegreeg,weightk,indexm,typeρ,andwithcoeffi- k,m cientsinOp. Ifρistrivial,thenwesuppressitfromthenotation. RecallthatJacobiformsoccuras Fourier-JacobicoefficientsofSiegelmodularforms: LetF ∈Mk(g+1)(ρ),andwriteZ =³τz τtz′´∈Hg+1, whereτ∈H ,z∈Cg isarowvector,andτ′∈H tofindtheFourier-Jacobiexpansion: g 1 F(Z)=F(τ,z,τ′)= φ (τ,z)e2πimτ′, X m 0≤m∈Z whereφ ∈J(g) (ρ).WenowbrieflyrecollectsomedefiningpropertiesofsuchJacobiforms. m k,m LetGJ:=Sp (R)⋉(R2gטR)betherealJacobigroupofdegreeg (see[Zie89])withgrouplaw g [M,(λ,µ),κ]·[M′,(λ′,µ′),κ′]:=[MM′,(λ˜+λ′,µ˜+µ′),κ+κ′+λ˜tµ′−µ˜tλ′], where (λ˜,µ˜):=(λ,µ)M′. For fixed k and m, define the following slash operator on functions φ: H ×Cg →V(ρ): g φ| A B ,(λ,µ),x (τ,z) := ρ−1 A B det(Cτ+D)−k (1.3) ³ k,m£¡C D¢ ¤´ ¡C D¢ ·exp 2πim −(Cτ+D)−1(z+λτ+µ)C t(z+λτ+µ) +λτtλ+2λtz+µtλ+x ³ ¡ ¢´ ·φ (Aτ+B)(Cτ+D)−1,(z+λτ+µ)(Cτ+D)−1 ¡ ¢ forall A B ,(λ,µ),x ∈GJ. AJacobi formof degree g, weight k, andindex m is invariant under £¡C D¢ ¤ (1.3)whenrestrictedto A B ∈Sp (Z), (λ,µ)∈Z2g, andκ=0. Moreover, everyφ∈J(g) (ρ)hasa ¡C D¢ g k,m Fourierseriesexpansionoftheform φ(τ,z)= c(T,R)e2πitr(Tτ+zR), X T,R where the sum is over symmetric, positive semi-definite, andrational g×g matrices T andover columnvectorsR∈Qg suchthat4mT −RtR ispositivesemi-definite. Finally,westatetheanalogof(1.1)forJacobiforms. Letφ∈J(g) (ρ)suchthatφ6≡0(modp),i.e., k,m thereexistsaFourierseriescoefficientc(T,R)ofφsuchthatc(T,R)6≡0(modp). Thenthemodp diagonalvanishingorderofφisdefinedby ordpφ:=max 0≤l ∈Z:∀R,T =(tij),tii ≤l forall1≤i ≤g :c(T,R)≡0(modp) , (1.4) © ª andifφhasp-integralrationalcoefficientssuchthatφ6≡0(modp),thenonedefinesord φinthe p sameway. –3– SturmBounds—2 VanishingordersofJacobiforms O.K.Richter,M.W.-Raum 2| Vanishing orders of Jacobi forms In this section, we discuss diagonal vanishing orders of Jacobi forms and of their evaluations at torsionpoints. Throughout,N isapositiveintegerthatisnotdivisiblebyp.ConsidertheCvectorspace V¡ρ[N]¢:=Ch¡N1Zg/NZg¢2i=span©eα,β :α,β∈ N1Zg/NZgª, (2.1) C andtherepresentationρ onV ρ ,whichisdefinedbytheactionofSp (Z)on(1Zg/NZg)2: [N] ¡ [N]¢ g N ρ[N]¡M−1¢eα,β:=eα′,β′, where ¡α′,β′¢:=¡α,β¢M forM∈Spg(Z). (2.2) Ifφ∈J(g) ,thenφ[N]isitsrestrictiontotorsionpointsofdenominatoratmostN,i.e., k,m φ[N]:H(g)−→V ρ [N] ¡ ¢ φ[N](τ):= φ| [I ,(α,β),0] (τ,0) , (2.3) ³¡ k,m g ¢ ´α,β∈1Zg/NZg N where I stands for the g×g identity matrix. It is easy to see thatφ[N]is a vector-valued Siegel g modularform(seealsoTheorem 1.3of[EZ85]andTheorem1.5of[Zie89]): Lemma2.1. Letφ∈J(g) .Thenφ[N]∈M(g)(ρ ). k,m k [N] Proof. Wefirstarguethatφ[N]iswell-defined:Ifa,b∈Zg,then φ| [I ,(α+Na,β+Nb),0]=φ| [I ,(Na,Nb),Nαtb−Nβta]| [I ,(α,β),0]. k,m g k,m g k,m g Note that κ:=Nαtb−Nβta ∈Z does not