ebook img

Sequential Anaerobic-Aerobic Phase Strategy Using - InTech PDF

34 Pages·2013·1.51 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sequential Anaerobic-Aerobic Phase Strategy Using - InTech

Chapter 9 Sequential Anaerobic-Aerobic Phase Strategy Using Microbial Granular Sludge for Textile Wastewater Treatment Khalida Muda, Azmi Aris, Mohd Razman Salim and Zaharah Ibrahim Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54458 1. Introduction The textile industry involves a long chain of complex activities, from processing raw materials up to finishing the fabrics. These industries have created job opportunities to millions of people and have become one of the major incomes to many countries in the world. Unfortunately, the industry is also one of the major contributors to water pollution. The textile wastewater contains not only the colorant, which is one of the main pollutants, but also other chemicals that are added throughout the textile processing. The dye compounds present in textile wastewater are able to impose a major impact to a receiving water body even in small quantities. Due to the non-biodegradable nature of textile wastewater, a conventional aerobic biological process is incapable of treating the wastewater. For a complete degradation of textile wastewater, a combination of anaerobic and aerobic reaction phases is necessary. This chapter briefly reviews the characteristics of textile wastewater and available technologies. This is followed by an in-depth discussion on biogranulation technology and the application of a hybrid biogranular system in treating the textile wastewater. 2. The textile industry The fabrics, either in the form of natural or chemical fibres, have reached millions of tonnes of production and have provided huge advantages to world economic values (Aizenshtein, 2004). In social terms it has provided benefits to more than 2.2 million workers through 114,000 textile-related companies. In 2001, the European textile and clothing industries contributed to about 3.4% of the EU manufacturing industrial revenue and granted 6.9% of © 2013 Muda et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 232 Biomass Now – Sustainable Growth and Use the work opportunities to the citizens (IPPC, 2003). According to recent statistics, the global textile market is worth more than US$400 billions (Directory of Textile Manufacturers and Suppliers - http://www.teonline.com/industry-overview.html). It is predicted that the global textile production will grow up to 50% by 2014 as compared to the fabrication in 2005. Globally, Malaysia is also known for its high quality textile and apparels. Since the early 1970s, when the country started to embark on being an export-oriented country, the growth of Malaysian’s textile and apparel industry has increased tremendously and now provides an export value of 3.5 billion USD. This has listed the textile industry as the ninth largest contributor to total earnings of the manufactured exports in 2007. The industry has provided more than 67,000 work opportunities through 637 licensed textile production companies with investments of 2.6 billion USD (MIDA, 2007). In Malaysia and many other developing countries, most of the textile mills are of small and medium scale. For these mills, the full installation of a wastewater treatment plant is quite difficult due to economic reasons. Hence, the mills have been discharging significant quantities of pollutants into the streams with fiber manufacturing and dyeing sectors being the predominant ones (Haroun and Azni, 2009). 2.1. Characteristics of textile wastewater The textile industry consumes the largest portion of the colorant available in the world market. Due to the high customer demand, more than 100,000 commercial dyes exist in the market causing more than 700,000 tonnes of dyes to be produced annually (McMullan et al., 2001; Pearce et al., 2003). The result is a very high production of colored wastewater. The characteristics of textile wastewater (either quantitatively or qualitatively) vary greatly depending on the type of raw materials, chemicals, techniques or specific process operations at the mill, the equipment used and the production design of the textile processes (Bisschops and Spanjers, 2003; Dos Santos et al., 2006). The textile industry consumes huge amounts of water in its wet processes. The average wastewater generation from a dyeing facility is estimated between 3800 and 7600 million m3 per day. Desizing, scouring, bleaching, mercerizing and dyeing are the common wet textile process operations. Among these, the mercerizing and dyeing processes consume the biggest specific volumes of water with