ebook img

Sensors and Actuators in Smart Cities PDF

194 Pages·2017·5.01 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sensors and Actuators in Smart Cities

s Sensor k o o B Sensors and Actuators I P in Smart Cities D Edited by Mohammad Hammoudeh and Mounir Arioua Printed Edition of the Special Issue Published in JSAN M www.mdpi.com/journal/jsan s k Sensors and Actuators in Smart Cities o o B Special Issue Editors Mohammad Hammoudeh Mounir Arioua I P D MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade M s SpecialIssueEditors k MohammadHammoudeh ManchesterMetropolitanUniversity UK o MounirArioua AbdelmalekEssaadiUniversity Morocco o EditorialOffice MDPI B St.Alban-Anlage66 Basel,Switzerland ThiseditionisareprintoftheSpecialIssuepublishedonlineintheopenaccessjournalJournalofSensor andActuatorNetworks(ISSN2224-2708)from2013–2014(availableat:http://www.mdpi.com/journal/ jsan/specialissues/smartcities). Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonliIneandas indicatedbelow: P Lastname,F.M.;Lastname,F.M.Articletitle.JournalNameYear,Articlenumber,pagerange. FirstEditon2018 D ISBN978-3-03842-873-2(Pbk) ISBN978-3-03842-874-9(PDF) ArticlesinthisvolumeareOpenAccessanddistributedundertheCreativeCommonsAMttribution (CCBY)license, whichallowsuserstodownload, copyandbuilduponpublishedarticleseven forcommercialpurposes,aslongastheauthorandpublisherareproperlycredited,whichensures maximum dissemination and a wider impact of our publications. The book taken as a whole is (cid:2)c 2018MDPI,Basel,Switzerland,distributedunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND(http://creativecommons.org/licenses/by-nc-nd/4.0/). s Table of Contents k AbouttheSpecialIssueEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v MohammadHammoudehandMounirArioua SensorsandActuatorsinSmartCities o doi:10.3390/jsan7010008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 TianyuZhang,QianZhao,KilhoShinandYukikazuNakamoto Bayesian-Optimization-Based Peak Searching Algorithm for Clustering in Wireless SensorNetworks doi:10.3390/jsan7010002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .o. . . . . . 5 Abdelhamied A. Ateya, Ammar Muthanna, Irina Gudkova, Abdelrahman Abuarqoub, AnastasiaVybornovaandAndreyKoucheryavy DevelopmentofIntelligentCoreNetworkforTactileInternetandFutureSmartSystems doi:10.3390/jsan7010001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 B JieJiang,RiccardoPozza,Kristru´nGunnarsdo´ttir,NigelGilbertandKlausMoessner UsingSensorstoStudyHomeActivities† doi:10.3390/jsan6040032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 DiegoCastro,WilliamCoral,CamiloRodriguez,JoseCabraandJulianColorado Wearable-BasedHumanActivityRecognitionUsinganIoTApproach doi:10.3390/jsan6040028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 YounessRiouali,LailaBenhlimaandSlimaneBah ExtendedBatchesPetriNetsBasedSystemforRoadTrafficManagementinWSNs† doi:10.3390/jsan6040030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 YorghosVoutos,PhivosMylonas,EvaggelosSpyrouandEleniCharou I ASocialEnvironmentalSensorNetworkIntegratedwithinaWebGISPlatform doi:10.3390/jsan6040027 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Vincenzo Catania, Giuseppe La Torre, Salvatore Monteleone, Daniela Panno Pand DavidePatti User-GeneratedServicesCompositioninSmartMulti-UserEnvironments doi:10.3390/jsan6030020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 AlexAdimObinikpoandBurakKantarci BigSensedDataMeetsDeepLearningforSmarterHealthCareinSmartCities D doi:10.3390/jsan6040026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Dhafer Ben Arbia, Muhammad Mahtab Alam, Abdullah KadrI, Elyes Ben Hamida and RabahAttia EnhancedIoT-BasedEnd-To-EndEmergencyandDisasterReliefSystem doi:10.3390/jsan6030019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 M iii s k o o B I P D M s About the Special Issue Editors k MohammadHammoudeh, PhD,iscurrentlytheHeadoftheMMUIoTLaboratoryandaSenior Lecturer in computer networks and security with the School of Computing, Math and Digital Technology,ManchesterMetropolitanUniversity.Hehasbeenaresearcherandpublisherinthefield