ebook img

Search for Factorization-Suppressed B -> chi_c K(*) Decays PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Search for Factorization-Suppressed B -> chi_c K(*) Decays

BABAR-PUB-04/46 SLAC-PUB-10989 Search for Factorization-Suppressed B → χ K(∗) Decays c B. Aubert,1 R. Barate,1 D. Boutigny,1 F. Couderc,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 V. Tisserand,1 A. Zghiche,1 E. Grauges-Pous,2 A. Palano,3 A. Pompili,3 J. C. Chen,4 N. D. Qi,4 G. Rong,4 P. Wang,4 Y. S. Zhu,4 G. Eigen,5 I. Ofte,5 B. Stugu,5 G. S. Abrams,6 A. W. Borgland,6 A. B. Breon,6 D. N. Brown,6 J. Button-Shafer,6 R. N. Cahn,6 E. Charles,6 C. T. Day,6 M. S. Gill,6 A. V. Gritsan,6 Y. Groysman,6 R. G. Jacobsen,6 R. W. Kadel,6 J. Kadyk,6 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Kukartsev,6 G. Lynch,6 L. M. Mir,6 P. J. Oddone,6 T.J.Orimoto,6 M.Pripstein,6 N.A.Roe,6 M.T. Ronan,6 W. A.Wenzel,6 M.Barrett,7 K.E.Ford,7 T.J.Harrison,7 A. J. Hart,7 C. M. Hawkes,7 S. E. Morgan,7 A. T. Watson,7 M. Fritsch,8 K. Goetzen,8 T. Held,8 H. Koch,8 5 B. Lewandowski,8 M. Pelizaeus,8 T. Schroeder,8 M. Steinke,8 J. T. Boyd,9 N. Chevalier,9 W. N. Cottingham,9 0 M. P. Kelly,9 T. E. Latham,9 F. F. Wilson,9 T. Cuhadar-Donszelmann,10 C. Hearty,10 N. S. Knecht,10 0 2 T. S. Mattison,10 J. A. McKenna,10 D. Thiessen,10 A. Khan,11 P. Kyberd,11 L. Teodorescu,11 A. E. Blinov,12 V. E. Blinov,12 V. P. Druzhinin,12 V. B. Golubev,12 V. N. Ivanchenko,12 E. A. Kravchenko,12 A. P. Onuchin,12 n a S. I. Serednyakov,12 Yu. I. Skovpen,12 E. P. Solodov,12 A. N. Yushkov,12 D. Best,13 M. Bruinsma,13 M. Chao,13 J I. Eschrich,13 D. Kirkby,13 A. J. Lankford,13 M. Mandelkern,13 R. K. Mommsen,13 W. Roethel,13 D. P. Stoker,13 1 C. Buchanan,14 B. L. Hartfiel,14 A. J. R. Weinstein,14 S. D. Foulkes,15 J. W. Gary,15 O. Long,15 B. C. Shen,15 2 K. Wang,15 D. del Re,16 H. K. Hadavand,16 E. J. Hill,16 D. B. MacFarlane,16 H. P. Paar,16 Sh. Rahatlou,16 1 V. Sharma,16 J. W. Berryhill,17 C. Campagnari,17 A. Cunha,17 B. Dahmes,17 T. M. Hong,17 A. Lu,17 v M. A. Mazur,17 J. D. Richman,17 W. Verkerke,17 T. W. Beck,18 A. M. Eisner,18 C. A. Heusch,18 J. Kroseberg,18 1 W. S. Lockman,18 G. Nesom,18 T. Schalk,18 B. A. Schumm,18 A. Seiden,18 P. Spradlin,18 D. C. Williams,18 6 0 M. G. Wilson,18 J. Albert,19 E. Chen,19 G. P. Dubois-Felsmann,19 A. Dvoretskii,19 D. G. Hitlin,19 I. Narsky,19 1 T. Piatenko,19 F. C. Porter,19 A. Ryd,19 A. Samuel,19 S. Yang,19 S. Jayatilleke,20 G. Mancinelli,20 B. T. Meadows,20 0 M. D. Sokoloff,20 F. Blanc,21 P. Bloom,21 S. Chen,21 W. T. Ford,21 U. Nauenberg,21 A. Olivas,21 P. Rankin,21 5 W. O.Ruddick,21 J.G. Smith,21 K.A. Ulmer,21 J.Zhang,21 L. Zhang,21 A. Chen,22 E.A.Eckhart,22 J.L. Harton,22 0 / A. Soffer,22 W. H. Toki,22 R. J. Wilson,22 Q. Zeng,22 B. Spaan,23 D. Altenburg,24 T. Brandt,24 J. Brose,24 x M. Dickopp,24 E. Feltresi,24 A. Hauke,24 H. M. Lacker,24 R. Nogowski,24 S. Otto,24 A. Petzold,24 J. Schubert,24 e - K. R. Schubert,24 R. Schwierz,24 J. E. Sundermann,24 D. Bernard,25 G. R. Bonneaud,25 P. Grenier,25 S. Schrenk,25 p Ch. Thiebaux,25 G. Vasileiadis,25 M. Verderi,25 D. J. Bard,26 P. J. Clark,26 F. Muheim,26 S. Playfer,26 Y. Xie,26 e h M. Andreotti,27 V. Azzolini,27 D. Bettoni,27 C. Bozzi,27 R. Calabrese,27 G. Cibinetto,27 E. Luppi,27 M. Negrini,27 v: L. Piemontese,27 A. Sarti,27 F. Anulli,28 R. Baldini-Ferroli,28 A. Calcaterra,28 R. de Sangro,28 G. Finocchiaro,28 i P. Patteri,28 I. M. Peruzzi,28 M. Piccolo,28 A. Zallo,28 A. Buzzo,29 R. Capra,29 R. Contri,29 G. Crosetti,29 X M. Lo Vetere,29 M. Macri,29 M. R. Monge,29 S. Passaggio,29 C. Patrignani,29 E. Robutti,29 A. Santroni,29 r a S. Tosi,29 S. Bailey,30 G. Brandenburg,30 K. S. Chaisanguanthum,30 M. Morii,30 E. Won,30 R. S. Dubitzky,31 U. Langenegger,31 J. Marks,31 U. Uwer,31 W. Bhimji,32 D. A. Bowerman,32 P. D. Dauncey,32 U. Egede,32 J. R. Gaillard,32 G. W. Morton,32 J. A. Nash,32 M. B. Nikolich,32 G. P. Taylor,32 M. J. Charles,33 G. J. Grenier,33 U. Mallik,33 J.Cochran,34 H. B.Crawley,34 J.Lamsa,34 W. T.Meyer,34 S. Prell,34 E.I.Rosenberg,34 A. E.Rubin,34 J. Yi,34 N. Arnaud,35 M. Davier,35 X. Giroux,35 