Odonatologica39(4):287-303 December /,2010 Richness andstructure ofan Odonata larval assemblage from RioPinolapa, Tepalcatepec, Michoacán, Mexico in relation totheir habitat characteristics J.A.Gómez-Anaya andR.Novelo-Gutiérrez InstitutedeEcología,A.C.,ApartadoPostal63, MX-91070,Xalapa,Veracruz, Mexico [email protected],mx;— [email protected] ReceivedJanuary7, 2010/Reviewed andAcceptedApril4,2010 Theodon.larvalassemblagefromRioPinolapa(RP)inthemunicipalityofTepal- catepec,Michoacan, isdescribed. Samplingwasconducted twicein each season(8 tripsintotal),andadditionallysome physicochemicalvariables oftheriverchannel wererecorded. Strata(shores,rifflesandeddies)andseasonal variation ofassemblag- esaredescribed andcomparedusingclassical diversitymeasuressuch asShannon’s diversityindex,Simpson’sdiversityindexasadominance measure, Margalef’srich- nessindex and Pielou’s evennessindex. Forcomparingstrata andseasonal diversity theRenyi’sdiversityprofileswereused.AClusterAnalysiswasperformedonaBray- -Curtissimilaritymatrix toexplorethefaunalrelationshipsamong yearseasonsand strata.CCAwas alsoperformedtoinvestigatethe relationshipsbetween thephysi- cochemical and species abundance matrixes. Asresults, 28 spp. (12Zygopteraand 16Anisoptera)wererecorded aslarvae. Most abundantspecieswereErpetogomphus elaps,BrechmorhogapraecoxandPhyllogomphoidesluisi.The highestnumber ofspp. wasregisteredinwinterand thelowest in summer.Amongstratathehighest abun- dancewasrecorded in riffles,althoughtheshoreline had thelargestnumber ofspp. Themostsimilarassemblageswerethoseofautumnandwinter.Shorehabitatswere moreheterogeneousthan eddiesand rifflesandthiscouldexplainthelargernumber ofspecies. The Clench’s model explainsbetter the data. Additionally,weused the slopeofcumulative number ofspp. curveforassessingcompletenessofthe RPlist. CCAwassignificant,withpH,autumn, shoreline andrifflesthemostimportantvari- ables. Thismeansthat species variation isrelated tophysicochemical,temporaland strataconditions in RP. 288 J.A.Gomez-Anaya&R.Novelo-Gutierrez INTRODUCTION Theestimationofbiodiversity hasbecome oneofthe majorgoals forecolo- gistsuptonow(MAGURRAN, 2004).Conservationofbiodiversityrequires the knowledge ofitspatternsandmagnitude (BASELGA& NOVOA,2008), where theprocess ofmaking aninventory ofunknownassemblages, as wellas describ- ing newspecies, representsthe first step inunderstanding thatbiodiversity, and also the foundationforany laterresearchrelated to biodiversity. Unfortunately, this kindofwork hasreceivedrelativelylittleattentionbymanyjournals, propi- tiating a greatabandonmentby researchers(WHEELER, 2004;WHEELER et al., 2004;DE CARVALHO etal„ 2005). Differentmethodsforbiodiversity assessment havebeen developed as anin- dicator ofecosystem conditions, conservation goals, managementandenviron- mentalmonitoring (SPELLERBERG, 1991). Usually, the numberof species is themore used measureof diversity (MAYR, 1992; MORENO. 