ebook img

Separation of Variables and Superintegrability: The symmetry of solvable systems PDF

325 Pages·2018·6.856 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Separation of Variables and Superintegrability: The symmetry of solvable systems

Separation of Variables and Superintegrability The symmetry of solvable systems Separation of Variables and Superintegrability The symmetry of solvable systems Ernest G Kalnins The University of Waikato, Hamilton, New Zealand Jonathan M Kress The University of New South Wales, Sydney, Australia Willard Miller Jr University of Minnesota, Minneapolis, USA IOP Publishing, Bristol, UK ªIOPPublishingLtd2018 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording orotherwise,withoutthepriorpermissionofthepublisher,orasexpresslypermittedbylawor undertermsagreedwiththeappropriaterightsorganization.Multiplecopyingispermittedin accordancewiththetermsoflicencesissuedbytheCopyrightLicensingAgency,theCopyright ClearanceCentreandotherreproductionrightsorganisations. PermissiontomakeuseofIOPPublishingcontentotherthanassetoutabovemaybesought [email protected]. ErnestGKalnins,JonathanMKressandWillardMillerJrhaveassertedtheirrighttobeiden- tifiedastheauthorsofthisworkinaccordancewithsections77and78oftheCopyright,Designs andPatentsAct1988. ISBN 978-0-7503-1314-8(ebook) ISBN 978-0-7503-1315-5(print) ISBN 978-0-7503-1316-2(mobi) DOI 10.1088/978-0-7503-1314-8 Version:20180501 IOPExpandingPhysics ISSN2053-2563(online) ISSN2054-7315(print) BritishLibraryCataloguing-in-PublicationData:Acataloguerecordforthisbookisavailable fromtheBritishLibrary. PublishedbyIOPPublishing,whollyownedbyTheInstituteofPhysics,London IOPPublishing,TempleCircus,TempleWay,Bristol,BS16HG,UK USOffice:IOPPublishing,Inc.,190NorthIndependenceMallWest,Suite601,Philadelphia, PA19106,USA Contents Preface x Acknowledgment xiv Author biographies xv 1 Introduction 1-1 References 1-4 2 Background and definitions 2-1 2.1 Classical mechanics 2-1 2.2 Quantum mechanics 2-5 2.3 Integrability and superintegrability 2-7 2.3.1 Classical integrability and superintegrability 2-8 2.3.2 Extension to quantum systems 2-9 References 2-10 3 Separation of variables 3-1 3.1 Some approaches to separability 3-1 3.1.1 The intuitive concept 3-1 3.1.2 The Fourier approach 3-2 3.1.3 The mathematics of Stäckel form 3-2 3.1.4 The Stäckel procedure for operator equations 3-5 3.2 The Levi-Civita procedure 3-8 3.2.1 Levi-Civita procedure implies Stäckel structure 3-11 3.3 Nonorthogonal separation: examples 3-14 3.4 Intrinsic characterization of separation 3-20 3.4.1 Orthogonal N-tuples and coefficients of rotation 3-21 3.4.2 Intrinsic characterization of Helmholtz separability 3-24 3.4.3 Intrinsic characterization of Laplace separability 3-27 References 3-35 4 Side condition separation 4-1 4.1 A generalization of Stäckel form 4-1 4.2 Generalized Helmholtz Stäckel form 4-4 4.3 Maximal non-regular separation 4-5 4.3.1 Maximal separation implies generalized Stäckel form 4-6 v SeparationofVariablesandSuperintegrability 4.4 Examples of non-regular separability 4-8 4.4.1 Examples of restricted regular separation 4-8 4.4.2 Non-regular separation in 2D and a ‘no go’ theorem 4-11 4.4.3 Non-regular separation in more than two dimensions 4-12 References 4-17 5 Separation for the real n-sphere 5-1 5.1 Jacobi elliptic coordinates 5-1 5.1.1 Construction of all separable systems 5-4 5.1.2 Separable systems as limits of generic systems 5-7 5.2 Killing vectors and tensors 5-7 5.2.1 Characterization of ellipsoidal coordinates 5-13 5.2.2 Comments and references 5-14 References 5-14 6 Separation for real