G. Grosdidier,35 A. Ho¨cker,35 F. Le Diberder,35 V. Lepeltier,35 A. M. Lutz,35 T. C. Petersen,35 S. Plaszczynski,35 M. H. Schune,35 G. Wormser,35 C. H. Cheng,36 D. J. Lange,36 M. C. Simani,36 D. M. Wright,36 A. J. Bevan,37 C. A. Chavez,37 J. P. Coleman,37 I. J. Forster,37 J. R. Fry,37 E. Gabathuler,37 R. Gamet,37 D. E. Hutchcroft,37 R. J. Parry,37 D. J. Payne,37 C. Touramanis,37 C. M. Cormack,38 F. Di Lodovico,38 C. L. Brown,39 G. Cowan,39 R. L. Flack,39 H. U. Flaecher,39 M. G. Green,39 P. S. Jackson,39 T. R. McMahon,39 S. Ricciardi,39 F. Salvatore,39 M. A. Winter,39 D. Brown,40 C. L. Davis,40 J. Allison,41 N. R. Barlow,41 R. J. Barlow,41 M. C. Hodgkinson,41 G. D. Lafferty,41 J. C. Williams,41 C. Chen,42 A. Farbin,42 W. D. Hulsbergen,42 A. Jawahery,42 D. Kovalskyi,42 C. K. Lae,42 V. Lillard,42 D. A. Roberts,42 G. Blaylock,43 C. Dallapiccola,43 S. S. Hertzbach,43 R. Kofler,43 V. B. Koptchev,43 T. B. Moore,43 S. Saremi,43 H. Staengle,43 S. Willocq,43 R. Cowan,44 K. Koeneke,44 G. Sciolla,44 S. J. Sekula,44 F. Taylor,44 R. K. Yamamoto,44 P. M. Patel,45 S. H. Robertson,45 A. Lazzaro,46 V. Lombardo,46 F. Palombo,46 J. M. Bauer,47 L. Cremaldi,47 V. Eschenburg,47 R. Godang,47 R. Kroeger,47 J. Reidy,47 D. A. Sanders,47 D. J. Summers,47 H. W. Zhao,47 S. Brunet,48 D. Cˆot´e,48 2 P. Taras,48 H. Nicholson,49 N. Cavallo,50,∗ F. Fabozzi,50,∗ C. Gatto,50 L. Lista,50 D. Monorchio,50 P. Paolucci,50 D. Piccolo,50 C. Sciacca,50 M. Baak,51 H. Bulten,51 G. Raven,51 H. L. Snoek,51 L. Wilden,51 C. P. Jessop,52 J. M. LoSecco,52 T. Allmendinger,53 G. Benelli,53 K. K. Gan,53 K. Honscheid,53 D. Hufnagel,53 H. Kagan,53 R. Kass,53 T. Pulliam,53 A. M. Rahimi,53 R. Ter-Antonyan,53 Q. K. Wong,53 J. Brau,54 R. Frey,54 O. Igonkina,54 M. Lu,54 C. T. Potter,54 N. B. Sinev,54 D. Strom,54 E. Torrence,54 F. Colecchia,55 A. Dorigo,55 F. Galeazzi,55 M. Margoni,55 M. Morandin,55 M. Posocco,55 M. Rotondo,55 F. Simonetto,55 R. Stroili,55 C. Voci,55 M. Benayoun,56 H. Briand,56 J. Chauveau,56 P. David,56 Ch. de la Vaissi`ere,56 L. Del Buono,56 O. Hamon,56 M. J. J. John,56 Ph. Leruste,56 J. Malcles,56 J. Ocariz,56 L. Roos,56 G. Therin,56 P. K. Behera,57 L. Gladney,57 Q. H. Guo,57 J. Panetta,57 M. Biasini,58 R. Covarelli,58 M. Pioppi,58 C. Angelini,59 G. Batignani,59 S. Bettarini,59 M. Bondioli,59 F. Bucci,59 G. Calderini,59 M. Carpinelli,59 F. Forti,59 M. A. Giorgi,59 A. Lusiani,59 G. Marchiori,59 M. Morganti,59 N. Neri,59 E. Paoloni,59 M. Rama,59 G. Rizzo,59 G. Simi,59 J. Walsh,59 M. Haire,60 D. Judd,60 K. Paick,60 D. E. Wagoner,60 N. Danielson,61 P. Elmer,61 Y. P. Lau,61 C. Lu,61 V. Miftakov,61 J. Olsen,61 A. J. S. Smith,61 A. V. Telnov,61 F. Bellini,62 G. Cavoto,61,62 A. D’Orazio,62 E. Di Marco,62 R. Faccini,62 F. Ferrarotto,62 F. Ferroni,62 M. Gaspero,62 L. Li Gioi,62 M. A. Mazzoni,62 S. Morganti,62 M. Pierini,62 G. Piredda,62 F. Polci,62 F. Safai Tehrani,62 C. Voena,62 S. Christ,63 H. Schr¨oder,63 G. Wagner,63 R. Waldi,63 T. Adye,64 N. De Groot,64 B. Franek,64 G. P. Gopal,64 E. O. Olaiya,64 R. Aleksan,65 S. Emery,65 A. Gaidot,65 S. F. Ganzhur,65 P.-F. Giraud,65 G. Hamel de Monchenault,65 W. Kozanecki,65 M. Legendre,65 G. W. London,65 B. Mayer,65 G. Schott,65 G. Vasseur,65 Ch. Y`eche,65 M. Zito,65 M. V. Purohit,66 A. W. Weidemann,66 J. R. Wilson,66 F. X. Yumiceva,66 T. Abe,67 M. Allen,67 D. Aston,67 R. Bartoldus,67 N. Berger,67 A. M. Boyarski,67 O. L. Buchmueller,67 R. Claus,67 M. R. Convery,67 M. Cristinziani,67 G. De Nardo,67 J. C. Dingfelder,67 D. Dong,67 J. Dorfan,67 D. Dujmic,67 W. Dunwoodie,67 S. Fan,67 R. C. Field,67 T. Glanzman,67 S. J. Gowdy,67 T. Hadig,67 V. Halyo,67 C. Hast,67 T. Hryn’ova,67 W. R. Innes,67 M. H. Kelsey,67 P. Kim,67 M. L. Kocian,67 D. W. G. S. Leith,67 J. Libby,67 S. Luitz,67 V. Luth,67 H. L. Lynch,67 H. Marsiske,67 R. Messner,67 D. R. Muller,67 C. P. O’Grady,67 V. E. Ozcan,67 A. Perazzo,67 M. Perl,67 B. N. Ratcliff,67 A. Roodman,67 A. A. Salnikov,67 R. H. Schindler,67 J. Schwiening,67 A. Snyder,67 A. Soha,67 J. Stelzer,67 J. Strube,54,67 D. Su,67 M. K. Sullivan,67 J. Thompson,67 J. Va’vra,67 S. R. Wagner,67 M. Weaver,67 W. J. Wisniewski,67 