2000). How- ever, diversitydepends notonlyonthenumberofspecies butalso ontherelative abundanceofthem. Generally, species are distributedaccording to hierarchical abundanceclasses, fromsome veryabundantto someveryrare. As somespecies becomemore abundantand others becomerarer, the lower the biodiversity of thecommunity willbe.Then,theconservationofbiodiversity is mainly aprob- lemconcerning to the ecologicalbehavior ofthe rare species. Inthis manner, measuring the relativeabundanceof species will allow us to identify thosespecies that,dueto theirrareness in thecommunity, are moresen- sitivetoenvironmentalchanges (MORENO, 2001) and, consequently, moreex- posed to extirpation. On theotherhand,Odonatahavebecomeamongthemostusedaquaticinsect groups in ecological quality assessment today, becausethey arerelatively large, abundant,widely distributed,easy tocollect, thelarvaearerathersedentaryand easy torear inlaboratory, andthereislimitedgenetic variation(HELLAWELL, 1986). Also, they arerelatively easy to identify incomparison withothergroups (STORK, 1994),and are generally well represented in aquatic samples (HAM- MOND, 1994). Moreover,they respond quickly toenvironmentalstress(NOSS, 1990). Fortunately, the identificationof immaturestages hasbeen developed in the last two decadesin Mexico. However, animportant gapstill remainson the knowledge ofthestructureandfunctionof MexicanOdonataassemblages, with relatively few studies dealing with this subject (NOVELO-GUTIERREZ & GONZALEZ-SORIANO, 1991;GOMEZ-ANAYA etal.. 2000; NOVELO- -GUTIERREZ et al.,2002; ALONSO-EGUIALIS, 2004). Theexploration of patterns intimeandspaceof Odonatalarvalassemblages can supplybasic data forfutureresearch. Thegoalofthisworkis to describethestructureandseasonalvariationofthe Odonatalarvalassemblage fromthe RioPinolapa andrelateittoenvironmental factors. Odonata larvalassemblagefromRioPinolapa 289 STUDY AREA The Rio Pinolapa(RP)is located at(19°00.524N;103°01.456W),municipalityofTepalcatepec, inMichoacan State, Mexico(Fig. 1).The samplingsiteis at616 m asl.Averagegradientwas0.02 (I°08’44.75”,n=7),minimum=0.006(0°20’37.57”),maximum=0.042(2°24’18.03”).Averagedepth =0.11 m(IC=0.05- 0.19 m,n=8); averagewidth =2.18m (IC=0.65 -3.71 m,n =8);currentve- locity=37.58m/s(IC= 28.57-46.58 m/s,n=8);discharge=9.16m3/s(IC=3.32-21.65m5/s).Aver- agesofphysicochemicalvariables were:temperature=28.03°C(IC=27.02-29.04°C,n=30),pH = 8.47(IC=8,33-8.61,n=30),conductivity=666.83pS/cm(IC=640.70-692,96pS/cm,n=30)and oxygen=7.78ppm(1C=7.05- 8.51 ppm,n=30). Fig. 1.Samplingsite (emptycircle)inmunicipalityofTepalcatepec,Michoacan,Mexico. MATERIALAND METHODS COLLECTING. — Larvaewerecollected twiceineach season(8 tripsintotal)atshores, and in riffles(atmid-channel)andeddies.Usually,samplingwasdoneattheend ofthefirstthirdand atthe beginningofthelast thirdofeachseason.Weused anaquaticD-fraraenet, andsampleswerepre- served in96% alcoholwith onereplacementbefore 24h.A stereomicroscopewasused toseparate andquantifyalllarvaetothespecieslevel. Inaddition tothelarval sampling,physicochemicalvari- ables such aspH, dissolved oxygen, temperatureand conductivity wererecorded for eachsample. Depth,width,and currentvelocity weremeasured anddischargewasthencalculated. Thegradient (slope)wasmeasured atsevenpointsofthe 500 mlongsamplingtransectaccordingtoRESH etal. (1996). DIVERSITYMEASURESAND DATAANALYSIS. - Richness and composition,aswellas classical diversitymeasuressuch astheShannon’s diversityindex (//').theSimpson’sindex (D), the Margalef’srichnessindex (R),and thePielou’s evennessindex(J)wereusedin