ebook img

Rigid Geometry of Curves and Their Jacobians PDF

398 Pages·2016·2.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rigid Geometry of Curves and Their Jacobians

Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics 61 Werner Lütkebohmert Rigid Geometry of Curves and Their Jacobians Ergebnisse der Mathematik Volume 61 und ihrer Grenzgebiete 3.Folge A Series of Modern Surveys in Mathematics EditorialBoard L.Ambrosio,Pisa V.Baladi,Pariscedex05 G.-M.Greuel,Kaiserslautern M.Gromov,Bures-sur-Yvette G.Huisken,Tübingen J.Jost,Leipzig J.Kollár,Princeton S.S.Kudla,Toronto G.Laumon,OrsayCedex U.Tillmann,Oxford J.Tits,Paris D.B.Zagier,Bonn Forfurthervolumes: www.springer.com/series/728 Werner Lütkebohmert Rigid Geometry of Curves and Their Jacobians WernerLütkebohmert InstituteofPureMathematics UlmUniversity Ulm,Germany ISSN0071-1136 ISSN2197-5655(electronic) ErgebnissederMathematikundihrerGrenzgebiete.3.Folge/ASeriesofModernSurveys inMathematics ISBN978-3-319-27369-3 ISBN978-3-319-27371-6(eBook) DOI10.1007/978-3-319-27371-6 LibraryofCongressControlNumber:2016931305 MathematicsSubjectClassification(2010): 14G22,14H40,14K15,30G06 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Enhommageà MichelRaynaud Preface Projectivealgebraiccurvesorabelianvarietiesaredefinedasthevanishinglocusof finite families of homogeneous polynomials in a projective space fulfilling certain conditions. Except for elliptic curves or hyperelliptic curves, it is difficult to pin downequationswhichgiverisetocurvesorabelianvarieties. Overthecomplexnumbersonehasanalytictoolstoconstructandtouniformize suchobjects.Forexample,everysmoothcurveofgenusg≥2hasarepresentation Γ\H, where H is the upper half-plane and Γ ⊂Aut(H) is a group acting on H. Similarly,everycompactcomplexLiegroupisoftypeCn/Λ,whereΛisalattice inCn;theabelianvarietiesamongthecompactcomplexLiegroupscanbecharac- terizedviapolarizations.Moreover,one canconstructcurves andabelianvarieties inthiswayviaalgebraizationoftheanalyticquotients.Thus,thegeometryandthe constructionofsuchobjectsarecompletelyclarified. Overacompletefield K withrespecttoanon-Archimedeanvaluation,onecan expect similar tools as in the complex case once a good theory of holomorphic functionshasbeenestablished. Historically,thetheorystartedwiththesimplestcaseofanellipticcurveoverK. OnecandefinetheellipticcurvebyaminimalWeierstraßequationwithintegralco- efficients.Ifthisequationreducestoanellipticcurveovertheresiduefield,wesay thatthegivenellipticcurvehasgoodreduction.Inthiscasethereisnouniformiza- tionatall;suchcurvescanberegardedasliftingsofellipticcurvesdefinedoverthe residuefield.Ontheotherhand,iftheWeierstraßequationreducestoacubicwith anordinarydoublepoint,thenthesituationlooksbetterfromtheviewpointofuni- formization.AsanabstractgroupitsK-rationalpointsarerepresentedbyaquotient K×/qZforsomenon-integralq∈K×withoutanyfurtherstructure.OriginallyTate wantedtoconstruct“analytic”quotientsG /qZ ofthemultiplicativegroupofa m,K Z non-ArchimedeanfieldK bythelatticeq ;aconstructionwhichcannotbecarried outinthecategoryofordinaryschemesdirectly. Thus, there was the desire to create a theory of “analytic spaces” over a non- Archimedean field which allows such constructions. This was exactly the incen- tiveofTatetounderstandellipticcurveswithmultiplicativereductionby“analytic” vii viii Preface means.In1961TategaveaseminaratHarvardwherehedevelopedatheoryofrigid analyticspaces;cf.[92]. Lateron,usingmethodsfromformalalgebraicgeometry,Mumfordgeneralized the construction of Tate’s elliptic curve to curves of higher genus [75] – nowa- dayscalledMumfordcurves–aswellastoabelianvarietieswithsplittorusreduc- tion[76].Moreover,Mumford’sconstructionsevenworkovercompleteNoetherian ringsofhigherdimension. The relationship between formal algebraic geometry and rigid geometry was clarified by Raynaud in [80]. As a sort of reverse, Raynaud worked on the rigid analytic uniformizationof abelian varieties and their duals over non-Archimedean fields[79]. The ideas of Mumford and Raynaud were picked up by Chai and Faltings and generalizedtoabelianvarietieswithsemi-abelianreductionsoverfieldsoffractions of complete Noetherian normal rings of higher dimension. Whereas in the rigid analytic context, the periods of the uniformization enter the scene quite naturally evenintheabsenceofapolarization,ChaiandFaltingsmadetheobservationthatthe periodsareencodedinthecoefficientsofthethetafunctionassociatedtoaprincipal polarization, in analogy to the complex case. So, for them it was not necessary to invokerigidgeometry. Nevertheless, rigid geometry is a means to unfold the geometric ideas behind theformalconstructionsusedbyMumford,ChaiandFaltings.Theresultsonuni- formization and construction provide a method to parameterize polarized abelian varieties and their semi-abelian degeneration in a universal way. So, they became the essential ingredients for the construction of a toroidal compactification of the modulispaceofpolarizedabelianvarietiesbyChaiandFaltings;cf.[27]. This book thoroughlytreats the main results on rigid geometryand their appli- cations as they grew out of the notes of Tate. The focus of this book lies on the arithmeticgeometryofcurvesandtheirJacobiansovernon-Archimedeanfields. After an introduction to rigid geometry in Chap. 1, we directly concentrate on the main topic. Following ideas of Drinfeld and Manin [64], Mumford curves are treated in Chap. 2 via classical Schottky uniformization. Their Jacobians are rigid analytictoriwhichareconstructedbyautomorphicfunctions.Thisisexplainedon an elementary level. Thus, we achieve the rigid analytic counterpart of the fasci- natingtheoryofRiemannsurfacesandtheirJacobians.Theremainderofthebook (Chaps. 3 to 7) deals with smooth rigid analytic curves and their semi-stable re- ductionsorwithpropersmoothrigidanalyticgroupvarietiesandtheirsemi-abelian reductions.Theintentionhereistocomprehensivelypresenttherigidanalyticuni- formization and construction of curves and their Jacobians or of abelian varieties over non-Archimedean fields. Moreover, the structure of abeloid varieties, which arethecounterpartsofcompactcomplexLiegroups,ispresentedindetails. Thereaderisassumedtobefamiliarwithbasicalgebraicgeometryinthestyleof Grothendieckandwithstandardfactsaboutabelianvarieties.Thereadercanconsult [15,Chaps.2and9],[60]and[74]. Since there are several books which deal with the foundations of rigid geome- try, cf. [1, 9, 10], there is no need to develop it again. Therefore, the prerequisites Preface ix onclassicalrigidgeometryareonlysurveyedinChap.1withoutgivingproofs.In the same way the basic results on the relation between formal and rigid geome- try are handled in Chap. 3, as they are presented in [14] and were revisited a few yearsagoin[1].Forthebasictheoryofformalandrigidgeometrythereadermay alsoconsult[9]whereitiscarefullyexplained.Thereareotherfoundationsofnon- ArchimedeananalysisbyBerkovich[6]andHuber[47],butthesearenotinvolved in this book. So, we concentrate on the main applications which are not touched oronlypartiallystudiedinotherbooks;cf.[30]and[35].Comparedtotheexisting literature,manyproofshavebeensubstantiallyimprovedandsomenewresultshave beenadded. It is a pleasure for me to express my gratitude to my students Sophie Schmieg andAlexMorozovforproofreadingandcomments.AlsoIwouldliketothankcol- leagues,includingSiegfriedBosch,BarryGreen,UrsHartl,DinoLorenzini,Florian Pop, Stefan Wewers, for discussions and valuable suggestions. I am especially in- debtedtoErnstKani,whohelpedmetoeditthemanuscript. InparticularIamgladtoacknowledgeheretheextraordinaryhelpfromMichel Raynaud,whocontributedmanyideastothisbook. Münster,Germany WernerLütkebohmert September2015 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 ClassicalRigidGeometry . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Non-ArchimedeanFields . . . . . . . . . . . . . . . . . . . . . 1 1.2 RestrictedPowerSeries . . . . . . . . . . . . . . . . . . . . . . 3 1.3 AffinoidSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 TheMaximumPrinciple . . . . . . . . . . . . . . . . . . . . . . 10 1.5 RigidAnalyticSpaces . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 CoherentSheaves . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.7 LineBundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.8 AlgebraizationofProperRigidAnalyticCurves . . . . . . . . . 26 2 MumfordCurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 Tate’sEllipticCurve . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 SchottkyGroups . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 DefinitionandProperties . . . . . . . . . . . . . . . . . . . . . 