ebook img

Satisfying K-Anonymity PDF

101 Pages·2009·3.99 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Satisfying K-Anonymity

Satisfying K-Anonymity: New Algorithm and Empirical Evaluation Romeo Issa Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Master of Computer Science Under the auspices of the Ottawa-Carleton Institute for Computer Science Ottawa, Ontario, Canada January 2009 © Romeo Issa, Ottawa, Canada, 2009 Abstract Nowadays, clinical institutions are increasingly asked to make their raw data electroni- cally available for research purposes. However, the same laws that prevent casual disclo- sure of such data have also made it difficult for researchers to access the information they need to conduct critical research. Therefore, several algorithms were developed with the purpose of making that information anonymous, hence readily available for researchers. In this thesis, we present the results of an empirical evaluation of algorithms that aim to achieve k-anonymity under global recoding and hierarchical generalization, namely, Datafly and Samarati’s algorithms. We conclude that on average the latter pro- duces better results, but neither produces an optimal solution. Next, we propose a new method to efficiently find the optimal solution, and we illustrate some programming op- timizations. Finally, we compare our approach from an efficiency perspective to Incog- nito, an efficient algorithm that finds the set of all possible solutions. iii Acknowledgment I would like to express my deep and sincere gratitude to my co-supervisors, Prof. Khaled El Emam, Prof. Daniel Amyot, and Prof. Jean-Pierre Corriveau. This thesis would not have been possible without their continuous help, guidance and support. This research was conducted at the Electronic Health Information Laboratory as part of the Collaborative Health Research Project on Performance Management at the Point of Care: Secure Data Delivery to Drive Clinical Decision Making Processes for Hospital Quality Control, funded by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada. The work was done mainly in collaboration with Dr. Khaled El Emam, with the much appreciated support of Dr. Fida Kamal Dankar. Furthermore, many thanks go to my co-workers and the people who provided the private data sets used in the experiments, namely: Elizabeth Jonker, Elise Cogo, Sadrul Chowdhury, Regis Vaillancourt, Tyson Roffey, Jim Bottomley and Mark Walker. My sincere thanks also go to the official referees, Dr. Anil Somayaji and Dr. Car- lisle Adams, for their detailed review and constructive criticism. Above all, I want to thank Mr. Peter and Mrs. Siham Irani, and their family, who welcomed me in their home during my stay in Canada so far, and who also provided the kind of unconditional love and support a person would only expect from his own parents and family. iv Table of Contents Abstract ............................................................................................................................. iii  Acknowledgment .............................................................................................................. iv  Table of Contents .............................................................................................................. v  List of Tables ................................................................................................................... vii  List of Figures ................................................................................................................. viii  List of Acronyms ............................................................................................................... x  Chapter 1. Introduction ................................................................................................... 1  1.1.  Motivation ........................................................................................................... 1  1.2.  Research Objective ............................................................................................. 3  1.3.  Thesis Contribution ............................................................................................. 4  1.4.  Thesis Structure .................................................................................................. 4  Chapter 2. Background .................................................................................................... 6  2.1.  Preliminary Concepts and Definitions ................................................................ 6  2.2.  Previous Work ................................................................................................... 12  2.2.1  Samarati’s algorithm ................................................................................................ 13  2.2.2  Datafly algorithm ..................................................................................................... 14  2.2.3  Visualization ............................................................................................................ 15  2.3.  Chapter Summary ............................................................................................. 16  Chapter 3. Empirical Evaluation .................................................................................. 17  3.1.  The Optimal Solution ........................................................................................ 17  3.2.  Measuring Information Loss ............................................................................. 18  3.3.  Data Sets ........................................................................................................... 21  3.4.  Methodology ..................................................................................................... 22  3.5.  Results ............................................................................................................... 22  3.6.  Conclusion ........................................................................................................ 26 v Chapter 4. New Algorithm ............................................................................................. 27  4.1.  Motivation ......................................................................................................... 27  4.2.  Observations ..................................................................................................... 28  4.2.1  Prediction ................................................................................................................. 28  4.2.2  Candidates ................................................................................................................ 31  4.3.  Limitation of Datafly and Samarati’s Algorithms ............................................ 33  4.4.  New Approach ................................................................................................... 34  4.5.  Efficiency ........................................................................................................... 42  4.6.  Summary ........................................................................................................... 44  Chapter 5. Optimizations ............................................................................................... 45  5.1.  Four Main Optimizations .................................................................................. 