a water usage of 230-310 L/kg and 8-300 L/kg of textile processed, respectively (Dos Santos et al. 2007). Due to inefficiency of the textile processing activities, only 10% of the chemicals in the pre- treatment and dyes in dyeing operations remain on the fabric. In other words, about 90% of chemical substances will be discharged as textile effluent (IPPC, 2003). Others have reported that between 50 and 95% of the dyes are fixed on the fiber while the remainder is discarded in the subsequent textile-washing operations (EPA, 1997; Trovaslet et al., 2007). The amount of dye lost into the wastewater depends upon the type of dyestuff used, as well as the methods and application routes of the textile processing operation. Additionally, it depends on the intended color intensity that is required for each particular design (Willmott et al., 1998). Sequential Anaerobic-Aerobic Phase Strategy Using Microbial Granular Sludge for Textile Wastewater Treatment 233 Textile wastewater is characterized with high chemical and biochemical oxygen demand, suspended solids, high values of conductivity and turbidity and intense color. This is caused by the presence of dye residues or intermediates and auxiliary chemicals added in the many stages in textile processing (Mohan et al., 2007a; Miranda et al., 2009). Textile processes with natural fibers generate higher pollution load as compared to synthetic fibers mainly due to the use of pesticides for preservation of the natural fibers (Correia et al., 1994). Textile dyeing wastewater is also characterized by high salt content, which also imposes potential environmental problems. Typical cotton batch dyeing operations use quantities of salt that range from 20 to 80% of the weight of goods dyed, with common concentrations between 2,000 mg/L and 3,000 mg/L. Sodium chloride and sodium sulfate constitute the majority of the total salts used. Magnesium chloride and potassium chloride are used as raw materials in lower concentrations (EPA, 1997). Common characteristics of textile wastewater from cotton textile wet processing for different processing categories are shown in Table 1. The highest concentration of organic pollutants (in terms of COD) is generated from bleaching while the highest concentration of total solids comes from the desizing process. The highest concentration of color, ranging from 1450-4750 ADMI, is generated from the dyeing process (Bisschops and Spanjers, 2003; Dos Santos et al., 2007). Metals such as copper, cadmium, chromium, nickel and zinc are also found in textile effluents, as they are the functional groups that form the integral part of the dye molecule (IPPC, 2003). 2.2. Treatment technology At present, treatment of textile wastewater mainly involves physical and/or chemical processes. These include coagulation and flocculation (Harrelkas et al., 2009), precipitation (Solmaz et al., 2007), adsorption (Sayed and Ashtoukhy, 2009), membrane filtration and nanofiltration (Miranda et al., 2009), ion exchange (Wu et al., 2008), ultrasonic mineralization (Maezawa et al., 2007) and electrolysis (De Jonge et al., 1996). While these methods are often costly, they remove the pollutants by transferring them from one phase to another. Some of them generate highly concentrated sludge, hence creating disposal problems (Pearce et al., 2003) that may lead to soil contaminations. Excessive use of chemicals in dye treatment creates secondary pollution problems to the environment. Process COD (g/L) BOD (g/L) TS (g/L) TDS (g/L)pH Color (ADMI) Desizing 4.6-5.9 1.7-5.2 16.0-32.0 - - - Scouring 8 0.1-2.9 7.6-17.4 - 10--13 694 Bleaching 6.7-13.5 0.1-1.7 2.3-14.4 4.8-19.5 8.5-9.6153 Mercerising 1.6 0.05-0.10 0.6-1.9 4.3-4.6 5.5-9.5 - Dyeing 1.1-4.6 0.01-1.80 0.5-14.1 0.05 5-10 1450-4750 Bleaching and Dyeing*0.2-5.5 2.0-3.0 0.1-5.0 - 2-10 280-2000 *Characterization of textile wastewater in Malaysia (Ahmed et al., 2005; Ibrahim et al., 2009) Table 1. Characteristics of textile wastewater (Bisschops and Spanjers, 2003; Dos Santos et al., 2006) 234 Biomass Now – Sustainable Growth and Use Treatment using ozonation, Fenton’s reagent, electrochemical destruction and photocatalysis are some of the emerging techniques reported to have potential use for decolorization (Faouzi et al., 2006; Ay et al., 2009). However, such technologies usually involve complicated procedures and are economically unattainable (Chang and Lin, 2000). Among the available techniques, the one that can offer effective pollutant removal at a lower cost is the desirable alternative. Of these, biological treatment is the obvious choice due to the relatively low operating cost. While a conventional aerobic biological process is