M. Wittgen,67 D. H. Wright,67 A. K. Yarritu,67 C. C. Young,67 P. R. Burchat,68 A. J. Edwards,68 S. A. Majewski,68 B. A. Petersen,68 C. Roat,68 M. Ahmed,69 S. Ahmed,69 M. S. Alam,69 J. A. Ernst,69 M. A. Saeed,69 M. Saleem,69 F. R. Wappler,69 W. Bugg,70 M. Krishnamurthy,70 S. M. Spanier,70 R. Eckmann,71 H. Kim,71 J. L. Ritchie,71 A. Satpathy,71 R. F. Schwitters,71 J. M. Izen,72 I. Kitayama,72 X. C. Lou,72 S. Ye,72 F. Bianchi,73 M. Bona,73 F. Gallo,73 D. Gamba,73 L. Bosisio,74 C. Cartaro,74 F. Cossutti,74 G. Della Ricca,74 S. Dittongo,74 S. Grancagnolo,74 L. Lanceri,74 P. Poropat,74,† L. Vitale,74 G. Vuagnin,74 F. Martinez-Vidal,2,75 R. S. Panvini,76 Sw. Banerjee,77 B. Bhuyan,77 C. M. Brown,77 D. Fortin,77 P. D. Jackson,77 R. Kowalewski,77 J. M. Roney,77 R. J. Sobie,77 J. J. Back,78 P. F. Harrison,78 G. B. Mohanty,78 H. R. Band,79 X. Chen,79 B. Cheng,79 S. Dasu,79 M. Datta,79 A. M. Eichenbaum,79 K. T. Flood,79 M. Graham,79 J. J. Hollar,79 J. R. Johnson,79 P. E. Kutter,79 H. Li,79 R. Liu,79 A. Mihalyi,79 Y. Pan,79 R. Prepost,79 P. Tan,79 J. H. von Wimmersperg-Toeller,79 J. Wu,79 S. L. Wu,79 Z. Yu,79 M. G. Greene,80 and H. Neal80 (The BABAR Collaboration) 1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France 2Universitad Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain 3Universit`a di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy 4Institute of High Energy Physics, Beijing 100039, China 5University of Bergen, Inst. of Physics, N-5007 Bergen, Norway 6Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA 7University of Birmingham, Birmingham, B15 2TT, United Kingdom 8Ruhr Universit¨at Bochum, Institut fu¨r Experimentalphysik 1, D-44780 Bochum, Germany 9University of Bristol, Bristol BS8 1TL, United Kingdom 10University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 11Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom 12Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia 13University of California at Irvine, Irvine, California 92697, USA 14University of California at Los Angeles, Los Angeles, California 90024, USA 15University of California at Riverside, Riverside, California 92521, USA 16University of California at San Diego, La Jolla, California 92093, USA 17University of California at Santa Barbara, Santa Barbara, California 93106, USA 18University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA 3 19California Institute of Technology, Pasadena, California 91125, USA 20University of Cincinnati, Cincinnati, Ohio 45221, USA 21University of Colorado, Boulder, Colorado 80309, USA 22Colorado State University, Fort Collins, Colorado 80523, USA 23Universit¨at Dortmund, Institut fur Physik, D-44221 Dortmund, Germany 24Technische Universit¨at Dresden, Institut fu¨r Kern- und Teilchenphysik, D-01062 Dresden, Germany 25Ecole Polytechnique, LLR, F-91128 Palaiseau, France 26University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom 27Universit`a di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy 28Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy 29Universit`a di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy 30Harvard University, Cambridge, Massachusetts 02138, USA 31Universit¨at Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany 32Imperial College London, London, SW7 2AZ, United Kingdom 33University of Iowa, Iowa City, Iowa 52242, USA 34Iowa State University, Ames, Iowa 50011-3160, USA 35Laboratoire de l’Acc´el´erateur Lin´eaire, F-91898 Orsay, France 36Lawrence Livermore National Laboratory, Livermore, California 94550, USA 37University of Liverpool, Liverpool L69 72E, United Kingdom 38Queen Mary, University of London, E1 4NS, United Kingdom 39University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom 40University of Louisville, Louisville, Kentucky 40292, USA 41University of Manchester, Manchester M13 9PL, United Kingdom 42University of Maryland, College Park, Maryland 20742, USA 43University of Massachusetts, Amherst, Massachusetts 01003, USA 44Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA 45McGill University, Montr´eal, Quebec, Canada H3A 2T8 46Universit`a