ebook img

Rigid Germs, the Valuative Tree, and Applications to Kato Varieties PDF

194 Pages·2015·1.061 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rigid Germs, the Valuative Tree, and Applications to Kato Varieties

20 TESI THESES tesidiperfezionamentoinMatematicasostenutail15marzo2011 COMMISSIONEGIUDICATRICE LuigiAmbrosio,Presidente MarcoAbate FilippoBracci CharlesFavre PietroMajer GiorgioPatrizio GiuseppeTomassini MatteoRuggiero IMJ-Universite´ParisDiderot75205ParisCedex13,France RigidGerms,theValuativeTree,andApplicationstoKatoVarieties Matteo Ruggiero Rigid Germs, the Valuative Tree, and Applications to Kato Varieties (cid:2)c 2015ScuolaNormaleSuperiorePisa ISBN978-88-7642-558-5 ISBN978-88-7642-559-2(eBook) aLauraeziaAnna Contents Introduction ix 1 Background 1 1.1. Holomorphicdynamics . . . . . . . . . . . . . . . . . . 1 1.1.1. Localholomorphicdynamics . . . . . . . . . . . 1 1.1.2. Localdynamicsinonecomplexvariable . . . . . 2 1.1.3. Localdynamicsinseveralcomplexvariables . . 5 1.1.4. Paraboliccurves . . . . . . . . . . . . . . . . . 7 1.1.5. Stableandunstablemanifolds . . . . . . . . . . 8 1.2. Algebraicgeometry . . . . . . . . . . . . . . . . . . . . 10 1.2.1. Divisorsandlinebundles . . . . . . . . . . . . . 10 1.2.2. Blow-upsandModifications . . . . . . . . . . . 11 1.2.3. CanonicalandNormalBundles . . . . . . . . . 13 1.2.4. Intersectionnumbers . . . . . . . . . . . . . . . 14 1.2.5. Valuations . . . . . . . . . . . . . . . . . . . . . 16 1.3. Algebraictopology . . . . . . . . . . . . . . . . . . . . 17 1.4. Compactcomplexvarieties . . . . . . . . . . . . . . . . 18 1.4.1. Minimalmodels . . . . . . . . . . . . . . . . . 18 1.4.2. KodairaDimension . . . . . . . . . . . . . . . . 19 1.4.3. ClassVII . . . . . . . . . . . . . . . . . . . . . 20 1.4.4. RuledSurfaces . . . . . . . . . . . . . . . . . . 21 2 Dynamicsin2D 25 2.1. Thevaluativetree . . . . . . . . . . . . . . . . . . . . . 25 2.1.1. Treestructure . . . . . . . . . . . . . . . . . . . 25 2.1.2. UniversalDualGraph . . . . . . . . . . . . . . 27 2.1.3. Valuations . . . . . . . . . . . . . . . . . . . . . 28 2.1.4. ClassificationofValuations . . . . . . . . . . . 29 2.1.5. TheValuativeTree . . . . . . . . . . . . . . . . 31 2.1.6. Skewness,multiplicityandthinness . . . . . . . 31 viii MatteoRuggiero 2.1.7. Universaldualgraphandvaluativetree . . . . . 33 2.2. Dynamicsonthevaluativetree . . . . . . . . . . . . . . 34 2.3. Rigidification . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.1. Generalresult . . . . . . . . . . . . . . . . . . . 39 2.3.2. Semi-superattractingcase . . . . . . . . . . . . 42 2.4. Rigidgerms . . . . . . . . . . . . . . . . . . . . . . . . 47 2.4.1. Attractingrigidgerms . . . . . . . . . . . . . . 48 2.4.2. Rigidgermsoftype(0,C\D) . . . . . . . . . . 51 2.5. Formalclassificationofsemi-superattractinggerms . . . 57 2.5.1. Invariants . . . . . . . . . . . . . . . . . . . . . 57 2.5.2. Classification . . . . . . . . . . . . . . . . . . . 61 2.6. Rigidgermsoftype(0,1) . . . . . . . . . . . . . . . . 64 2.7. Normalforms . . . . . . . . . . . . . . . . . . . . . . . 70 2.7.1. Nilpotentcase. . . . . . . . . . . . . . . . . . . 70 2.7.2. Semi-superattractingcase . . . . . . . . . . . . 75 2.7.3. Someremarksandexamples . . . . . . . . . . . 76 3 Rigidgermsinhigherdimension 79 3.1. Definitions. . . . . . . . . . . . . . . . . . . . . . . . . 