45  5.1.1  A: Numbers versus Strings ....................................................................................... 45  5.1.2  B: Flat hierarchies .................................................................................................... 47  5.1.3  C: Sorting always helps ............................................................................................ 48  5.1.4  D: Rollup .................................................................................................................. 49  5.2.  Overall Time Complexity .................................................................................. 50  5.3.  Summary ........................................................................................................... 53  Chapter 6. Efficiency ...................................................................................................... 54  6.1.  Incognito ........................................................................................................... 54  6.2.  Comparison ....................................................................................................... 55  6.3.  Summary ........................................................................................................... 59  Chapter 7. Conclusions .................................................................................................. 60  7.1.  Contributions .................................................................................................... 60  7.2.  Future work ....................................................................................................... 61  References ........................................................................................................................ 62  Appendix A: Data Sets Details and Hierarchies .......................................................... 66  Appendix B: Additional Results .................................................................................... 77  MaxSup = 1% ............................................................................................................... 77  Empirical evaluation of Datafly and Samarati ...................................................................... 77  Efficiency related graphs of our approach ............................................................................ 81  Comparison with Incognito ................................................................................................... 83  MaxSup = 10% ............................................................................................................. 84  Empirical evaluation of Datafly and Samarati ...................................................................... 84  Efficiency related graphs of our approach ............................................................................ 88  Comparison with Incognito ................................................................................................... 90  vi List of Tables Table 1  De-identified private table (medical data) ...................................................... 2  Table 2  Non de-identified publicly available table ...................................................... 2  Table 3  De-identified table .......................................................................................... 8  Table 4  2-anonymized via local recoding .................................................................... 8  Table 5  2-anonymized via global recoding .................................................................. 8  Table 6  Global recoding with suppression ................................................................... 8  Table 7  Hierarchical generalization with regard to the vector [0,1,1] ....................... 10  Table 8  (a) is a data set, and (b) is its generalization with respect to [0,0,1] ............. 19  Table 9  Summary information of the data sets .......................................................... 21  Table 10  Auxiliary functions ....................................................................................... 36  Table 11  Pseudo code for getting the optimal solution candidates (GetOCS) ............. 37  Table 12  Lattice size of the data sets ........................................................................... 42  Table 13  Race - unique items ....................................................................................... 46  Table 14  Marital status - unique items ......................................................................... 46  Table 15  Original data.................................................................................................. 46  Table 16  Transformed data .......................................................................................... 46  Table 17  GH Array – Race – (GHR) ........................................................................... 47  Table 18  GH Array – Marital Status – (GHM) ........................................................... 47  Table 19  Original data.................................................................................................. 49  Table 20  The same data hashed and sorted .................................................................. 49  vii List of Figures Figure 1  GH for Marital Status...................................................................................... 7  Figure 2  GH for Race .................................................................................................... 7  Figure 3  GH for Age ..................................................................................................... 7  Figure 4  A lattice ......................................................................................................... 11  Figure 5  Visual comparison of Datafly and Samarati’s algorithms ............................ 15  Figure 6  Information loss comparison for Adult and CUP data sets ........................... 23  Figure 7  Information loss comparison for FARS and ED data sets ............................ 24  Figure 8  Information loss comparison for Pharm and Niday data sets ....................... 25  Figure 9  Lattice illustrating “Predictions” ................................................................... 29  Figure 10  Optimal solution candidates ...................................................................... 32  Figure 11  Getting OSC - step A ................................................................................ 38  Figure 12  Getting OSC - step B ................................................................................ 38  Figure 13  Getting OSC - step C ................................................................................ 39  Figure 14  Getting OSC - step D ................................................................................ 39  Figure 15  Getting OSC - step E................................................................................. 39  Figure 16  Getting OSC - step F ................................................................................. 39  Figure 17  Getting OSC - step G ................................................................................ 39  Figure 18  Getting OSC - step H ................................................................................ 