ebook img

Statistical Significance Testing for Natural Language Processing PDF

118 Pages·2020·1.359 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Significance Testing for Natural Language Processing

D Series ISSN 1947-4040 R O R • E T A L Series Editor: Graeme Hirst, University of Toronto Statistical Significance Testing for Natural Language Processing S T A Rotem Dror, Technion — Israel Institute of Technology T I S Lotem Peled-Cohen, Technion — Israel Institute of Technology T I C Segev Shlomov, Technion — Israel Institute of Technology A L Roi Reichart, Technion — Israel Institute of Technology S I G N I F Data-driven experimental analysis has become the main evaluation tool of Natural Language Processing (NLP) I C algorithms. In fact, in the last decade, it has become rare to see an NLP paper, particularly one that proposes a A N new algorithm, that does not include extensive experimental analysis, and the number of involved tasks, datasets, C E domains, and languages is constantly growing. This emphasis on empirical results highlights the role of statistical T E significance testing in NLP research: If we, as a community, rely on empirical evaluation to validate our hypotheses S T I and reveal the correct language processing mechanisms, we better be sure that our results are not coincidental. N G The goal of this book is to discuss the main aspects of statistical significance testing in NLP. Our guiding F O assumption throughout the book is that the basic question NLP researchers and engineers deal with is whether R or not one algorithm can be considered better than another one. This question drives the field forward as it allows N A T the constant progress of developing better technology for language processing challenges. In practice, researchers U R and engineers would like to draw the right conclusion from a limited set of experiments, and this conclusion A L should hold for other experiments with datasets they do not have at their disposal or that they cannot perform L A due to limited time and resources. The book hence discusses the opportunities and challenges in using statistical N G significance testing in NLP, from the point of view of experimental comparison between two algorithms. We U A cover topics such as choosing an appropriate significance test for the major NLP tasks, dealing with the unique G E aspects of significance testing for non-convex deep neural networks, accounting for a large number of comparisons P R between two NLP algorithms in a statistically valid manner (multiple hypothesis testing), and, finally, the unique O C challenges yielded by the nature of the data and practices of the field. E S S I N ABOUT SYNTHESIS G This volume is a printed version of a work that appears in the Synthesis Digital Library of Engineering and Computer Science. Synthesis lectures provide concise original presentations of important research and development topics, published quickly in digital and print formats. For M more information, visit our website: http://store.morganclaypool.com O R G A N & C store.morganclaypool.com LA Y P O O L Statistical Significance Testing for Natural Language Processing Synthesis Lectures on Human Language Technologies Editor GraemeHirst,UniversityofToronto SynthesisLecturesonHumanLanguageTechnologiesiseditedbyGraemeHirstoftheUniversity ofToronto.Theseriesconsistsof50-to150-pagemonographsontopicsrelatingtonatural languageprocessing,computationallinguistics,informationretrieval,andspokenlanguage understanding.Emphasisisonimportantnewtechniques,onnewapplications,andontopicsthat combinetwoormoreHLTsubfields. StatisticalSignificanceTestingforNaturalLanguageProcessing RotemDror,LotemPeled-Cohen,SegevShlomov,andRoiReichart 2020 DeepLearningApproachestoTextProduction ShashiNarayanandClaireGardent 2020 LinguisticFundamentalsforNaturalLanguageProcessingII:100Essentialsfrom SemanticstoPragmatics EmilyM.BenderandAlexLascarides 2019 Cross-LingualWordEmbeddings