incapable of treating textile wastewater, studies have shown that the integration of anaerobic and aerobic processes are able to provide complete mineralization of colored substances (Knackmuss, 1996; Melgoza et al., 2004; van der Zee and Villaverde, 2005). It can be done by using either two separate anaerobic and aerobic reactors (Khelifi et al., 2008) or using integrated anaerobic/aerobic treatment in a single reactor (Frijters et al., 2006; Cinar et al., 2008). The wastewater is initially treated under an anaerobic condition followed by an aerobic condition. Under the anaerobic condition, the N=N bond of the azo dyes are cleavaged, leading to the production of amines, the colorless byproducts. This is followed by complete mineralization under the aerobic condition. Different forms of biomass (i.e. suspension, film and granules) have been used in different types of reactor in the studies. 2.3. The water quality issues The textile industry, in particular the wet industry, has been considered as one of the major water environment polluters. This is mainly due to the enormous amount of water and the complexity of the chemicals used in the manufacturing processes that end up in the wastewater. The poorly treated wastewater is still highly colored comprising of significant amounts of nonbiodegradable chemicals that are hazardous to the environment. Under anaerobic condition, some of the organics i.e. the azo dyes are transformed into more toxic chemicals (i.e. amines) that worsen the condition. The color will make a river inhabitable to a majority of aquatic plants and animals. While there are many technologies available in treating the wastewater, a majority of them are relatively expensive to be applied by the small and mid-size industries. Furthermore, many of the physico-chemical technologies only transform the pollutants from one form or one phase to another and therefore do not provide any ultimate solution to the problem. A conventional aerobic bioprocess fails to treat the wastewater due to the non- biodegradable nature of the wastewater. However, recent research and advancement in biological processes show that there is a huge potential of these new findings in providing low cost yet efficient technology to solve the textile wastewater problem. 3. Biogranulation treatment technology Microbial granules form a self-immobilization community that is formed with or without support material. They are defined as discrete macroscopic aggregates containing dense Sequential Anaerobic-Aerobic Phase Strategy Using Microbial Granular Sludge for Textile Wastewater Treatment 235 microbial consortia packed with different bacterial species. Each biogranule consists of millions of microorganisms per gram of biomass (Weber et al., 2007), formed via biological, physical and chemical forces. According to Calleja (1984), microbial granulation is a multicellular association in a physiological state that is causing the mixture of cells into a fairly stable and contiguous structure. The main advantages of biogranules systems are mainly due to the biogranules good settling property and the fact that biogranules are formed without the need of any biomass carrier. The relatively large size and high-density biogranules give them a rapid settling rate, which enhances the separation of the treated effluent from the biomass and results in high solid retention time (SRT) (Ahn and Richard, 2003; Liu and Tay, 2004). Due to a better settling rate, the system also shows low suspended solid content discharged in the effluent (Wirtz and Dague, 1996). Within the biogranules, the microorganisms are closely lumped together, hence generating syntrophic associations between the cells. This relationship occurs due to optimum distances between the cells at appropriate substrate levels and such condition enables high and stable performance of metabolism activities (Batstone et al., 2004). The granulation system is first recognized in an up-flow anaerobic sludge blanket (UASB) system characterized by anaerobic biogranules. Much research has been carried out using innovative upflow sludge bed (USB) type reactors (Bachman et al., 1985; Lettinga et al., 1997). The applications of anaerobic granulation systems have been successfully demonstrated particularly in removing biodegradable organic matter from industrial wastewaters (Lettinga et al., 1980; Schmidt and Ahring, 1996). Later the attention has also been diverted to the development and applications of aerobic biogranules. The reason has been several drawbacks that have been observed in the anaerobic biogranules system, including long start-up periods, relatively high temperature requirements and ineffectiveness in dealing with nutrient and low organic strength wastewater (Liu and Tay, 2004). Aerobic granulation systems have been used for organics, nitrogen, phosphorus and toxic substances removal, especially high strength wastewater (Yi et al., 2008; Kishida et al., 2009). In most cases, the system is in the form of a sequencing batch reactor (SBR) (Beun et al., 1999; Kim et al., 2008). The reaction phase of the system has been carried out either in anaerobic, aerobic or anoxic conditions, with or without mixing, depending on the purpose of the treatment. 