39  Figure 19  Getting OSC - step I .................................................................................. 40  Figure 20  Getting OSC - step J ................................................................................. 40  Figure 21  Getting OSC - step K ................................................................................ 40  Figure 22  Getting OSC - step L................................................................................. 40  Figure 23  Getting OSC - step M ............................................................................... 40  Figure 24  Getting OSC - step N ................................................................................ 40  Figure 25  Getting OSC - step O ................................................................................ 41  Figure 26  Getting OSC - step P ................................................................................. 41  Figure 27  “Number of evaluations” to “lattice size” ratio ........................................ 43  Figure 28  “OSC” to “lattice size” ratio ..................................................................... 44  Figure 29  Hashed GH for Marital Status................................................................... 47  Figure 30  Hashed GH for Race. ................................................................................ 47  Figure 31  Execution time in seconds. Suppression limit of 5%. ............................... 51  Figure 32  Original search space size. ........................................................................ 56  Figure 33  Nodes evaluated ratio. ............................................................................... 56  Figure 34  Performance score of Incognito with respect to our approach. ................ 58  Figure 35  Size of solutions output by Incognito. ...................................................... 58  Figure 36  GH of Native-Country .............................................................................. 66  Figure 37  GH of Age ................................................................................................. 66  Figure 38  GH of Occupation ..................................................................................... 66  Figure 39  GH of Education ....................................................................................... 67  viii Figure 40  GH of Marital Status ................................................................................. 67  Figure 41  GH of Race ............................................................................................... 67  Figure 42  GH of Sex ................................................................................................. 67  Figure 43  GH of Work Class ..................................................................................... 67  Figure 44  GH of Age ................................................................................................. 68  Figure 45  GH of Income ........................................................................................... 68  Figure 46  GH of Postal Code .................................................................................... 68  Figure 47  GH of Gender ............................................................................................ 69  Figure 48  GH of Month of death ............................................................................... 70  Figure 49  GH of Day of death ................................................................................... 70  Figure 50  GH of Age ................................................................................................. 71  Figure 51  GH of Postal Code .................................................................................... 71  Figure 52  GH of Admission date .............................................................................. 72  Figure 53  GH of Admission date .............................................................................. 73  Figure 54  GH of Admission time .............................................................................. 73  Figure 55  GH of Postal Code .................................................................................... 74  Figure 56  GH of DOB ............................................................................................... 74  Figure 57  GH of Baby Sex ........................................................................................ 75  Figure 58  GH of Baby’s Date of Birth ...................................................................... 75  Figure 59  GH of Mother’s Date of Birth ................................................................... 76  Figure 60  Information loss comparison for Adult and CUP data sets. 1% ............... 78  Figure 61  Information loss comparison for FARS and ED data sets. 1% ................. 79  Figure 62  Information loss comparison for Pharm and Niday data sets. 1% ............ 80  Figure 63  “Number of evaluations” to “lattice size” ratio. MaxSup = 1% ............... 81  Figure 64  “OSC” to “lattice size” ratio. MaxSup = 1% ............................................ 81  Figure 65  Execution time in seconds. MaxSup = 1% ............................................... 82  Figure 66  Nodes evaluated ratio. MaxSup = 1% ...................................................... 83  Figure 67  Performance score of Incognito with respect to our approach ................. 83  Figure 68  Size of solutions output by Incognito. MaxSup = 1% .............................. 84  Figure 69  Information loss comparison for Adult and CUP data sets. 10% ............. 85  Figure 70  Information loss comparison for FARS and ED data sets. 10% ............... 86  Figure 71  Information loss comparison for Pharm and Niday data sets. 10% .......... 87  Figure 72  “Number of evaluations” to “lattice size” ratio. MaxSup = 10% ............. 88  Figure 73  “OSC” to “lattice size” ratio. MaxSup = 10% .......................................... 88  Figure 74  Execution time in seconds. MaxSup 10%................................................. 89  Figure 75  Nodes evaluated ratio. MaxSup = 10% .................................................... 90  Figure 76  Performance score of Incognito with respect to our approach ................. 90  Figure 77  Size of solutions output by Incognito. MaxSup = 10% ............................ 91  ix List of Acronyms Acronym Definition DM Discernability Metric DOB Date of Birth EC Equivalence classes FSA Forward Sortation Area GH Generalization Hierarchy HIPAA Health Insurance Portability and Accountability Act IL Information Loss k The anonymization level MaxSup Maximum Suppression allowed (or Suppression limit) NE Non-Uniform Entropy OSC Optimal Solution Candidates PHIPA Personal Health Information Protection Act PT Private Table QI Quasi-Identifier SDC Statistical Disclosure Control SSN Social Security Number UI Unique Items x

Description:
New Algorithm and Empirical Evaluation. Romeo Issa. Thesis submitted to the. Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of In this thesis, we present the results of an empirical evaluation of algorithms that .. 5.1.3 C: Sorting always hel
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.