di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy 47University of Mississippi, University, Mississippi 38677, USA 48Universit´e de Montr´eal, Laboratoire Ren´e J. A. L´evesque, Montr´eal, Quebec, Canada H3C 3J7 49Mount Holyoke College, South Hadley, Massachusetts 01075, USA 50Universit`a di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy 51NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands 52University of Notre Dame, Notre Dame, Indiana 46556, USA 53Ohio State University, Columbus, Ohio 43210, USA 54University of Oregon, Eugene, Oregon 97403, USA 55Universit`a di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy 56Universit´es Paris VI et VII, Laboratoire de Physique Nucl´eaire et de Hautes Energies, F-75252 Paris, France 57University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 58Universit`a di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy 59Universit`a di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy 60Prairie View A&M University, Prairie View, Texas 77446, USA 61Princeton University, Princeton, New Jersey 08544, USA 62Universit`a di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy 63Universit¨at Rostock, D-18051 Rostock, Germany 64Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom 65DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France 66University of South Carolina, Columbia, South Carolina 29208, USA 67Stanford Linear Accelerator Center, Stanford, California 94309, USA 68Stanford University, Stanford, California 94305-4060, USA 69State University of New York, Albany, New York 12222, USA 70University of Tennessee, Knoxville, Tennessee 37996, USA 71University of Texas at Austin, Austin, Texas 78712, USA 72University of Texas at Dallas, Richardson, Texas 75083, USA 73Universit`a di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy 74Universit`a di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy 75Universitad de Valencia, E-46100 Burjassot, Valencia, Spain 76Vanderbilt University, Nashville, Tennessee 37235, USA 77University of Victoria, Victoria, British Columbia, Canada V8W 3P6 78Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom 79University of Wisconsin, Madison, Wisconsin 53706, USA 80Yale University, New Haven, Connecticut 06511, USA (Dated: February 7, 2008) 4 We search for the factorization-suppressed decays B→χc0K(∗) and B →χc2K(∗), with χc0 and χc2 decaying into J/ψγ, using a sample of 124×106 BB events collected with the BABAR detector at thePEP-II storage ring of theStanford Linear Accelerator Center. Wefindnosignificant signal and set upperboundsfor the branchingfractions. PACSnumbers: 13.25.Hw,12.15.Hh,11.30.Er Nonleptonic decays of heavy mesons are not easily The BABAR detector is described elsewhere [9]. Sur- described because the process involves quarks whose rounding the interaction point, a five-layer double-sided hadronization is not yet well understood. The factoriza- silicon vertex tracker (SVT) provides precise reconstruc- tion hypothesis allows one to make some predictions [1] tionoftrackanglesandB-decayvertices. A40-layerdrift byassumingthataweakdecaymatrixelementcanbede- chamber(DCH)providesmeasurementsofthetransverse scribed as the product of two independent hadronic cur- momenta of charged particles. An internally reflecting rents. Under the factorization hypothesis, B ccK(∗) ring-imagingCherenkovdetector(DIRC)isusedforpar- → decays are allowed when the cc pair hadronizes to J/ψ, ticle identification (PID). A CsI(Tl) crystal electromag- ψ(2S)orχ ,butsuppressedwhentheccpairhadronizes netic calorimeter (EMC) detects photons and electrons. c1 to χ or χ [2]. Here, K(∗) represents either K or K∗. The calorimeter is surrounded by a solenoidal magnet c0 c2 In lowest-order Heavy Quark Effective Theory, there is providing a 1.5-T field. The flux return is instrumented no J 2 current to create the tensor χ from the vac- withresistiveplatechambersusedformuonandneutral- c2 ≥ uum. The decay rate to the scalar χ is zero due to hadron identification. c0 charge conjugation invariance [3]. The channels considered here are B χ K(∗) with c → a bBrealnlechhiansgrefrcaecnttiloyno(bBseFr)veodfB(6+.0→+2.