3.1. Development of biogranules Bacteria normally do not aggregate naturally to each other due to repulsive electrostatic forces via the presence of negatively charged protein compounds of the cell wall (Voet and Voet, 2004). However, under selective environmental conditions, microorganisms are capable to attach to one another and thus form aggregates. Development of biogranules involves integration of physical, chemical and biological processes occuring in multiple stages (Calleja, 1984; Liu and Tay, 2002; Linlin et al., 2005; 236 Biomass Now – Sustainable Growth and Use Weber et al., 2007). The first stage of a biogranulation process is initiated by several forces, which include diffusion of mass transfer, hydrodynamic and gravitational forces, thermodynamic effects, as well as the tendency of cells to move towards one another. These forces result in cell-to-cell or cell-to-solid surface interactions. The second stage involves several physical forces (e.g. Van der Waals forces, surface tension, hydrophobicity, opposite charge attractions, thermodynamic of surface free energy, bridges by filamentous bacteria), and chemical and biochemical forces (e.g. cell surface dehydration, cell membrane fusions and signals among microbial communities). At this stage, the multicell connections are stabilized. The third stage is the maturing stage, which involves the production of substances that facilitate more cell-to-cell interactions; at this stage, highly organized microbial structures are formed. Several mechanisms of metabolite production will also change, such as higher production of extracellular polymer, growth of cellular cluster, metabolite change and environmental-induced genetic effects. The final stage involves shaping of the three dimensional granules by hydrodynamic shear forces. Beun et al. (1999) have also described the path of aerobic granules formation in a reactor as illustrated in Figure 1. Immediately after inoculation, bacteria and fungi will be dominating the reactor system. At this early stage, mycelial pellets manage to retain in the reactor due to their good settling ability. Bacteria, which do not hold this characteristic, are discarded with the effluent. Due to the shear force imposed by air bubbles during the aeration phase, the filaments will be detached from the surface of pellets. The pellets then grow bigger until they reach a diameter of up to 5-6 mm. When the sizes of the pellets have grown even larger, self-defragmentation will take place due to the limitation of oxygen transfer in the inner parts of the grown pellets. The fragmented mycelial pellet will act as a matrix for bacteria to grow and form new colonies. The bacterial colonies grow larger and will form granules. As the granules are formed, the whole system will be governed by bacterial growth. Figure 1. Schematic diagram of aerobic granulation developed without any carrier material (Beun et al., 1999) Weber et al. (2007) have illustrated the involvement of several eukaryotic organisms in three consecutive phases. Microscopic analysis has revealed that eukaryotic organisms play a key Sequential Anaerobic-Aerobic Phase Strategy Using Microbial Granular Sludge for Textile Wastewater Treatment 237 role in aerobic granule formation. Stalked ciliates of the subclass Peritrichia and occasionally, the fungi, are found to be involved in the biogranulation process development. Development of biogranules seeded with anaerobic granular sludge in an SBR system has been demonstrated by Linlin et al. (2005). At the initial stage, the anaerobic granular seeds disintegrate into smaller flocs and debris due to the hydrodynamic shear force created by the air bubbles during the aerobic phase. Lighter and small sized flocs or debris will be washed out in the effluent during the decanting stage. The remaining heavier anaerobic granules remain and act as precursors that initiate the growth of new aerobic granules. The optimal combination of the shear force and the growth of the microorganisms within the aggregates govern the stable structur of the biogranules (Chen et al., 2008). The morphology of these aerobic granules is slightly different as compared to the aerobic granules as described by Beun et al. (1999). 