49 2.4 Skeletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.5 AutomorphicFunctions . . . . . . . . . . . . . . . . . . . . . . 62 2.6 Drinfeld’sPolarization . . . . . . . . . . . . . . . . . . . . . . . 69 2.7 RigidAnalyticToriandTheirDuals . . . . . . . . . . . . . . . 73 2.8 JacobianVarietyofaMumfordCurve . . . . . . . . . . . . . . . 83 2.9 Riemann’sVanishingTheorem . . . . . . . . . . . . . . . . . . 91 3 FormalandRigidGeometry . . . . . . . . . . . . . . . . . . . . . . 103 3.1 CanonicalReductionofAffinoidDomains . . . . . . . . . . . . 104 3.1.1 FunctorsA (cid:2)A˚ andA (cid:2)A(cid:2) . . . . . . . . . . . . 104 K K K K 3.1.2 FormalAnalyticSpaces . . . . . . . . . . . . . . . . . . 106 3.1.3 FinitenessTheoremofGrauert-Remmert-Gruson . . . . . 111 3.2 AdmissibleFormalSchemes. . . . . . . . . . . . . . . . . . . . 113 3.3 GenericFiberofAdmissibleFormalSchemes . . . . . . . . . . 117 3.4 ReducedFiberTheorem . . . . . . . . . . . . . . . . . . . . . . 123 3.4.1 AnalyticMethodofGrauert-Remmert-Gruson . . . . . . 124 xi xii Contents 3.4.2 ElementaryMethodofEpp . . . . . . . . . . . . . . . . 126 3.4.3 TheNaturalApproach . . . . . . . . . . . . . . . . . . . 128 3.5 ComplementsonFlatness . . . . . . . . . . . . . . . . . . . . . 149 3.6 ApproximationinSmoothRigidSpaces . . . . . . . . . . . . . 155 3.7 CompactificationofSmoothCurveFibrations . . . . . . . . . . 169 4 RigidAnalyticCurves . . . . . . . . . . . . . . . . . . . . . . . . . 177 4.1 FormalFibers . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 4.2 GenusFormula . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 4.3 MeromorphicFunctions . . . . . . . . . . . . . . . . . . . . . . 196 4.4 FormalStableReduction. . . . . . . . . . . . . . . . . . . . . . 201 4.5 StableReduction . . . . . . . . . . . . . . . . . . . . . . . . . . 210 4.6 UniversalCoveringofaCurve. . . . . . . . . . . . . . . . . . . 212 4.7 CharacterizationofMumfordCurves . . . . . . . . . . . . . . . 215 5 JacobianVarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 5.1 JacobianofaSmoothProjectiveCurve . . . . . . . . . . . . . . 218 5.2 GeneralizedJacobianofaSemi-StableCurve . . . . . . . . . . . 221 5.3 LiftingoftheJacobianoftheReduction. . . . . . . . . . . . . . 231 5.4 MorphismstoRigidAnalyticGroupswithSemi-Abelian Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 5.5 UniformizationofJacobians . . . . . . . . . . . . . . . . . . . . 240 5.6 ApplicationstoAbelianVarieties . . . . . . . . . . . . . . . . . 247 6 RaynaudExtensions . . . . . . . . . . . . . . . . . . . . . . . . . . 255 6.1 BasicFacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 6.2 LineBundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 6.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 6.4 Algebraization . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 6.5 PolarizationofJacobians . . . . . . . . . . . . . . . . . . . . . 291 6.6 ParameterizingDegeneratingAbelianVarieties . . . . . . . . . . 303 7 AbeloidVarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 7.1 BasicFactsonAbeloidVarieties . . . . . . . . . . . . . . . . . 310 7.2 GenerationofSubgroupsbySmoothCovers . . . . . . . . . . . 314 7.3 ExtensionofFormalTori . . . . . . . . . . . . . . . . . . . . . 321 7.4 MorphismsfromCurvestoGroups . . . . . . . . . . . . . . . . 326 7.5 StableReductionofRelativeCurves . . . . . . . . . . . . . . . 331 7.6 TheStructureTheorem . . . . . . . . . . . . . . . . . . . . . . 342 7.7 ProofoftheStructureTheorem . . . . . . . . . . . . . . . . . . 346 Appendix Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . 355 A.1 SomeNotionsaboutGraphs . . . . . . . . . . . . . . . . . . . . 355 A.2 TorusExtensionsofFormalAbelianSchemes . . . . . . . . . . 358 A.3 CubicalStructures . . . . . . . . . . . . . . . . . . . . . . . . . 364 GlossaryofNotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Description:
This book presents some of the most important aspects of rigid geometry, namely its applications to the study of smooth algebraic curves, of their Jacobians, and of abelian varieties - all of them defined over a complete non-archimedean valued field. The text starts with a survey of the foundation o
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.