ebook img

Some identities involving the near pseudo Smarandache function PDF

2007·0.17 MB·
by  Yu Wang
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Some identities involving the near pseudo Smarandache function

Scientia Magna Vol. 3 (2007), No. 2, 44-49 Some identities involving the near pseudo Smarandache function Yu Wang Department of Mathematics, Northwest University Xi’an, Shaanxi, P.R.China Received March 29, 2007 Abstract For any positive integer n and fixed integer t ≥ 1, we define function U (n) = t min{k : 1t+2t+···+nt+k = m, n | m, k ∈ N+, t ∈ N+}, where n ∈ N+, m ∈ N+, which is a new pseudo Smarandache function. The main purpose of this paper is using the elementary method to study the properties of U (n), and obtain some interesting identities t involving function U (n). t Keywords Some identities, reciprocal, pseudo Smarandache function. §1. Introduction and results In reference [1], A.W.Vyawahare defined the near pseudo Smarandache function K(n) as n(n+1) K(n)=m= +k,wherek isthesmallpositiveintegersuchthatndividesm. Thenhe 2 studied the elementary properties of K(n), and obtained a series interesting results for K(n). n(n+3) n(n+2) For example, he proved that K(n)= , if n is odd, and K(n)= , if n is even; 2 2 The equation K(n) = n has no positive integer solution. In reference [2], Zhang Yongfeng studied the calculating problem of an infinite series involving the near pseudo Smarandache 1 (cid:88)∞ 1 functionK(n), and proved that for anyreal numbers> , the series is convergent, 2 Ks(n) n=1 and (cid:88)∞ 1 2 5 = ln2+ , K(n) 3 6 n=1 (cid:88)∞ 1 11 22+2ln2 = π2− . K2(n) 108 27 n=1 Yang hai and Fu Ruiqin [3] studied the mean value properties of the near pseudo Smarandache function K(n), and obtained two asymptotic formula by using the analytic method. They proved that for any real number x≥1, (cid:88) (cid:88) (cid:181) n(n+1)(cid:182) 3 (cid:179) (cid:180) d(k)= d K(n)− = xlogx+Ax+O x12 log2x , 2 4 n≤x n≤x Vol. 3 SomeidentitiesofreciprocalofthenearpseudoSmarandachefunction 45 where A is a computable constant. (cid:88) (cid:181) n(n+1)(cid:182) 93 (cid:179) (cid:180) ϕ K(n)− = x2+O x32+(cid:178) , 2 28π2 n≤x where (cid:178) denotes any fixed positive number. In this paper, we define a new near Smarandache function U (n)=min{k : 1t+2t+···+ t nt+k =m, n|m, k ∈N+, t∈N+}, where n∈N+, m∈N+. Then we study its elementary properties. Aboutthisfunction,itseemsthatnonehadstudiedityet,atleastwehavenotseen such a paper before. In this paper, we using the elementary method to study the calculating problem of the infinite series (cid:88)∞ 1 , Us(n) n=1 t and give some interesting identities. That is, we shall prove the following: Theorem 1. For any real number s>1, we have the identity (cid:181) (cid:182) (cid:88)∞ 1 1 =ζ(s) 2− , Us(n) 2s n=1 1 where ζ(s) is the Riemann zeta-function. Theorem 2. For any real number s>1, we have (cid:183) (cid:181) (cid:182)(cid:181) (cid:182)(cid:184) (cid:88)∞ 1 1 1 1 1 =ζ(s) 1+ − +2 1− 1− . Us(n) 5s 6s 2s 3s n=1 2 Theorem 3. For any real number s>1, we also have (cid:34) (cid:181) (cid:182) (cid:35) (cid:88)∞ 1 1 2 =ζ(s) 1+ 1− . Us(n) 2s n=1 3 π2 π4 Taking s = 2, 4, and note that ζ(2) = , ζ(4) = , from our theorems we may 6 90 immediately deduce the following: Corollary. Let U (n) defined as the above, then we have the identities t (cid:88)∞ 1 7 (cid:88)∞ 1 2111 = π2; = π2; U2(n) 24 U2(n) 5400 n=1 1 n=1 2 (cid:88)∞ 1 25 (cid:88)∞ 1 31 = π2; = π4; U2(n) 96 U4(n) 1440 n=1 3 n=1 1 t (cid:88)∞ 1 2310671 (cid:88)∞ 1 481 = π4; = π4. U4(n) 72900000 U4(n) 23040 n=1 2 n=1 3 46 YuWang No. 2 §2. Some lemmas To complete the proof of the theorems, we need the following several lemmas. Lemma 1. For any positive integer n, we have  n  , if 2|n, U (n)= 2 1  n, if 2†n. Proof. See reference [1]. Lemma 2. For any positive integer n, we also have  5  6n, if n≡0(mod 6), n, if n≡1(mod 6) or n≡5(mod 6), U2(n)= nn2, if n≡2(mod 6) or n≡4(mod 6), , if n≡3(mod 6). 3 Proof. It is clear that U (n) = min{k :12+22+···+n2+k =m,n|m,k ∈N+} 2 n(n+1)(2n+1) = min{k : +k ≡0(mod n),k ∈N+}. 6 (1) If n≡0(mod 6), then we have n=6h (h =1,2···), 1 1 n(n+1)(2n+1) 6h (6h +1)(12h +1) = 1 1 1 6 6 = 72h3+18h2+h , 1 1 1 n(n+1)(2n+1) 5n so n| +U (n) if and only if 6h |h +U (n), then U (n)= . 6 2 1 1 2 2 6 (2) If n≡1(mod 6), then we have n=6h +1(h =0,1,2···), 2 2 n(n+1)(2n+1) (6h +1)(6h +2)(12h +3) = 2 2 2 6 6 = 12h2(6h +1)+7h (6h +1)+6h +1, 2 2 2 2 2 n(n+1)(2n+1) n(n+1)(2n+1) because n | , so n | +U (n) if and only if n | U (n), then 6 6 2 2 U (n)=n. 2 If n≡5(mod 6), then we have n=6h +5(h =0,1,2···), 2 2 n(n+1)(2n+1) (6h +5)(6h +6)(12h +11) = 2 2 2 6 6 = 12h2(6h +5)+23h (6h +5)+11(6h +5), 2 2 2 2 2 n(n+1)(2n+1) n(n+1)(2n+1) because n | , so n | +U (n) if and only if n | U (n), then 6 6 2 2 U (n)=n. 2 (3) If n≡2(mod 6), then we have n=6h +2(h =0,1,2···), 2 2 n(n+1)(2n+1) (6h +2)(6h +3)(12h +5) = 2 2 2 6 6 = 12h2(6h +2)+11h (6h +2)+2(6h +2)+3h +1, 2 2 2 2 2 2 Vol. 3 SomeidentitiesofreciprocalofthenearpseudoSmarandachefunction 47 n(n+1)(2n+1) n so n| +U (n) if and only if 6h +2|3h +1+U (n), then U (n)= . 6 2 2 2 2 2 2 If n≡4(mod 6), then we have n=6h +4(h =0,1,2···), 2 2 n(n+1)(2n+1) (6h +4)(6h +5)(12h +9) = 2 2 2 6 6 = 12h2(6h +4)+19h (6h +4)+7(6h +4)+3h +3, 2 2 2 2 2 2 n(n+1)(2n+1) n so n| +U (n) if and only if 2(3h +2)|3h +2+U (n), then U (n)= . 6 2 2 2 2 2 2 (4) If n≡3(mod 6), then we have n=6h +3(h =0,1,2···), 2 2 n(n+1)(2n+1) (6h +3)(6h +4)(12h +7) = 2 2 2 6 6 = 12h2(6h +3)+15h (6h +3)+4(6h +3)+4h +2, 2 2 2 2 2 2 n(n+1)(2n+1) n so n| +U (n) if and only if 3(2h +1)|2(2h +2)+U (n), then U (n)= . 6 2 2 2 2 2 3 Combining (1), (2), (3) and (4) we may immediately deduce Lemma 2. Lemma 3. For any positive integer n, we have  n  , if n≡2(mod 4), U (n)= 2 3  n, otherwise. Proof. From the definition of U (n) we have 3 U (n) = min{k :13+23+···+n3+k =m,n|m,k ∈N+} 3 n2(n+1)2 = min{k : +k ≡0(mod n),k ∈N+}. 