ebook img

Sobolev Freud polynomials PDF

0.12 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sobolev Freud polynomials

Sobolev Freud polynomials Mohamed BOUALI 5 1 0 2 Abstract n a J Weinvestigatetheuniformasymptoticof someSobolevorthogo- 1 nal polynomials. Three term recurrence relation is given, moreover ] wegivearecurrencerelationbetweentheso-calledSobolevorthogo- A nalpolynomialsandFreudorthogonalpolynomials. C . h t a 1 Introduction m [ During the past few years, orthogonal polynomials with respect to an in- 1 v ner product involving derivatives (so-called Sobolev orthogonal polyno- 0 0 mials) have been the object of increasing number of works (see, for in- 5 6 stance [1], [5], [6], [4], [7], [8]). Recurrence relations, asymptotics, alge- 0 ff braic, di erentiation properties and zeros for various families of polyno- . 2 0 mials have been studied. In this paper we study a connection between a 5 particular case of non-standard orthogonal polynomials. 1 : v For λ1,λ2 0, we defined the inner product ≥ i X r f ,g = f (x)g(x)e x4dx+λ f (0)(x)g(0)+λ f (0)(x)g (0), a S − 1 2 ′ ′ h i ZR We denote also by the norm associate to the inner product .,. . Let S S ||·|| h i Q be the sequence of orthogonal polynomial with respect to .,. . We n S h i denoted k = Q 2 = Q ,Q . n || n||S h n nis LetP bethesequenceofmonicpolynomialsorthogonalwithrespectto nb + the inner product f ,g = ∞f (x)g(x)e x4dx : They have been consid- F − h i Z ered by Nevai [14,15]. These−p∞olynomials satisfy a three-term recurrence 1 relation xP (x)=P (x)+c P (x), n n+1 n n 1 − with initial conditions P (x) = 1 and P (x) = x; where the parameters c 0 1 n satisfy a non-linear recurrence relation (see [4]) n=4c (c +c +c ), n 1, n n+1 n n 1 − ≥ Γ Γ with c = 0 and c = (3/4)/ (1/4). Moreover the polynomial P satisfies 0 1 n therecurrence relation P (x)=nP (x)+d P (x), n 3 n′ n 1 n n 3 − − ≥ + where d = 4k /k , with k = P 2 = ∞ P (x) 2e x4dx. One can see n n n−3 n || n||F Z n − (cid:16) (cid:17) from the three-term recurrence relation th−a∞t k =c k , (1.1) n n n 1 − and d =4c c c . n n n 1 n 2 − − Lemma1.1 1. ForallpolynomialsP,Q, xmP,Q = P,xmQ = xmP,Q = P,xmQ , S S F F h i h i h i h i wherem 1 ifλ =0, and m 2 if λ >0. 2 2 ≥ ≥ 2. For a polynomial Q, we denote Q(x) =Q( x). For all polynomials P,Q, − wehave Q,P = Q,P . h iS h iS e 3. Q ( x)=e( 1)nQ (x).e n n − − Proof. Theproof of the first item iseasy. 2) Using the symmetry of the Freud inner product Q,P = Q,P and F F h i h i thefact that P (0)= P (0) ′ − ′ e e e Q,P = Q,P +λ Q(0)P(0) λ Q (0)P (0) S F 1 2 ′ ′ h i h i − e = Qe,P F +λ1Q(0)P(0) λ2Q′(0)P′(0) h i − . = Q,P +λ Q(0)P(0)+λ Q (0)P (0) e F 1 2 ′ ′ h i = Q,P e S e e h i e 2 3) From the first step we have by orthogonality Q ,P = 0, for all poly- n S h i nomials P with deg(P) n 1. ≤ − e ffi HenceQ (x)=α Q (x),equalingtheleadingcoe cientweobtainα = n n n n ( 1)n. − f 2 Case λ = 0 2 Proposition 2.1 ThepolynomialsP and Q are relatedby n n xP (x)=Q (x)+a Q (x), n 1 n n+1 n n 1 − ≥ xQ (x)=P (x)+b P (x), n 1 n n+1 n n 1 − ≥ k k n n Q (x)=1, Q (x)=x, wherea = , b = ,. 