3.2. Characteristics of biogranules Biogranules are known for their outstanding features of excellent stability and high removal efficiency making biogranulation an innovative modern technology for wastewater treatment. The size of the biogranules is an important aspect that may influence the stability and performance of the reactor system. Biogranules with bigger sizes can easily be defragmented under high shear force resulting in high biomass washout. Meanwhile, if the size is too small, the biogranules cannot develop good settling properties, resulting in higher suspended substances in the effluent. Bigger biogranules with loose structure will be developed in an SBR system supplied with low superficial air velocity. Smaller biogranules but with high strength structures are observed being formed in systems aerated at higher superficial air velocity (Chen et al., 2007). Granular sizes range from 0.3 mm to 8.8 mm in diameter possessing different granular characteristics (Dangcong et al., 1999; Zheng et al., 2005). The hydrodynamic shear force imposed through the aeration rate of the reactor system will control the development of biogranules (Chisti, 1999). The size of biogranules is the net result of the balance between the growth and the hydrodynamic shear force imposed by superficial air velocity (Yang et al., 2004). For the optimal performance and economic purposes, the operational diameter range for effective aerobic SBR granular sludge should be in the range of 1.0-3.0 mm (Toh et al., 2003) The usual structure of an aerobic granule is normally spherical in shape with smooth surface areas, which can be influenced by the concentration and type of substrate used in the media compositions (Zhu and Wilderer, 2003; Adav and Lee, 2008). Based on electron microscope (SEM) observations, glucose-fed granules appear with fluffy outer surface due to the predominance growth of filamentous bacteria. On the other hand, the acetate-fed granules show a more compact microstructure with smooth surface. The non-filamentous and rodlike bacteria were observed dominating the acetate-fed granules that are tightly linked together (Tay et al., 2001). Settleability of a biogranular sludge shows the capacity of the biogranules to settle within a specified period of time. Such properties will allow fast and clear separation between sludge 238 Biomass Now – Sustainable Growth and Use biomass and effluent. The settling velocity of aerobic granules is in the range of 30 to 70 m/h depending on the size and structure of the biogranules, which is comparable to the anaerobic granules. Settling velocity of activated sludge flocs is in the range of 8 to 10 m/h that is three times lower than to those of aerobic granules. Good settleability of sludge biomass is desirable in wastewater treatment plants to facilitate high percentage of sludge retention in a reactor system. Superior characteristics of settleability assist to maintain the stable performance, high removal efficiency and can handle high hydraulic loading of wastewater (Tay et al., 2001). Good settling property of biogranules is also shown by a low value of the SVI. The SVI of biogranules is lower than 100 mL/g (Peng et al., 1999 and Qin et al., 2004), much lower compared to the SVI of flocs (above 150 mL/g). The observed density of microbial aggregates is the consequence of balance interaction between cells (Liu and Tay, 2004). The density of the aerobic granule is reported to be in the range of 32 to 110 g VSS/L (Beun et al., 2002; Arrojo et al., 2006) and the specific gravity is in the range of 1.004 to 1.065 (Etterer and Wilderer, 2001 and Yang et al., 2004). When biogranules grow bigger, the compactness of the granules decreases. This can be detected via a less solid and loose architectural assembly (Toh et al., 2003). Biogranules with high physical strength can withstand high abrasion and shear force. The physical strength of the biogranules is expressed as an integrity coefficient. This coefficient is an indirect quantitative measurement of the ability of the biogranules to withstand the hydrodynamic shear force (Ghangrekar et al., 2005). A good granular strength is indicated by an integrity coefficient of less than 20. Biogranules are also characterized by high cell hydrophobicity and high EPS content. The former aspect is postulated to be the main triggering force in the initial stage of the biogranulation process and is a measure of the cell-to-cell interaction (Liu et al., 2003). The latter characteristic is postulated to be responsible for the aggregation between cells (Liu et al., 2004). The presence of the EPS will enhance the polymeric interaction, which is one of the attractive forces that can promote the adhesion of bacterial cells. The networking between cell and EPS will assist the formation of biogranules (Zhang et al., 2007). 