4 (a) If n≡2(mod 4), then we have n=4h +2(h =0,1,2···), 1 1 n2(n+1)2 =(4h +2)3(2h +1)+(4h +2)2(2h +1)+(2h +1)2, 4 1 1 1 1 1 n2(n+1)2 n so n| if and only if 2(2h +1)|(2h +1)2+U (n), then U (n)= . 4 1 1 3 3 2 (b) If n≡0(mod 4), then we have n=4h (h =1,2···), 2 2 n2(n+1)2 =4h2(4h +1)2, 4 2 2 n2(n+1)2 so n| +U (n) if and only if n|U (n), then U (n)=n. 4 3 3 3 If n≡1(mod 4), then we have n=4h +1(h =0,1,2···), 1 1 n2(n+1)2 =(4h +1)2(2h +1)2, 4 1 1 n2(n+1)2 so n| +U (n) if and only if n|U (n), then U (n)=n. 4 3 3 3 If n≡3(mod 4), then we have n=4h +3(h =0,1,2···), 1 1 n2(n+1)2 =4(4h +3)2(h +1)2, 4 1 1 n2(n+1)2 uso n| +U (n) if and only if n|U (n), then U (n)=n. 4 3 3 3 Now Lemma 3 follows from (a) and (b). 48 YuWang No. 2 §3. Proof of the theorems Inthissection,weshallusetheelementarymethodstocompletetheproofofthetheorems. First we prove Theorem 1. For any real number s>1, from Lemma 1 we have (cid:181) (cid:182) (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 1 = + = + =ζ(s) 2− , Us(n) (n)s ns hs (2h+1)s 2s n=1 1 h=1 2 h=0 h=1 h=0 n=2h n=2h+1 where ζ(s) is the Riemann zeta-function. This proves Theorem 1. For t=2 and real number s>1, from Lemma 2 we have (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 = (cid:161) (cid:162) + + (cid:161) (cid:162) + (cid:161) (cid:162) + Us(n) 5n s ns n s n s ns n=1 2 h1=1 6 h2=0 h2=0 3 h2=0 2 h2=0 n=6h1 n=6h2+1 n=6h2+2 n=6h2+4 n=6h2+5 (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 = + + + + (5h )s (6h +1)s (3h +1)s (2h +1)s 1 2 2 2 h1=1 h2=0 h2=0 h2=0 (cid:88)∞ 1 (cid:88)∞ 1 + (3h +2)s (6h +5)s 2 2 h2=0(cid:183) h2=0(cid:181) (cid:182)(cid:181) (cid:182)(cid:184) 1 1 1 1 = ζ(s) 1+ − +2 1− 1− , 5s 6s 2s 3s This completes the proof of Theorem 2. If t=3, then for any real number s>1, from Lemma 3 we have (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 = + + (cid:161) (cid:162) + Us(n) ns ns n s ns n=1 3 h2=1 h1=0 h1=0 2 h1=0 n=4h2 n=4h1+1 n=4h1+2 n=4h1+3 (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 (cid:88)∞ 1 = + + + (4h )s (4h +1)s (2h +1)s (4h +3)s 2 1 1 1 h2=1(cid:34) (cid:181) h1=0(cid:182) (cid:35) h1=0 h1=0 1 2 = ζ(s) 1+ 1− , 2s This completes the proof of Theorem 3. Open Problem. For any integer t > 3 and real number s > 1, whether there exists a calculating formula for the Dirichlet series (cid:88)∞ 1 ? Us(n) n=1 t This is an open problem. Vol. 3 SomeidentitiesofreciprocalofthenearpseudoSmarandachefunction 49 References [1] A. W. Vyawahare, Near pseudo Smarandache funchion, Smarandache Notion Journal, 14(2004), 42-59. [2] Yongfeng Zhang, On a near pseudo Smarandache funchion, Scientia Magna, 1(2007), No.1, 98-101. [3] Hai Yang and Ruiqin Fu, On the mean value of the Near Pseudo Smarandanche Func- tion, Scientia Magna, 2(2006), No.4, 35-39.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.