79 3.1.1. Notations . . . . . . . . . . . . . . . . . . . . . 79 3.1.2. Invariants . . . . . . . . . . . . . . . . . . . . . 84 3.2. Classification . . . . . . . . . . . . . . . . . . . . . . . 87 3.2.1. Poincare´-Dulactheory . . . . . . . . . . . . . . 87 3.2.2. TopologicalResonances . . . . . . . . . . . . . 91 3.2.3. Affineactions . . . . . . . . . . . . . . . . . . . 97 3.2.4. Remarks . . . . . . . . . . . . . . . . . . . . . 102 3.3. Rigidgermsindimension3 . . . . . . . . . . . . . . . . 104 4 Constructionofnon-Kahler3-folds 109 4.1. Katosurfaces,rigidgermsandHe´nonmaps . . . . . . . 109 4.1.1. Katosurfaces . . . . . . . . . . . . . . . . . . . 109 4.1.2. He´nonmaps . . . . . . . . . . . . . . . . . . . 110 4.1.3. DynamicalpropertiesofsomeKatosurfaces . . 113 4.2. Constructioninthe3Dcase . . . . . . . . . . . . . . . . 116 4.2.1. Theexample . . . . . . . . . . . . . . . . . . . 116 4.2.2. Resolutionof f . . . . . . . . . . . . . . . . . 118 0 4.2.3. Constructionanduniversalcovering . . . . . . . 122 4.3. Algebraicproperties. . . . . . . . . . . . . . . . . . . . 125 4.3.1. Topologyofthedivisors . . . . . . . . . . . . . 125 4.3.2. HomologyGroups . . . . . . . . . . . . . . . . 129 4.3.3. Intersectionnumbers . . . . . . . . . . . . . . . 133 4.3.4. CanonicalbundleandKodairadimension . . . . 138 ix RigidGerms,theValuativeTree,andApplicationstoKatoVarieties 4.3.5. Canonicalandnormalbundles . . . . . . . . . . 140 4.4. Dynamicalproperties . . . . . . . . . . . . . . . . . . . 151 4.4.1. Contractiontoapoint . . . . . . . . . . . . . . 151 4.4.2. Foliations . . . . . . . . . . . . . . . . . . . . . 156 4.4.3. CurvesandSurfaces . . . . . . . . . . . . . . . 157 References 163 Index 169 Introduction Holomorphic dynamics has several points of view: it can be discrete or continuous, and be studied locally or globally, but all these aspects are, sometimes surprisingly and in a very fascinating way, linked to one an- other. Thesettingofglobaldiscreteholomorphicdynamicsisthefollowing: one has a complex space X of dimension d, and a holomorphic map f : X → X,andwantstounderstandthebehavioroftheiterates f◦n of f. For example one can check if the orbit of a point x ∈ X (i.e., the set {f◦n(x)|n ∈ N})changesregularlybymovingthestartingpointx. On the other hand, local discrete holomorphic dynamics still studies the behavior of a map f, but near a given fixed point p, and hence in coordinates one is interested into the behavior of a holomorphic germ f : (Cd,0) → (Cd,0)anditsiterates,existenceofbasinsofattractions, orthestructureofthestableset(wherealltheiteratesof f aredefinedin aneighborhoodof0). One of the main techniques to study the dynamics of a family F of holomorphicgermsislookingfornormalforms. Roughlyspeaking,one looksfora(possiblysmall)familyG ofgerms,whosedynamicsiseasier tostudy, andsuchthat every f ∈ F canbereducedtoagerm g ∈ G by changingcoordinates. Definition. Let f,g : (Cd,0) → (Cd,0) be two holomorphic germs. Weshallsaythat f and g are(holomorphically,topologically,formally) conjugated if there exists a (biholomorphism, homeomorphism, formal invertiblemap)φ : (Cd,0) →(Cd,0)suchthat φ◦ f = g◦φ. Depending on the regularity of the change of coordinates: holomorphic, homeomorphic,formal,wetalkaboutholomorphic,topologicalorformal classification.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.