contribute to the action, andwe findthat the defining expressionforφ[N]isindependentofthechoiceofrepresentativesofα,β∈ 1Zg/NZg. N Nextweverifythebehaviorundermodulartransformationofφ[N].LetM∈Sp (Z).Then g [I ,(α,β),0]·[M,(0,0),0)]=[M,(0,0),0]·[I ,(α′,β′),0] g g with α′,β′ = α,β M,whichimpliesthat ¡ ¢ ¡ ¢ φ[N] | M= φ| [I ,(α,β),0] (·,0) | M= φ| [M,(0,0),0]·[I ,(α′,β′),0] (·,0) ¡ α,β¢k ¡ k,m g ¢ ¢k ¡ k,m g ¢ = φ[N]α′,β′ . ¡ ¢ Thenextlemmarelatesthemod pdiagonalvanishingordersofaJacobiformφanditsspecial- izationφ[N]. Lemma2.2. Letφ∈J(kg,m) .Thenordpφ[N]≥ordpφ−m4. Proof. Letφ(τ,z)= c(T,R)e2πi(tr(Tτ)+zR).Thenφ[N](τ)equals T,R P ¡φ|k[Ig,(α,β),0]¢(τ,0)=e2πim(ατtα+βtα) Xc(T,R)e2πi¡tr(Tτ)+(ατ+β)R¢ T,R (2.4) =e2πimβtα c(T,R)e2πiβRe2πitr³¡T−41mRtR+m1 t¡mα+21tR¢¡mα+12tR¢¢τ´. X T,R Observethatc(T,R)e2πiβ(tα+R)∈Op. Itsufficestoshowthatc(T,R)vanishesmod pifthediagonal entriesti′i ofT′:=T−41mRtR arelessthanordpφ−m4. ConsiderT,R suchthat ti′i ≤ordpφ−m4 forsome fixedi. Note thatc(T,R)remainsunchanged whenreplacingT 7→T+1(Rλ+tλtR)+mtλλandR7→R+2mtλ,whichcorrespondstotheinvariance 2 ofφunder| [I ,(λ,0),0]. HenceweonlyhavetoconsiderthecaseofR= t(r ,...,r )with−m≤ k,m g 1 g ri ≤m.Inthiscase,ti′i =tii−41mri2≤ordpφ−m4 impliesthattii ≤ordpφ,i.e.,c(T,R)≡0(modp). –4– SturmBounds—2 VanishingordersofJacobiforms O.K.Richter,M.W.-Raum Thefollowinglemmaassociatesthemod pdiagonalvanishingordersofscalar-valuedandvector- valuedSiegelmodularforms. Lemma2.3. Supposethatthereexistsamod pdiagonalslopebound̺(g) fordegreeg ≥1. Letρ diag,p bearepresentationofSpg(Z)definedoverOp,andassumethatitsdualρ∗isalsodefinedoverOp. If F ∈M(kg)(ρ)suchthatordpF >k±̺(dgia)g,p,thenF ≡0(modp). Proof. LetvbealinearformonV(ρ),i.e.,v∈V(ρ)∗(Op).Then〈F,v〉:=v◦F isascalar-valuedSiegel modularformofweightkforthegroupkerρ.Weobtainascalar-valuedSiegelmodularformforthe fullgroupSp (Z)viathestandardconstruction(seealsotheproofofProposition1.4of[BWR14]) g F := 〈F,v〉| M= 〈F,ρ∗(M)v〉∈M(g), v Y k Y dk M:kerρ\Sp (Z) M:kerρ\Sp (Z) g g whered :=£kerρ:Spg(Z)¤. Observethatρ∗(M)v∈V(ρ)∗(Op),andhencetheFourierseriescoeffi- cientsofFv dobelongtoOp. TheassumptionordpF >k±̺(dgia)g,p impliesthatordpFv >dk±̺(dgia)g,p, andsinceF isofweightdk,wefindthatF ≡0(modp)forallv. Hence〈F,v〉vanishesmod pfor v v everyv,whichprovesthatF ≡0(modp). The finalresult in thisSection on the mod pdiagonal vanishing ordersof scalar-valued Jacobi formsandSiegel modularformsisanimportantingredientintheproofofTheoremIinthenext Section. Proposition2.4. Supposethatthereexistsamod pdiagonalslopebound̺(g) fordegreeg ≥1.Let diag,p φ∈J(kg,m) suchthatordpφ>m4 +k±̺(dgia)g,p.Thenφ≡0(modp). Proof. Letφ(τ,z)= c(T,R)e2πi(tr(Tτ)+zR).Lemmata2.2and2.3implythatφ[N]≡0(modp)for T,R P all N thatare relatively