o ofbigsensorydataminingandvisualization.Dr.Hammoudehisahighlyproficient,experienced,and professionallycertifiedcybersecurityprofessional,specializinginthreatanalysis,andinformation andnetworksecuritymanagement.Hisresearchinterestsincludehighlydecentralizedalgorithms, communication,cross-layeredsolutionstotheInternetofThings,andwirelesssensornetworks. o MounirArioua,PhD,iscurrentlyanassociateprofessorattheNationalSchoolofAppliedSciences ofTetuan,UniversityofAbdelmalekEssaadi. HereceivedhisPhDdegreeinTelecommunications andComputerScienceandjoinedtheNationalSchoolofAppliedSciencesofMarrakechasaresearch assistant.Heisamemberofvariousinternationalscientificorganizationsandorganizingandscientific B committeesofmanyinternationalworkshopsandconferencesandarefereeofseveralinternational journals.Hehasauthoredorco-authoredmorethan50papersinrecognizedjournalsandinternational conferences.Hisresearchinterestsincludecommunicationreliability,datacompressioninwireless sensornetworksandembeddedsystem-basedwirelesscommunication,andtheInternetofThings. I P D M v s k o o B I P D M s Journal of Sensor and Actuator Networks k Editorial Sensors and Actuators in Smart Cities MohammadHammoudeh1,*,†andMounirArioua2,† o 1 SchoolofComputing,Mathematics&DigitalTechnology,ManchesterMetropolitanUniversity, ManchesterM156BH,UK 2 NationalSchoolofAppliedSciences,AbdelmalekEssaadiUniversity,Tétouan93000,Morocco; [email protected] * Correspondence:[email protected];Tel.:+44-(0)161-247-2845 † Theseauthorscontributedequallytothiswork. o Received:9February2018;Accepted:14February2018;Published:16February2018 1.ScopeandAim B Withthecity,fromitsearliestemergenceintheNearEastbetween4500and3100BCE,camea widerangeofnewdiscoveriesandinventions,fromsyntheticmaterialstowheeledvehicles.Through itsdensepopulation,irrigation,socialcontinuityandphysicalsecurity,emergedcivilengineering, monumentalconstruction,sculpture,mathematics,artsandlaw. Today,thereisanenormousset ofideasandnotionswithrespecttoourwaysofliving, e.g., therampandthelever, whichare stillfundamentaltocities’environmental,social,andeconomicstructures.Modern-daysmartcities competefortheintroductionofsmarttechnologiesandapplicationstoimprovekeyareasofurban communities,suchassystemautomation,sustainability,andqualityoflife. Technologyresearch expertspaintthrillingimagesoffuturisticcities. What’sglossedover,however,isthesensorand actuatortechnologiesthatenablethesesmartcities;inparticular,thereliable,heterogeneous,wireless networksspecificallydesignedtoprovisioncommunicationacrossacountlessnumberofsensors embeddedinalmosteverything. TheworldisonthevergeofanewepochofinnovationandchangewiththeemergenceoIfWireless SensorNetworks(WSN).Theconvergenceofsmaller,morepowerfulprocessors,smartmobiledevices, low-costsensing,bigdataanalytics,cloudhostingandnewlevelsofconnectivityallowedbythe InternetisfuellingthelatestwaveofMachine-to-Machine(M2M)technology. ThemerPitsofthis marriageofmachinesandthedigitalworldaremultipleandsignificant. Itholdsthepotentialto dramaticallyalterthewayinwhichmostglobalindustries,suchasbuildings,railtransportation, powergridsandhealthcareoperateondailybasis.WSNsexpandtoincludeourvehiclesandhomes,as wellasnewlydevelopedwearableandimplantedsensors,whichbringsfundamentaltransformations tomanyaspectsofdailylife. WSNinnovationspromiseto integrate andoptimisesmartbuildings, autonomousDvehicles, powergrids,etc.,toenableasuccessfultransitiontowardssmart,user-drivenanddemand-focused cityinfrastructuresandservices[1,2]. Thereisawiderangeofcurrentsmartcitiesapplications, whichmakeourliveseasierandmoreefficient,e.g.,asmartphoneapplicationthatletusersfindfree parkingspacesinthecentreoftown.However,citiesarenotoriouslyinefficient.Aspopulationsgrow, everythingfromgarbagecollectionandpublictransportbecomesmoreexpensiveandcomplex.Away fromincreasingspending,thereisalsoademandfromcitizensforsmarterservicesdrivenbysensor- M andactuator-basedinfrastructure. InthisSpecialIssue,weacceptedsubmissionsthatfocusonimplementingintelligentsensing infrastructuretosolvethesmartcitiesconundrum. ThisSpecialIssueattractedcontributionsfrom academic researchers in computer science, communication engineering and physics, as well as informationtechnologyindustryconsultantsandpractitioners,invariousaspectsofsensorsand J.Sens.ActuatorNetw. 