χ1c0K1+.1)deca1y0s−w4i[t4h] χorcK→0J(/ψγπ+anπd−)J;/Kψ∗→0 ℓ+Kℓ−+,πw−hoerreKℓ0iπs0e;oKr∗µ+; K Kis+Kπ+0 using χ decays to π+π− or K+K−1−.8.±BABAR×has con- orKS0π→+; andπ0 γγ→. Charge-conjuSgatemode→sarein- c0 S → firmed the observation using the same decays with a cluded implicitly throughout this paper. Event selection branching fraction of (2.7 0.7) 10−4 [5], somewhat is optimized by maximizing ǫ/√B, where ǫ is the signal ± × lowerthan,butcompatiblewith,theBellemeasurement. efficiencyafterallselectionrequirementsandB thenum- These results are of the same order of magnitude as the ber of background events, estimated with Υ(4S) BB → BF of the decay B+ χ K+ and are surprisingly and e+e− qq Monte Carlo (MC) samples. → c1 → largegiventheexpectationfromfactorization. Usingthe Candidate J/ψ mesons are reconstructed from a pair hadronic χ decays,CLEO has obtained an upper limit ofoppositelychargedleptoncandidatesthatformagood c0 on B0 χ K0 of 5.0 10−4 [6]. Non-factorizable con- vertex. Muon (electron) candidates are identified with a c0 → × tributions to B+ χ K+ decaysdue to rescatteringof neural-network (cut-based) selector and loose selection c0 → intermediate charmstates have been consideredtheoret- criteria. Electromagnetic depositions in the calorimeter ically [7], and similar branching fractions are predicted inthepolar-anglerange0.410<θ <2.409radthatare lab for decays to χ and χ . No predictions are available notassociatedwithchargedtracks,haveanenergylarger c0 c2 for B decays to χ K∗, but the branching fraction than 30MeV, and a showershape consistent with a pho- c(0,2) of decays to K∗ may be expected to be similar to the tonaretakenasphotoncandidates. ForJ/ψ e+e− de- → branching fraction of decays to K. The measurement cays,electroncandidatesarecombinedwithnearbypho- of B χ K(∗) should improve our understanding of toncandidatesinordertorecoversomeoftheenergylost c(0,2) → thelimitationsoffactorizationandofmodelsthatviolate throughbremsstrahlung. The lepton-pairinvariantmass factorization. must be in the range [2.95, 3.18] GeV/c2 for both lepton In this Letter we report a search for the decays flavors. The small remaining background is mainly due B χcJK(∗), J = 0,2, using the radiative decays to J/ψ mesons not originating from χc decays. χ → J/ψγ, with branching fractions of (1.18 0.14)%, WeformK0candidatesfromoppositely-chargedtracks cJ S → ± (20.2 1.7)%,respectively[8]. Sincetheradiativebranch- originating from a common vertex with invariant mass ing fr±action for the χ decay (including subsequent J/ψ in the range [487, 510] MeV/c2. The K0 flight length c0 S decay to ℓ+ℓ−) is much smaller than the correspond- mustbegreaterthan1mm,anditsdirectionintheplane ing π+π− or K+K− branching fractions, the search for perpendicular to the beamline mustbe within 0.2radof the B+ χ K+ decay is less sensitive than previous the K0 momentum vector. Chargedkaon candidates are c0 S → searches, but it is free from the interference with the identifiedwithalikelihoodselector,basedoninformation non-resonant decays to three mesons that affect the lat- fromtheDIRC,anddE/dxintheSVT andintheDCH. ter. The data used in this analysis were obtained with A π0 candidate is formed from a pair of photon can- the BABARdetectoratthe PEP-IIstoragering,compris- didates with invariant mass in the interval [117, 152] ing an integratedluminosity of 112fb−1 ofdata taken at MeV/c2 and momentum greater than 350MeV/c. K∗ the Υ(4S) resonance. candidates are formed from Kπ combinations with an 5 invariant mass in the range [0.85, 0.94] GeV/c2. Studies of MC samples show that most of the back- The J/ψ, KS0, and π0 candidates are constrained to ground events in the χcK∗ channels are due to non- their corresponding nominal masses [8] to improve the resonant (NR) B χc(J/ψγ)Kπ decays. After the NR → resolution of the measurement of the four-momentum of events are removed from the MC background sample, their parent B-candidate. The χc candidates are formed the expected background with a genuine χc → J/ψγ fromJ/ψ andphotoncandidates. Thephotonisrequired decays is 0.2 0.2 event for the χc2K∗0(K+π−) and ± to have an energy greater than 0.15GeV and not to be χc2K∗+(K+π0) modes, and 0.0 0.2 for all other chan- ± part of π0 candidates in the mass range [0.125, 0.140] nels. We correct for the presence of NR decays with the GeV/c2. followingprocedure. Themℓ+ℓ−γ−mℓ+ℓ− distributionfor Candidate B mesons are formed from χc and K(∗) events in a nearby sideband (1.1 < mKπ < 1.3GeV/c2) candidates. Two kinematic variables are used to fur- is subtracted from the distribution for events in the sig- therremoveincorrectlyreconstructedB candidates. The nalregion(0.85<mKπ <0.94GeV/c2), after scalingthe first is the difference ∆E E∗ E∗ between the sideband distribution by a factor r = 0.26 0.04. The B-candidate energy and th≡e beaBm−enebregamy in the Υ(4S) quantity r, obtained from MC simulation, is±the ratio of rest frame. In the absence of experimental effects, re- NR events under the peak to the number in the side- constructed signalcandidates have ∆E =0. The typical band. NR-subtracted distributions of mℓ+ℓ−γ −mℓ+ℓ− ∆E resolutionis 20 MeV for channelswith only charged areshowninFig.1. Theseplotsshowthepresenceofthe tracks in the final state, and 25 MeV, with a low ∆E factorization-allowedχc1butnosignificantsignalsforthe tail due to energy leakage in the calorimeter, for chan- factorization-suppressedχc0 or χc2. No χc0 orχc2 signal nels with a π0. The second variable is the beam-energy- is observed in the sideband region. substitutedmassm (E∗2 p∗2)1/2,wherep∗ isthe ES ≡ beam− B B momentum of the B-candidate in the Υ(4S) rest frame. TABLEII:Eventyieldswithstatisticaluncertaintiesfromthe The energy substituted mass mES should peak at the B fitsof Fig. 1. meson mass, 5.279GeV/c2. Typical resolution for ∆E is 2.7 MeV/c2. For the signal region, ∆E is required to be χc2 χc0 in the range [ 35,+20]MeVfor channels involving a π0, K∗0 (K+π−) 2.0 ± 1.6 1.7 ± 2.1 − K∗0 (K0π0) -1.6 ± 4.3 0.5 ± 0.3 andwithin 20MeVotherwise. We requirem tobein S therange[5±.274,5.284] GeV/c2. IfmorethanoEnSeB can- KKS0∗+ (K+π0) -30..45±±10..82 31..91 ±± 23..28 didate is found in an event, the one having the smallest K∗+ (K0π+) -1.9 ± 1.2 5.9 ± 3.7 S ∆E is retained. K+ 3.7 ± 4.4 8.8 ± 6.6 | | The observation of χ could be complicated by the c2 presenceoftheprominentχ peak. Thisismitigatedby c1 Tmheaeseuffiricnigentchieesspoebcttariunmedinfrotmhefivtasritaobtlehemmℓ+aℓs−sγd−iffmerℓe+nℓ−ce. NST/h(Ne Bbǫrfan),chwinhgerefraNctSioinssthareencuommbpeurteodf sfirgonmalBevFen=ts distribution for exclusive MC samples, where one B de- obtained from fitting the mℓ+ℓ−γ − mℓ+ℓ− distribution cays to the final state under considerationand the other (Table II), NB is the number of produced BB events, inclusively, are given in Table I. The χ meson has a ǫ is the selection efficiency (Table I) and f is the prod- c2 natural width of just 2 MeV [8] and is therefore fitted uct of secondarybranchingfractions ofthe B daughters. withaGaussiantoaccountfordetectorresolution. Since The free parameters in the fits are the size of a constant the χc0 has a natural width of 10 MeV [8], comparable background, the overall scale of mℓ+ℓ−γ − mℓ+ℓ−, and to the mass resolution (σ 10MeV/c2), we fit the χ the amplitudes of the resonant peaks. The fixed param- c0 ≈ peakwiththe convolutionofBreit-WignerandGaussian etersarethe χc0 naturalwidth, theχc0–χc1 andχc2–χc1 shapes. mass differences ( 95.4 and +45.7MeV/c2, respectively) − alltakenfromRef.