0 1 n n kn 1 kbn 1 − − Proof. Since, let write b n xP (x)=Q (x)+ α Q (x), (2.2) n n+1 k k X k=0 By orthogonality one gets + Q 2α = ∞P (x)Q (x)xe x4dx, || k||S k Z n k − −∞ Since for k n 2, byorthogonality theintegral vanishes, moreover using ≤ − the symmetry of the inner product, one as P ( x)=( 1)nP (x), Q ( x)=( 1)kQ (x), n n k k − − − − hence α =0, anda =α . n n n 1 − + k α = ∞P (x)xQ (x)e x4dx=k , n 1 n 1 n n 1 − n − − Z − −∞ b where we used xQ (x) = P (x)+... The second statement can be proved n 1 n − by asame argument. Proposition 2.2 3 c c n+2 n+1 1. +a =c +c . n n+1 n a n+2 2. a b =c c n+1 n n+1 n a b 1 n n 3. lim = lim = . n √n n √n 2√3 →∞ →∞ Proof. 1) Since xP (x)=Q +a Q (x), hence n n+1 n n 1 − xP 2 = Q 2 +a2 Q 2, || n||S || n+1||S n|| n−1||S moreover k Q 2 = n, || n−1||S an and xP 2 = xP 2, from the tree-term recurrence relation onegets || n||S || n||F xP 2 = P 2 +c2 P 2 =(c +c )k , || n||F || n+1||F n|| n−1||F n+1 n n thus k n+2 +a k =(c +c )k , n n n+1 n n a n+2 hence c c n+2 n+1 +a =c +c . n n+1 n a n+2 k k n+1 n 2) We saw that a = , b = , and k =c k ,hence n+1 n n n n 1 kn kbn 1 − − b k n+1 a b = =c c . n+1 n n+1 n k n 1 − c c c +c 3) Let λ =a √n, σ = n+2 n+1, δ = n+1 n. Then we obtain, n n n n+1 n √n+1 σ √n 1 n + − λ =δ , (2.3) n 1 n λn+1 √n+1 − c 1 n Using the factthat lim = , (see for instance [7], [10]) onegets, n √n 2√3 →∞ 1 1 lim σ = , lim δ = . n n n + 12 n + √3 → ∞ → ∞ 4 Moreover since λ 0, and n ≥ n+2 λ δ , n ≤r n n+1 thus the sequence λ is bounded. Let ℓ be the limit of a subsequence. It n follows from equation (2.3), 1 1 +ℓ = , 12ℓ √3 and the unique solution is ℓ = 1 . Hence the unique limit of a sub- 2√3 sequence of λ is ℓ = 1 , then the bounded sequence λ converges to n 2√3 n ℓ = 1 . 2√3 b The same hold for n from therelation a b =c c . √n n+1 n n+1 n Theorem2.3 Theasymptoticbehavior xϕ 4 3x lim Qn(√4nx) = √412 (cid:16)q4 (cid:17) , n→∞ Pn(√4nx) 1+ϕ2 4 3x 4 q (cid:16) (cid:17) holduniformly on compact subset of C [ √44/3,√44/3], where \ − ϕ(x)= x+√x2 1, with √x2 1> 0 for x > 1, i.e., the conformal mapping of − − C [ 1,1] ontotheexterior of theclosedunit disk. \ − Proof. We saw that xQ (x)=P (x)+b P (x). n n+1 n n 1 − It is well-known (see [16]) that from the three-term recurrence relation of non normalizing Freud polynomials xS (x)=α S (x)+α S (x), n n+1 n+1 n n 1 − we can obtain asymptotic properties of the orthonormal polynomials S : n α 1 n Indeed, as lim = .We deduce (see [11]) n √4n √412 →∞ Sn 1 √4nx 1 lim − = , (cid:16) (cid:17) n→∞ Sn √4nx ϕ 4 3x 4 (cid:16) (cid:17) q (cid:16) (cid:17) 5 uniformly on compact subsets of C [ √44/3, √44/3]. Then, for the monic \ − Freud polynomial P one gets n Pn 1 √4nx √412 lim √4n − = , (cid:16) (cid:17) n→∞ Pn √4nx ϕ 4 3x 4 (cid:16) (cid:17) q (cid:16) (cid:17) uniformly on compact subsets of C [ √44/3, √44/3]. \ − Since Q (√4nx) 1 P (√4nx) b √4nP (x) n n+1 n n 1 = + − . Pn(√4nx) x(cid:18)√4nPn(√4nx) √n Pn(x) (cid:19) Asngoestoinfinity,onegetsoneverycompactsubsetsofC [ √44/3, √44/3], \ − lim Qn(√4nx) = 1 ϕ(q4 34x) + 1 √412 . n→∞ Pn √4nx x(cid:18) √412 √12ϕ( 4 3)(cid:19) 4 (cid:16) (cid:17) q Asimple computation gives 2 1+ ϕ 4 3x Q (√4nx) 1 4 lim n = (cid:18) (cid:16)q (cid:17)(cid:19) . n→∞ Pn √4nx √412 xϕ 4 3x 4 (cid:16) (cid:17) q (cid:16) (cid:17) Theorem2.4 The polynomials Q have all their zeros real and simple. For n n 3 thepositivezeros of Q interlacewith thoseof P . n n ≥ Proof. We distinguish two cases: the even and the odd one, respectively. ff Theproofs are similar with slight di erences. Even case: Let x ,k =1,...,m, be the positive zeros of P in increas- 2m,k 2m ing order, that is, x <...<x . First, we need to study the sign of the 2m,1 2m,m integrals + P (x) I = ∞Q (x) 2m e x4dx, m 2, k =1,...,m, 2m,k Z 2m x2 x2 − ≥ −∞ − 2m,k We have + m 1 m 1 + I = ∞Q (x) − (x2 x2 )e x4dx= − b ∞Q (x)x2re x4dx=b (k)λ Q (0), 2m,k Z 2m − 2m,j − rZ 2m − 0 1 2m −∞ j=Y1,j,k Xr=0 −∞ 6 m 1 m − whereb (k)=( 1)m 1 x2 ,andQ (0)= a Q (0)=( 1)m a , 0 − − j=Y1,j,k 2m,j 2m − 2m 2m−2 − Yk=2 2k (a >0), moreover sign(b )=( 1)m 1, hence 2k 0 − − sign(I )= 1. (2.4) 2m,k − On the other hand, using Gaussian quadrature in all the zeros of P and 2m ff taking into account the symmetry of the polynomials Q , the Christo el 2m numbers (see, for example, [7, p140]) 1 µ = , i =1,..,m, 2m,i 2m 1P2(x ) j=0− j 2m,i P together with thefact m P (x ) 2′m 2m,k = x2 x2 , 2x 2m,k − 2m,j 2m,k j=Y1,j,k(cid:16) (cid:17) we get P (x ) 2′m,k 2m,k I =µ Q (x ) , 2m,k 2m,k 2m 2m,k 2x 2m,k andfrom (2.4) we deduce sign(Q )= sign(P ). 2m − 2′m,k Since P (x) has opposite sign in two consecutive zeros of P (x), we de- 2′m 2m duce that it also occurs for Q (x), and therefore Q (x) has one zero in 2m 2m each interval (x ,x ), k =1,...,m 1 (and from the symmetry it has 2m,k 2m+1,k − one zero in each interval ( x , x ), k = 1,...,m 1. Thus Q (x) 2m+1,k 2m,k 2m − − − has at least 2m 2 real and simple zeros interlacing with those of P (x). 2m − Finally, as P (x )>0 then Q (x )<0 and since Q (x) is monic 2′m 2m,2m 2m 2m,2m 2m we deduce the existence of one zero of Q (x) in (x ,+ ) and another 2m 2m,m ∞ zero in ( , x ), which complete theresult for theeven case. 2m,m −∞ − Odd case: Let m 2, 0 < x < ... < x be the positive simple 2m+1,1 2m+1,2m ≥ zeros of P , since P (0)=Q (0)=0, let define theintegral 2m+1 2m+1 2m+1 + P (x) I = ∞Q (x) 2m+1,k e x4dx 2m+1,k Z 2m+1 x2(x2 x2 ) − −∞ − 2m+1,k 7 hence + Q (x) m I = ∞ 2m+1 (x2 x2 )e x4dx, 2m+1,k Z x − 2m,j − −∞ j=Y1,j,k I =m−1b (k) +∞Q2m+1(x)x2re x4dx, 2m+1,k r − Z x Xr=0 −∞ Since for 1 r m 1, ≤ ≤ − + Q (x) ∞ 2m+1 x2re x4dx= Q ,x2r 1 λ (Q x2r 1) , − 2m+1 − S 1 2m+1 − x=0 Z x h i − | −∞ hence byorthogonality one getsfor 1 r m 1 ≤ ≤ − + Q (x) ∞ 2m+1 x2re x4dx=0. − Z x −∞ Thus + Q (x) I =b (k) ∞ 2m+1 e x4dx, (2.5) 2m+1,k 0 − Z x −∞ since xP (x)=Q (x)+a Q (x), 2m 2m+1 2m 2m 1 − hence + + + Q (x) Q (x) ∞P2m(x)e−x4dx= ∞ 2m+1 e−x4dx+a2m ∞ 2m−1 e−x4dx Z Z x Z x −∞ −∞ −∞ thus byorthogonality +∞P (x)e x4dx=0, and 2m − R−∞ + Q (x) + Q (x) ∞ 2m+1 e−x4dx= a2m ∞ 2m−1 e−x4dx Z x − Z x −∞ −∞ and + Q (x) 5 m ∞ 2m+1 e x4dx=2Γ( )( 1)m a . (2.6) − 2k Z x 4 − Y −∞ k=1 Moreover m b (k)=( 1)m 1 x2 , (2.7) 0 − − 2m+1,j j=Y1,j,k from equations (2.5), (2.6) and(2.7)one gets sign(I )= 1. 2m+1,k − Therest of the proof is as in the even case. 8 , 3 Case λ 0 2 Proposition 3.1 For all n 1, ≥ xP (x)=Q (x)+a Q (x), 2n 1 2n n 2n 2 − − x2P (x)=Q (x)+b Q (x)+α Q (x), n n+2 n n n n 2 − x2Q (x)=P (x)+σ P (x)+δ P (x). n n+2 n n n n 2 − k k x2P ,Q with Q0(x) = 1, Q1(x) = x, where, an = k22nn−21, αn = knn2, bn = hhQnn,QnniiSS, δn = − − k k n n b b , σ =b . n n k k bn 2 bn − Proof. The proof isas in proposition 1.1. Proposition 3.2 For all n 1, ≥ c c 2n+1 2n 1. +a =c +c . n 2n 2n 1 an+1 − c c c c c c 2. c c +c c +(c +c )2 = n+4 n+3 n+2 n+1 +b2 n+2 n+1 +α . n+2 n+1 n n 1 n+1 n n n − αn+4 αn+2 n 3. σ = +c b . n n 2 n 2 4cn − − − σ n 1 n+2 4. c c +b σ +α = + . n+2 n+1 n n n b 2 4 n+2 δ b n n 5. σ = . n c c n n 1 − a 1 b 1 α 1 n n n 6. lim = , lim = , lim = . n √2n 2√3 n √n √3 n n 12 →∞ →∞ →∞ σ 1 δ 1 k n n n 7. lim = , lim = , lim =1. n→∞√n √3 n→∞ n 12 n→∞bkn Proof. 1) The first relation can beproved as the case λ =0. 2 2)Fromthesecondrelation intheprevious proposition andorthogonality one gets x2P 2 =k +b2k +α2k . || n||S n+2 n n n n−2 b b b 9 k Using the factthat k =c k , andk = n+2. Onegets n n n 1 n α − n+2 x2P 2 = cn+4cn+3cn+2bcn+1 +b2cn+2cn+1 +α k (3.8) || n||S α n α n n (cid:16) n+4 n+2 (cid:17) Since from the three term recurrence relation xP (x)=P (x)+c P (x), n n+1 n n 1 − andorthogonality we have xP 2 = xP 2 =k +c2k , || n||S || n||F n+1 n n−1 and x2P 2 = x2P 2 = xP +xc P 2 || n||S || n||F || n+1 n n−1||F = xP +c2 xP 2 +2c xP ,xP || n+1||F n|| n−1||F nh n+1 n−1iF =k +c2 k +c2k +c2c2 k +2c k (3.9) n+2 n+1 n n n n n 1 n 2 n n+1 − − =(c c +c2 +c2+c c +2c c )k n+2 n+1 n+1 n n n 1 n n+1 n − = c c +(c +c )2+c c k . n+2 n+1 n+1 n n n 1 n − (cid:16) (cid:17) From equation (3.8), (3.9)one getsthe desired result. 3) By orthogonality one gets σ k = x2Q ,P , n n n n F h i since bydefinition of the Sobolev inner product we have x2Q ,P = x2Q ,P = Q ,x2P n n F n n S n n S h i h i h i = x2P b Q α Q ,x2P , n 2 n 2 n 2 n 2 n 4 n S h − − − − − − − i = x2P ,x2P b Q ,x2P α Q ,x2P n 2 n S n 2 n 2 n S n 2 n 4 n S h − i − − h − i − − h − i since + x2P ,x2P = ∞x4P (x)P (x)e x4dx n 2 n S n 2 n − h − i Z − 1−∞+ 1 + = ∞P (x)P (x)e x4dx+ ∞xP (x)P (x)e x4dx 4Z n−2 n − 4Z n′−2 n − 1 −+∞ −∞ + ∞xP (x)P (x)e x4dx, 4Z n−2 n′ − −∞ byorthogonality the first and thesecond integralvanished. Moreover + + ∞xP (x)P (x)e x4dx= ∞xP (x) nP (x)+d P (x) e x4dx n 2 n′ − n 2 n 1 n n 3 − Z − Z − − − (cid:16) (cid:17) −∞ −∞ =nk +d k . n 1 n n 2 − − 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.