2018,7,8 1 www.mdpi.com/journal/jsan s J.Sens.ActuatorNetw. 2018,7,8 actuatorsforsmartcities. Inthenextsection,wepresentabriefreviewofthepapekrspublished, highlightingtheirobjectivesandcontributions. 2.AReviewofContributionsinthisSpecialIssue Zhangetal. [3]addressthechallengeoflargescaledataanalyticsforsmartcities. Typically, o multi-modalsensordatacollectedfromcyberphysicalenvironments, suchassmartcities, must beprocessedbeforeitcanbecanbeusedbydatadiscovery, integrationandmash-upprotocols. Withheterogeneous,noisyandincompletedata,clusteringalgorithmsareusedtoorganisethedata inadatasetintoclusters. TheauthorsproposeanewpeaksearchingalgorithmthatusesBayesian optimisationtofindprobabilitypeaksinadatasettoincreasethespeedandaccuracyofdataclustering algorithms.Thisproposedclusteringalgorithmwasthoroughlyevaluatedinsimulationandresults o showthatitsignificantlydecreasestherequirednumberofclusteringiterations(by1.99to6.3times), andproduceclusteringwhich,forasyntheticdataset,is1.69to1.71timesmoreaccuratethanitisfor traditionalexpectation-maximization(EM).Moreover,thealgorithmcorrectlyidentifiedtheoutliersin arealdataset,decreasingiterationsbyapproximately1.88times,whilebeing1.29timesmoreaccurate thanEMatamaximum. Ateyaetal. [4]contributionaddressesthedevelopmentofintelligentcorenetwoBrkforTactile Internetandfuturesmartsystems.TactileInternetisanextremelylowlatencycommunicationnetwork withhighavailability,reliabilityandsecurity.TactileInternetispredictedtobringanewdimensionto human-to-humanandhuman-to-machineinteractioninamultitudeofdifferentsmartcityaspects suchtransport,powergrid,education,healthcareandculture.ThispaperpresentsaTactileInternet systemstructure,whichemployssoftwaredefinednetworkinginthecoreofthecellularnetworkand mobileedgecomputingatmulti-levels.Thecontributionfocusesonthestructureofthecorenetwork. Theproposedsystemissimulatedunderreliableenvironmentalconditionsandresultsshowsthatit achievedaroundtriplatencyofordersof1msbythereducingthenumberofintermediatenodesthat areinvolvedinthecommunicationprocess. Jiangetal.[5]addresstheproblemofestablishingagoodmeasureoftheagreementbetween the activities detected from sensor-generated data and those recorded in self-reported data. Thecontributionreportsonatrialconductedinthreesingle-occupancyhouseholdsfromwhiIchdatais collectedfromasetofsensorsandfromtimeusediariescompletedbytheoccupants. Theauthors demonstrate the applicationof Hidden Markov Modelswith featuresextracted from mean-shift clustering and change points analysis. Then, a correlation-based feature selection is aPpplied to reducethecomputationalcost.Finally,amethodbasedonLevenshteindistanceformeasuringthe agreementbetweenthesensor-detectedactivitiesandthatreportedbytheparticipantsisdemonstrated. Theauthorsconcludetheirpaperbyanexcitingdiscussiononlessonslearntonhowthefeatures derivedfromsensordatacanbeusedinactivityrecognitionandhowtheyrelatetoactivitiesrecorded intimeusediaries. Takingtheworkinthepreviouscontribution[5]onestepfurther,Castroetal. [6]presenta D systembasedontheInternetofThings(IoT)toHumanActivityRecognition(HAR)thatmonitors vitalbodysignsremotely.Theauthorsemploymachinelearningalgorithmstodetermineactivities thatoccurwithinfourpre-definedcategories(lie,sit,walkandjog). Evaluationusingadvanced real-worldhardwareplatformshowsthattheproposedsystemisabletogivefeedbackduringand aftertheactivityisperformed,usingaremotemonitoringcomponentwithremotevisualizationand programmablealarms.Thissystemwassuccessfullyimplementedwitha95.83%successratio. ThecontributionofRioualietal. [7]addressesanothervitalareaofsensingandactMuationin smartcities.Theauthorspresentaroadtrafficmanagementsystembasedonwirelesssensornetworks. Thispaperintroducesthefunctionalanddeploymentarchitectureofthissystemwithparticularfocus onthedataanalyticscomponent,whichusesanewextensionofbatchesPetrinetsformodellingroad trafficflow.Theevaluationoftheproposedsystemwasperformedusingarealworldimplementation ofvisualizationanddataanalysiscomponents. 