[8],andthemassresolution. Themass resolution,10.2 0.4MeV/c2,is measuredwithχ data c1 ± TABLEI:Efficiencies from fitsof exclusiveMCdistributions and is assumed to be the same for the three χ states. of mℓ+ℓ−γ−mℓ+ℓ−, with statistical uncertainty. Performing such fits to an inclusive Υ(4S) Bc B MC → sample,weverifythatthe NReventsaresubtractedcor- χc2 χc0 rectly,andthat the proximityofthe χc1 does notinduce K∗0 (K+π−) 0.071 ± 0.001 0.066 ± 0.001 any significant bias on the measurement of the nearby K∗0 (KS0π0) 0.031 ± 0.001 0.020 ± 0.001 χc2. KS0 0.158 ± 0.001 0.126 ± 0.001 Based on studies of B J/ψ K∗ decays [10], the NR K∗+ (K+π0) 0.036 ± 0.001 0.031 ± 0.001 → Kπ component appears to be in an S-wave state, with K∗+ (K0π+) 0.065 ± 0.001 0.062 ± 0.001 S an unknown relative phase φ with respect to the main K+ 0.144 ± 0.001 0.117 ± 0.002 K∗(892) P-wave peak. As no signal is found, the sys- tematic uncertainty due to the unknown relative phase 6 lectionefficiency thereforedepends, to firstorder,onthe 6 (a) (b) 30 (c) polarization of the K∗ population, through the angular 2 c V/ 20 4 distribution: Me 20 1 dΓ 3 nts / 7 10 2 10 ΓdcosθK∗ = 4(cid:2)(1−cos2θK∗)+A0(3cos2θK∗ −1)((cid:3)2,) e Ev 0 where A is the fraction of longitudinal K∗ polarization. 0 100 0 The average efficiency is (d) (e) 100 (f) 7.5 7.5 1 dΓ 5 5 75 χc0 χc2 hεi=Z ΓdcosθK∗ε(θK∗)dcosθK∗ =a+A0b, (3) 50 2.5 2.5 where a= 43 (1−cos2θK∗)ε(θK∗)sinθK∗dθK∗, and b= 25 34 (3cos2θKR∗ − 1)ε(θK∗)sinθK∗dθK∗, where ε(θK∗) is 0 0 obRtained from MC. The values of a and b are shown in 0 Table III. 0.25 0.6 0.25 0.6 0.25 0.6 m+- - m+- (GeV/c2) Whennosignalisobserved,asisthecasehere,thepo- l lγ l l larization is unknown. We assume an unpolarized decay and we estimate the efficiency as (a+0.5b) (b/√12). FIG. 1: Distribution of mℓ+ℓ−γ −mℓ+ℓ− for data, with NR The branching fraction measurements repor±ted|h|ere are subtraction for final states of the strange meson (a) K+π−, (b) K0π0, (c) K0, (d) K+π0, (e) K0π+, (f) K+. The fit S S S is described in the text. The arrows on plot (f) show the TABLE III: Coefficients for the calculation of amplitude- expected positions of the χc0 and χc2 peaks. dependentaverage efficiency for theχc2K∗ channels (%). a b Efficiency is estimated here with a MC-based method. The K π K∗0 (K+π−) 8.68 -1.40 7.98± 0.40 invariantmassisfittedwithanamplitudethatisthes−um K∗0 (KS0π0) 4.25 -1.66 3.43± 0.48 K∗+ (K+π0) 5.05 -1.79 4.16± 0.52 ofanon-relativisticBreit-Wignerandanamplitudewith K∗+ (K0π+) 7.83 -1.84 6.92± 0.53 aconstantphaseandthesquareofwhichhasaquadratic S dependence on m . Kπ a 2 affected by the systematic uncertainties described in p(m )= +b(m )eiφ , (1) Kπ (cid:12)(cid:12)(cid:12)mK∗ −mKπ−iΓ/2 Kπ (cid:12)(cid:12)(cid:12) wBhBatevfoelnlotswsis. T1.h1e%r.elTathiveesuecnocnedrtaariyntbyroanncthhiengnufrmacbteironosf (cid:12) (cid:12) whereaandbarerealquantitiesandmK∗ =892MeV/c2. and their uncertainty are taken from Ref. [8]. Other es- The slow variationofthe phase of the S wavewith m timated uncertainties are: tracking efficiency, 1.3% per Kπ is neglected here. The free parameters in the fit are the track added linearly; K0 reconstruction, 2.5%; selection S three degrees of freedom of the quadratic dependence of of the γ from the χ decays, 2.5%; π0 selection, 5.0%; c b, the magnitude of the signal, and the relative phase PID efficiency, 3.0%. For each mass peak and for ∆E, φ. As the sideband is dominated by the NR contribu- the uncertainty of the central value and of the width of tion, no attempt is made to subtract the few combina- the peaks are measured with the χ channels. These c1 torial events. The fact that the phase φ is unknown is quantities areusedto estimate the efficiency uncertainty dealtwithbyrandomlygeneratingsamplesofeventsdis- from this source. The ratio of B0 to B+ production in tributed as above for each value of φ, and applying NR Υ(4S)decaysis assumedto be unity. The relateduncer- subtraction. The number of events N(φ) thus measured tainty is small [11] and is neglected here. A summary of is normalized to that obtained with the phase value φ the multiplicative contributions to the systematics can 0 obtained in the fit. The ratio R = N(φ)/N(φ ) shows a be found in TableIV. In addition to these multiplica- 0 sinusoidal dependance. The average value is 1.44 with a tive contributions there is a small contribution from the deviation of 35%, giving an RMS relative uncertainty uncertainty on r for the NR background subtraction. ± of 20%,whichwewillassumeassystematicuncertainty Combining the measurements of the K∗ sub-modes, ± (due to the interference with the NR component). and with the approximation that the