AndersSøgaard,IvanVulić,SebastianRuder,andManaalFaruqui 2019 BayesianAnalysisinNaturalLanguageProcessing,SecondEdition ShayCohen 2019 ArgumentationMining ManfredStedeandJodiSchneider 2018 QualityEstimationforMachineTranslation LuciaSpecia,CarolinaScarton,andGustavoHenriquePaetzold 2018 iv NaturalLanguageProcessingforSocialMedia,SecondEdition AtefehFarzindarandDianaInkpen 2017 AutomaticTextSimplification HoracioSaggion 2017 NeuralNetworkMethodsforNaturalLanguageProcessing YoavGoldberg 2017 Syntax-basedStatisticalMachineTranslation PhilipWilliams,RicoSennrich,MattPost,andPhilippKoehn 2016 Domain-SensitiveTemporalTagging JannikStrötgenandMichaelGertz 2016 LinkedLexicalKnowledgeBases:FoundationsandApplications IrynaGurevych,JudithEckle-Kohler,andMichaelMatuschek 2016 BayesianAnalysisinNaturalLanguageProcessing ShayCohen 2016 Metaphor:AComputationalPerspective TonyVeale,EkaterinaShutova,andBeataBeigmanKlebanov 2016 GrammaticalInferenceforComputationalLinguistics JeffreyHeinz,ColindelaHiguera,andMennovanZaanen 2015 AutomaticDetectionofVerbalDeception EileenFitzpatrick,JoanBachenko,andTommasoFornaciari 2015 NaturalLanguageProcessingforSocialMedia AtefehFarzindarandDianaInkpen 2015 SemanticSimilarityfromNaturalLanguageandOntologyAnalysis SébastienHarispe,SylvieRanwez,StefanJanaqi,andJackyMontmain 2015 v LearningtoRankforInformationRetrievalandNaturalLanguageProcessing,Second Edition HangLi 2014 Ontology-BasedInterpretationofNaturalLanguage PhilippCimiano,ChristinaUnger,andJohnMcCrae 2014 AutomatedGrammaticalErrorDetectionforLanguageLearners,SecondEdition ClaudiaLeacock,MartinChodorow,MichaelGamon,andJoelTetreault 2014 WebCorpusConstruction RolandSchäferandFelixBildhauer 2013 RecognizingTextualEntailment:ModelsandApplications IdoDagan,DanRoth,MarkSammons,andFabioMassimoZanzotto 2013 LinguisticFundamentalsforNaturalLanguageProcessing:100Essentialsfrom MorphologyandSyntax EmilyM.Bender 2013 Semi-SupervisedLearningandDomainAdaptationinNaturalLanguageProcessing AndersSøgaard 2013 SemanticRelationsBetweenNominals ViviNastase,PreslavNakov,DiarmuidÓSéaghdha,andStanSzpakowicz 2013 ComputationalModelingofNarrative InderjeetMani 2012 NaturalLanguageProcessingforHistoricalTexts MichaelPiotrowski 2012 SentimentAnalysisandOpinionMining BingLiu 2012 vi DiscourseProcessing ManfredStede 2011 BitextAlignment JörgTiedemann 2011 LinguisticStructurePrediction NoahA.Smith 2011 LearningtoRankforInformationRetrievalandNaturalLanguageProcessing HangLi 2011 ComputationalModelingofHumanLanguageAcquisition AfraAlishahi 2010 IntroductiontoArabicNaturalLanguageProcessing NizarY.Habash 2010 Cross-LanguageInformationRetrieval Jian-YunNie 2010 AutomatedGrammaticalErrorDetectionforLanguageLearners ClaudiaLeacock,MartinChodorow,MichaelGamon,andJoelTetreault 2010 Data-IntensiveTextProcessingwithMapReduce JimmyLinandChrisDyer 2010 SemanticRoleLabeling MarthaPalmer,DanielGildea,andNianwenXue 2010 SpokenDialogueSystems KristiinaJokinenandMichaelMcTear 2009 IntroductiontoChineseNaturalLanguageProcessing Kam-FaiWong,WenjieLi,RuifengXu,andZheng-shengZhang 2009 vii IntroductiontoLinguisticAnnotationandTextAnalytics GrahamWilcock 2009 DependencyParsing SandraKübler,RyanMcDonald,andJoakimNivre 2009 StatisticalLanguageModelsforInformationRetrieval ChengXiangZhai 2008 Copyright©2020byMorgan&Claypool Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotations inprintedreviews,withoutthepriorpermissionofthepublisher. StatisticalSignificanceTestingforNaturalLanguageProcessing RotemDror,LotemPeled-Cohen,SegevShlomov,andRoiReichart www.morganclaypool.com ISBN:9781681737959 paperback ISBN:9781681737966 ebook ISBN:9781681738307 epub ISBN:9781681737973 hardcover DOI10.2200/S00994ED1V01Y202002HLT045 APublicationintheMorgan&ClaypoolPublishersseries SYNTHESISLECTURESONHUMANLANGUAGETECHNOLOGIES Lecture#45 SeriesEditor:GraemeHirst,UniversityofToronto SeriesISSN Print1947-4040 Electronic1947-4059

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.