2 s J.Sens.ActuatorNetw. 2018,7,8 Voutosetal. [8]presentasocialenvironmentalsensornetworkintegratedwithkinawebGIS platform.Controls,userinterfaceandextensionsoftheproposedsystemarepresented.Thekeynovel aspectofthiscontributionisthefactthatthegathereddatafromtheproposedsystemcarriesspatial information,whichisfundamentalforthesuccessfulcorrelationbetweenpollutantsandtheirplaceof origin.ThelatterisimplementedbyaninteractiveWebGISplatformoperatingoversightinsituand onatimelinebasis. o Cataniaetal.[9]contributeauser-generatedservicescompositioninsmartmulti-userenvironments. Inthiscontribution,thefocusisonsecurityissuesraisedbyservicesgeneratedbyusers,User-Generated Services(UGSs). UGSsarecharacterizedbyasetoffeaturesthatdistinguishthemfromconventional services.TocopewithUGSsecurityproblems,theauthorsintroducethreedifferentpolicymanagement models,analysingbenefitsanddrawbacksofeachapproach.Finally,acloud-basedsolutionthatenables o thecompositionofmultipleUGSsandpolicymodels,allowingusers’devicestosharefeaturesand servicesinIoTbasedscenariosisproposed. Obinikpoetal.’s[10]contributiondemonstrateshowbigsenseddatameetsdeeplearningfor smarterhealthcareinsmartcities. HealthcarelendsitselfasanaturalfitforIoTtechnologyand smartcityconcepts.Theauthorsadvocatethatintegratingsensorydata(hardsensing)withexternal datasources(soft sensing, e.g., crowd-sensing) couldrevealnew datapatternsandBinformation. Thisresearchaddressesthischallengethroughhiddenperceptionlayersintheconventionalartificial neuralnetworks,namelybydeeplearning.Thepaperstartsbyreviewingdeeplearningtechniques thatcanbeappliedtosenseddatatoimprovepredictionanddecisionmakinginsmarthealthservices. Then,acomparisonandtaxonomyofthesemethodologiesbasedontypesofsensorsandsenseddatais presented.Finally,athoroughdiscussionsontheopenissuesandresearchchallengesineachcategory isgiven. Arbiaetal.’s[11]contributiontargetssmartcitycriticalinfrastructure,particularly,anIoTenabled end-to-endemergencyanddisasterreliefsystem. Thispaperpresentsanewenhancementforan emergencyanddisasterreliefsystemcalledCriticalandRescueOperationsusingWearableWireless sensorsnetworks(CROW2). CROW2addressesthereliabilitychallengesinsettingupawireless autonomouscommunicationsystemtooffloaddatafromthedisasterarea(rescuers,trappedvictims, civilians,media,etc.)backtoacommandcentre.Theproposedsystemconnectsdeployedrescuers I toextendednetworksandtheInternet. Thesystemintegratesheterogeneouswirelessdevicesand differentcommunicatingtechnologiestoenableend-to-endnetworkconnectivity,whichismonitored byacloud-basedIoTplatform.TheoverallperformanceofCROW2isevaluatedusingend-to-end P linkqualityestimation,throughputandend-to-enddelay.Finally,thesystemarchitectureisvalidated throughdeploymentandmotiondetectionandlinksunavailabilitypreventionarehighlighted. 3.ConclusionsandRemarks Sensorsandactuatorsarethebuildingblocksfortheforthindustrialrevolution. Theyhave alreadytransformedthewayhumansperceivetheirenvironment. Sensor-enabledsmartcitiesare D pavingthewayforamoresustainablefuture,fromurbanplanningtosocialconscience.Thepapers publishedinthisspecialissueputhumansatthecentreofsmartcities. Fromtrafficmanagement toassistedliving,humancentreddesignofsmartcityservicesisadetrimentalfactortothesuccess ofsmartcities. Itisevidentthatwearestillatthestartofthesmartcitiesrevolutionandthefull economical,environmentalandsocialbenefitsareyettobeachieved. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. M References 1. Coates,A.;Hammoudeh,M.;Holmes,K.G.InternetofThingsforBuildingsMonitoring:Experiencesand Challenges. InProceedingsoftheInternationalConferenceonFutureNetworksandDistributedSystems, ICFNDS’17,Cambridge,UK,19–20July2017;ACM:NewYork,NY,USA,2017. 3

Description:
User-Generated Services Composition in Smart Multi-User Environments .. applications, sensing data can be manually or automatically analyzed for specific Wang, J.; Zhang, Z.; Li, B.; Lee, S.; Sherratt, R.S. An enhanced fall detection Finally, for redundancy purposes, a text file with the data.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.