multiplicative ef- In the case of decays to the tensor χ , the efficiency ficiencies for each K∗ sub-mode are fully correlated, c2 depends on the intensity fractions to each of three po- we obtain the branching fractions for the factorization- larization states. The efficiency is mainly sensitive to suppressed modes listed in Table V. As a cross check, the value of the K∗ helicity angle θK∗, because small the results for the allowed χc1 are found to be compati- values of θK∗ occur for low momentum pions. The se- blewiththoseofarecentanalysis[12]optimizedforthat 7 We are grateful for the excellent luminosity and ma- TABLEIV:Summaryofthemultiplicativesystematicuncer- chine conditions providedby our PEP-II colleagues,and tainties in percent. The first eight rows are in common to for the substantial dedicated effort from the computing decays toχc0 and χc2. organizations that support BABAR. The collaborating K+π− K0π0 K+π0 K0π+ K+ K0 institutions wish to thank SLAC for its support and S S S Numberof B’s 1.1 1.1 1.1 1.1 1.1 1.1 kind hospitality. This work is supported by DOE and Tracking 5.2 2.6 3.9 3.9 3.9 2.6 NSF(USA),NSERC(Canada),IHEP(China),CEAand KS0 – 2.5 – 2.5 – 2.5 CNRS-IN2P3 (France), BMBF and DFG (Germany), Neutrals 2.5 7.5 7.5 2.5 2.5 2.5 INFN (Italy), FOM (The Netherlands), NFR (Norway), PID 3.0 3.0 3.0 3.0 3.0 3.0 MIST (Russia), and PPARC (United Kingdom). Indi- Sample selection 7.7 13.1 11.6 8.2 6.5 6.3 viduals have received support from CONACyT (Mex- MC statistics 1.4 2.9 1.7 1.8 1.3 1.3 ico),A.P.SloanFoundation,ResearchCorporation,and S-wavePhase 20.0 20.0 20.0 20.0 – – χc0 second. BF 11.9 11.9 11.9 11.9 11.9 11.9 Alexander von Humboldt Foundation. Total for χc0 25.4 28.3 27.6 25.5 14.8 14.6 χc2 second. BF 8.5 8.5 8.5 8.5 8.5 8.5 Polarization 5.1 14.0 12.4 7.7 – – Total for χc2 24.5 30.5 29.1 25.3 12.2 12.0 ∗ Also with Universit`adella Basilicata, Potenza, Italy † Deceased [1] M. Bauer, B. Stech and M. Wirbel, Z. Phys. C 34, 103 (1987). decay. We obtain upper bounds on the BFs at 90% con- [2] M. Suzuki,Phys. Rev. D 66, 037503 (2002). fidence level (C.L.) assuming Gaussian statistics for the [3] M. Diehl and G. Hiller, JHEP 0106, 067 (2001). statistical uncertainties and taking into account the sys- [4] K.Abeetal.[BelleCollaboration],Phys. Rev. Lett.88, tematic uncertainties. We have used a Bayesian method 031802 (2002). with uniform prior for positive BF values in the deriva- [5] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D tionoftheselimits. Theupperlimitsobtainedfordecays 69, 071103 (2004). to χ are larger than for χ due to the smaller χ ra- [6] K.W.Edwards et al.[CLEO Collaboration], Phys.Rev. diaticv0e BF. For B+ χ Kc2+ they are compatiblec0with Lett. 86, 30 (2001). c0 → [7] P. Colangelo, F. De Fazio and T. N. Pham, Phys. Lett. the previous measurements [4, 5]. B 542, 71 (2002). B χ K(∗) production requires non-factorizable c(0,2) [8] S. Eidelman et al. [Particle Data Group Collaboration], → contributions. B+ χc0K+ decays have been previ- Phys. Lett. B 592, 1 (2004). ously observed. Co→langelo et al. [7] explain this with [9] B.Aubertet al.[BABARCollaboration], Nucl.Instrum. rescattering effects and predict a similar rate for B Methods A479, 1 (2002). χ K. This is not observed. The upper limits obtain→ed [10] B. Aubert et al. [BABAR Collaboration], Phys. Rev. c2 Lett. 87, 241801 (2001). for decays to χ are approximately one order of magni- c2 [11] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D tude lower than the branching fractions of the observed 69, 071101 (2004). B+ χ K+ decays. Furthermore, we find no evidence c0 [12] B. Aubert [BABAR Collaboration], → for the decays B χc(0,2)K∗. arXiv:hep-ex/0412062, submitted to Phys.Rev.Lett. → TABLEV:Upperlimitsat90%C.L.andmeasuredbranching fractions (in pararentheses) in units of 10−4. χc2 χc0 K∗0 0.36 (0.14 ± 0.11 ± 0.14) 7.7 (3.8 ± 2.6 ± 1.5) K∗+ 0.12 (-0.15 ± 0.05 ± 0.14) 28.6 (13.5 ± 9.6 ± 5.3) K+ 0.30 (0.09 ± 0.10 ± 0.11) 8.9 (4.4 ± 3.3 ± 0.7) K0 0.41 (0.21 ± 0.11 ± 0.13) 12.4 (5.3 ± 5.0 ± 0.8)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.