Euclidean n-space 6-1 6.1 Elliptic coordinates in Euclidean space 6-1 6.2 Parabolic coordinates in Euclidean space 6-3 6.3 Construction of all separable coordinates 6-4 6.4 Comments and references 6-6 References 6-7 7 Separation on the hyperboloid 7-1 7.1 Branching rules for hyperbolic n-space 7-3 7.2 Separation for hyperbolic three-space 7-4 References 7-7 8 Conformally flat spaces 8-1 8.1 Hyperspherical coordinates 8-2 8.2 Separable coordinates: analytic theory 8-4 8.2.1 Construction of separable coordinates 8-8 8.3 Separable coordinates: algebraic theory 8-10 8.3.1 Type I coordinates 8-16 8.3.2 Type II coordinates as limits 8-20 8.3.3 Branching rules for type II coordinates on complex 8-22 nD constant curvature spaces. 8.3.4 All separable systems on 2D complex Euclidean space 8-24 vi SeparationofVariablesandSuperintegrability 8.3.5 Separable coordinates on the complex two-sphere 8-26 8.3.6 Separable coordinates on the complex three-sphere 8-27 8.3.7 All separable systems on complex 3D Euclidean space 8-33 8.3.8 ‘Real’ cyclides 8-37 8.4 Comments and references 8-41 References 8-43 9 Time-dependent equations 9-1 9.1 Case (i): time as ignorable variable 9-6 9.2 Case (ii): time-dependent Hamiltonians 9-8 9.3 Coordinates on spheres and Euclidean spaces 9-12 9.4 Examples 9-18 References 9-20 10 Generalized Lie symmetries 10-1 References 10-5 11 Differential Stäckel form 11-1 11.0.1 D-Stäckel matrices 11-3 11.0.2 Analysis of the separation equations 11-5 11.1 Separation of Laplace equations 11-9 References 11-10 12 Functional separation 12-1 12.1 A forced wave equation 12-1 12.2 Pseudo-Riemannian spaces 12-6 References 12-10 13 Vector equations 13-1 13.0.1 Spinor form of the Maxwell equations 13-3 13.0.2 Generalized Hertz potentials 13-5 13.0.3 Toward a general theory 13-6 13.1 Dirac-type equations 13-8 13.1.1 Factorisable systems 13-11 13.1.2 Dirac equations as factorisable systems 13-15 vii SeparationofVariablesandSuperintegrability 13.1.3 A counterexample 13-18 13.1.4 Related work 13-19 References 13-19 14 Links with r-matrix theory 14-1 14.1 Complex constant curvature spaces 14-1 14.2 Generic ellipsoidal coordinates 14-5 14.3 Cyclidic coordinates 14-12 14.3.1 Quantum constant curvature systems 14-17 References 14-21 15 Multiseparability 15-1 15.0.1 Some instructive examples 15-2 15.1 2D superintegrable systems 15-5 15.1.1 Quadratic algebras 15-8 15.1.2 The Stäckel transform 15-12 15.1.3 Laplace equations and conformal superintegrability 15-15 15.1.4 Bôcher contractions 15-17 15.1.5 Composition of Bôcher contractions 15-21 15.1.6 Exact and quasi-exact solvability 15-24 15.1.7 2D Laplace superintegrable systems 15-30 15.1.8 Bôcher contractions 15-31 15.1.9 Stäckel transforms 15-36 15.1.10 Limits of separable coordinate systems 15-41 15.1.11 The separation equations 15-42 15.1.12 Special functions 15-45 15.1.13 More on QES 15-45 15.1.14 Explicitly solvable QES 1D systems 15-46 15.1.15 2D summary 15-49 15.2 Canonical equations 15-49 15.2.1 The wave equation and Gaussian hypergeometric 15-50 functions 15.2.2 Superintegrable canonical equations 15-51 15.3 3D superintegrable systems 15-53 15.3.1 ‘Generic’ Euclidean superintegrable systems 15-56 15.3.2 ‘Generic’ three-sphere superintegrable systems 15-59 viii SeparationofVariablesandSuperintegrability 15.3.3 3D classical Laplace systems 15-62 15.3.4 3D Bôcher contractions 15-67 15.3.5 Application of the Bôcher contraction 15-72 15.3.6 3D quantum systems 15-74 15.3.7 3D Laplace operator equations 15-76 15.4 Conclusions and extensions 15-77 References 15-78 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.