primeto p. Weprove by induction on the diagonalentries(t )of T that ii c(T,R)≡0(modp). The constant Fourierseries coefficient of φ[1] equals c(0,0). Hence c(0,0)≡ 0(modp),i.e.,thebasecaseholds.Next,letT bepositivesemi-definiteandsupposethatc(T′,R)≡ 0(modp)forallT′=(t′ )witht′ <t foralli. IfR= t(r ,...,r )suchthat|r |>mforsomei,then ij ii ii 1 g i (asin theproof ofLemma 2.2)usethe modularinvariance ofφtorelatec(T,R)tosome c(T′,R′) with t′ <t . Thatis, itsuffices toshow thatc(T,R)≡0(modp)forR with −m ≤r ≤m foralli. ii ii i Now, fix a prime N 6= p such that 2m < N−2. If β= t(β ,...,β )∈ 1Zg, then φ[N]≡0(modp) 1 g N impliesthat(seealso(2.4)) c(T,R)e2πiβR≡ c(T,R)e2πiβR≡0(modp), X X R R |ri|≤N2−1 wherethefirstcongruencefollows fromtheinduction hypothesisandtheassumptionthat2m < N−2(seealsotheproofofLemma2.2). Notethate2πiβR areintegersintheN-thcyclotomicfield. Moreover,if A:=¡e2πiβR¢ R∈Zg,1−2N<ri≤N2−1 , β∈N1Zg,0≤Nβi≤N−2 then(observingthatN isprime)detA=(−1)N−1NN−2 isthediscriminantoftheN-thcyclotomic field.Inparticular,detA6≡0(modp),andweconcludethatc(T,R)≡0(modp). –5– SturmBounds—3 SlopeboundsforSiegelmodularforms O.K.Richter,M.W.-Raum 3| Slope bounds for Siegel modular forms (g) Weprovebyinductionthatthereexistsadiagonalslopebound̺ forSiegelmodularformsof diag,p degreeg ≥1,whichthenyieldsTheoremIandCorollaryII. Proposition3.1. If ̺(g−1) is a diagonal slope bound for degree g −1 Siegel modular forms, then diag,p ̺(g) := 3̺(g−1) isadiagonalslopeboundfordegreeg Siegelmodularforms. diag,p 4 diag,p Proof. Supposethatthereexistsan06≡F ∈M(g)whosediagonalslopemodulopislessthan̺(g) = k diag,p 3̺(g−1), i.e., the diagonal vanishing order of F is greater than k ̺(g) . Consider Fourier-Jacobi 4 diag,p ± diag,p coefficients06≡φ ∈J(g−1)ofF.Ifm≤k ̺(g) ,then m k,m ± diag,p k m 3 k m k ordpφm> ̺(g) ≥ 4 +4̺(g) = 4 +̺(g−1) , diag,p diag,p diag,p andProposition2.4impliesthatφ ≡0(modp). m If m >k ̺(g) , then an induction on m shows that φ ≡0(modp). More specifically, fix an ± diag,p m index m and suppose that φm′ ≡0(modp) for all m′ <m. Thus, the mod p diagonal vanishing orderofφ isatleastm,andwe applyagainProposition 2.4tofindthatφ ≡0(modp). Hence m m F ≡0(modp),whichyieldstheclaim. Proposition3.1holdsforanyprimeidealpinQur,andhencealsofortherationalprimep. Asa p consequencewediscoverexplicitslopebounds,whichimmediatelyimplyTheoremI. Theorem3.2. Letg ≥1.Thereexistadiagonalslopebound̺(g) suchthat diag,p 3 g ̺(g) ≥16· . diag,p ³4´ If,inaddition,g ≥2andp≥5,then ̺(g) ≥ 160· 3 g. diag,p 9 ³4´ Proof. WeapplyProposition3.1tothebasecase̺(1) =12(see[Stu87]),andifp≥5,tothebase diag,p case̺(2) =10(see[CCK13]). diag,p Example3.3. Ifp≥5,thenforg =3,4,5,6weobtain ̺(3) ≥7.5, ̺(4) ≥5.6, ̺(5) ≥4.2, ̺(6) ≥3.1. diag,p