4. A hybrid biogranular system for textile wastewater treatment The application of hybrid biogranular system in treating textile wastewater is reported in this section. In this study, the development of biogranules during the treatment of textile wastewater is investigated. The changes on the physical characteristics of the biogranules as well as the system performance in the removal of organic compound and color intensity of the textile wastewater are further discussed. 4.1. The system The schematic representation of the reactor design is given in Figure 2. The design of the reactor is based on Wang et al. (2004) and Zheng et al. (2005) with several modifications. The column of the reactor has a working volume of 4 L with internal diameter of 8 cm and a total Sequential Anaerobic-Aerobic Phase Strategy Using Microbial Granular Sludge for Textile Wastewater Treatment 239 height of 100 cm. The reactor is designed with a water-jacketed column for the purpose of temperature control. This can be achieved by allowing the circulation of hot water from a water heating circulation system to the water jacketed column of the system. The temperature of the heating system was set at 300C. Air was supplied into the reactor by a fine air bubble diffuser located at the bottom of the reactor column. The reactor system was equipped with dissolved oxygen and pH sensors for the continuous monitoring throughout the experiment. The wastewater was fed into the reactor from the bottom of the reactor. The decanting of the wastewater took place via an outlet sampling port located at 40 cm above the bottom of the reactor. The reactor system has been designed with volumetric exchange rate (VER) of 50%. This means that only particles with settling velocity larger than 4.8 m/h remained in the column. Particles having smaller settling velocity will be washed out in the effluent. All operations of peristaltic pumps, circulation of influent, air diffuser and decanting process were controlled by means of a timer. 6 4 7 DO o o o o o o pH o o 3 8 o o o o o o o Effluent o o Sampling o o o point o o 5 o o o o o o o 1 9 Influent 2 1. Influent tank 2-5. Peristaltic pumps 6. Mass-flow controller 7. Air pump 8. Timer controller 9. Effluent tank Figure 2. Schematic layout of the hybrid biogranular system 240 Biomass Now – Sustainable Growth and Use 4.2. The operation and analysis During the start-up period, 2 L of mixed sludge and 2 L of synthetic textile wastewater were added into the reactor system giving the working volume of 4 L with 5.5 g/L of sludge concentration after inoculation. The system was supplied with external carbon sources consisting of glucose, sodium acetate and ethanol with substrate loading rate of 2.4 kg COD/m3∙d. The operation of the system started with 5 min filling of wastewater entering from the bottom of the reactor. The operation then continued with the react phase followed by 5 min settling, 5 min decanting and 5 min of idle time. The react time varies depending on the hydraulic retention time set for the system. Figure 3 shows the steps involved in one complete cycle of the hybrid biogranular system. During the biogranules development, the HRT of the reactor was set for 6 hours for one complete cycle. This will give a react time of 340 minutes. The react phase is divided into equal anaerobic and aerobic react periods. Table 2 shows the successive phase for one complete cycle of the reactor system. Reaction Phase Anaerobic Aerobic Fill Recirculation Aeration/ Settling Decanting Idle Mixing Figure 3. One complete cycle of the Hybrid Biogranular System The operation of the reactor system was designed with intermittent anaerobic and aerobic react phases. The reaction phase started with an anaerobic phase followed by an aerobic phase. The reaction phase was repeated twice. During the anaerobic react phase, the wastewater was allowed to circulate from the upper level of the reactor and returned back through a valve located at the bottom of the system. The circulation process was carried out using a peristaltic pump at a rate of 18 L/h. The circulation system was stopped at the end of the anaerobic phase. The circulation process is required to achieve a homogeneous

Description:
The textile industry involves a long chain of complex activities, from processing raw Using Microbial Granular Sludge for Textile Wastewater Treatment 233.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.