diag,p diag,p diag,p Finally,weproveCorollaryII. ProofofCorollaryII. LetF ∈M(g) with rationalFourierseriescoefficients c(T)such thatc(T)∈Z k for all T =(t ) with t ≤ 4 g k for all i. Note that F has bounded denominators (this follows ij ii ¡3¢ 16 from[CF90]),i.e.,thereexistsan0<l ∈ZsuchthatlF ∈M(g)hasintegralFourierseriescoefficients. k Letl beminimalwiththisproperty. Weneedtoshowthatl =1. Ifl 6=1,thenthereexistsaprime q such that q|l. Hence lc(T)≡0(modq)for all T with t ≤ 4 g k , andTheorem I asserts that ii ¡3¢ 16 lc(T)≡0(modq)forallT.Thiscontradictstheminimalityofl,andweconcludethatl =1. –6– SturmBounds—4 References O.K.Richter,M.W.-Raum 4| References [BWR14] J.BruinierandM.Westerholt-Raum.“Kudla’smodularityconjectureandformalFourier-Jacobi series”.Preprint.2014. [CCK13] D.Choi,Y.Choie,andT.Kikuta.“SturmtypetheoremforSiegelmodularformsofgenus2 modulop”.ActaArith.158.2(2013),pp.129–139. [CCR11] D.Choi,Y.Choie,andO.Richter.“CongruencesforSiegelmodularforms”.Ann.Inst.Fourier (Grenoble)61.4(2011),pp.1455–1466. [CF90] C.-L.ChaiandG.Faltings.Degenerationofabelianvarieties.Vol.22.ErgebnissederMathematik undihrerGrenzgebiete(3).Heidelberg:Springer,1990. [DR10] M.DewarandO.Richter.“RamanujancongruencesforSiegelmodularforms”.Int.J.Number Theory6.7(2010),pp.1677–1687. [EZ85] M.EichlerandD.Zagier.ThetheoryofJacobiforms.Boston:Birkhäuser,1985. [Ono04] K.Ono.Thewebofmodularity:Arithmeticofthecoefficientsofmodularformsandq-series. Vol.102.CBMSRegionalConferenceSeriesinMathematics.PublishedfortheConference BoardoftheMathematicalSciences,Washington,DC,2004. [PRY09] C.Poor,N.Ryan,andD.Yuen.“Liftingpuzzlesindegreefour”.Bull.Aust.Math.Soc.80.1 (2009),pp.65–82. [PY] C.PoorandD.Yuen.“Paramodularcuspforms”.ToappearinMathematicsofComputation. [RR] M.RaumandO.Richter.“ThestructureofSiegelmodularformsmodpandU(p) congruences”.ToappearinMathematicalResearchLetters. [Shi78] G.Shimura.“Oncertainreciprocity-lawsforthetafunctionsandmodularforms”.Acta.Math. 141.1-2(1978),pp.35–71. [Ste07] W.Stein.Modularforms:Acomputationalapproach.Vol.79.GraduateStudiesinMathematics. WithanappendixbyP.Gunnells.AmericanMathematicalSociety,Providence,RI,2007. [Stu87] J.Sturm.“Onthecongruenceofmodularforms”.NumberTheory(NewYork,1984–1985). Vol.1240.LectureNotesinMath.Springer,1987,pp.275–280. [Zie89] C.Ziegler.“Jacobiformsofhigherdegree”.Abh.Math.Sem.Univ.Hamburg59(1989), pp.191–224. DepartmentofMathematics,UniversityofNorthTexas,Denton,TX76203,USA E-mail:[email protected] Homepage:http://www.math.unt.edu/~richter/ MaxPlanckInstituteforMathematics,Vivatsgasse7,D-53111,Bonn,Germany E-mail:[email protected] Homepage:http://raum-brothers.eu/martin –7–

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.