orderto describe the Odonataassemblagesbyseason, strataand asawhole(MORENO,2001).Also,theRenyi’sdiversity profiles(TOTHMERESZ,1995,1998;JAKAB,2002)wereusedforcomparingdiversity,asproposed by SOUTHWOOD& HENDERSON (2000).Inthismethod whenthevalue ofthescale used asa parameterislow,themethodisextremelysensitivetothepresence ofrarespecies. Asthevalue ofthe scaleincreases,diversityislesssensitive torarespecies. Atahighvalue,themethod issensitiveonly tocommonspecies. The result ofthisscale-dependentcharacterization ofdiversitycanbe used in agraphicalformtovisualizethediversityrelations ofassemblages.This curveisusuallycalled‘the 290 J.A.Gomez-Anaya&R.Novelo-Gutierrez diversityprofileoftheassemblage’.Itisimportantto stressthatcurvesoftwodiversityprofilesmay intersect.Fortwocommunities,theintersection ofthediversity profilesmeansthatoneofthecom- munitiesismorediverseforrarespecies,whiletheother oneismorediverseforcommonspecies.The SpeciesDiversity& Richnesspackagev.3.0wasemployedto generatetheRenyi’svalues,exporting them toanExcel spreadsheettoshow them graphically. THEORETICAL RICHNESS. — An estimate ofthe theoretical richness usingnon paramet- ric estimatorsChao2,Bootstrap,and upperlimit ofMao Tau wascarried out,usingEstimates 8.0 (COLWELL,2006).Additionally,parametricmethods asrichness estimatorsbyextrapolationwere also used,which applytheobservedcurveofspeciesaccumulation formodelingtheaddition ofnew speciesinrelation tothe samplingeffort(PALMER,1990;SOBERON&LLORENTE, 1993).The Clench’s (CLENCH, 1979)and Lineardependencemodels wereapplied,asexemplifiedby JIMEN- EZ-VALVERDE&HORTAL (2000).Likewise,theslopeonthecumulative speciescurvewasused toassessthecompletenessofassemblages(HORTAL&LOBO, 2005).Theslopeswereobtainedby meansofthefirstderivativeoftheClench’s andLineardependencefunctions(NOVELO-GUT1ER- REZ&GOMEZ-ANAYA,2009). CLUSTER ANALYSIS. — Beta diversitywas assessedby methods ofclassification. A Cluster Analysis(CA) onaBray-Curtis(BC)similaritymatrix[(1-W)whereW=BC dissimilarity)] andthe UnweightedPairGroupMethodwith Arithmetic mean(UPGMA)wereused toexplorethefaunal relationshipsamong seasonsand strata.This analysis wasperformedusingPC-ORD ver4.5(Mc- CUNE& GRACE.2002). CANONICAL CORRESPONDENCE ANALYSIS. - TheCanonical CorrespondenceAnal- ysis(CCA),adirect ordination method,wasused torelate speciesabundance with environmental variables (TER BRAAK & SMILAUER, 1998).The number ofenvironmental variables wasthen reduced usingthe automaticforwardselection optionintheCANOCO4.5program. Thestatistical significanceoftherelationshipbetween thespeciesandtheset ofenvironmental variables wastested byaMonteCarlo permutationtest,usinganF-ratioofthe sum ofalleigenvaluesasthe statistical test(TER BRAAKand PRENTICE, 1988). RESULTS SEASONAL PHYSICOCHEMICALVARIATION Temperature, pH andconductivity had higheraveragesin summer, whileox- ygen was highest in spring. Infact, oxygen decreases gradually from spring to winter(Tab. I).All pHvalueswere slightly alkaline.Oxygen levelswere very low inwinterwhen bothabundanceandspecies richnesswere highest. LARVAL RICHNESS AND COMPOSITION Atotalof3,278 Odonatalarvaebelonging to 28species (12 Zygoptera and 16 Anisoptera), 16generaand six families werecollected (Tab. II). Erpetogomphus elaps (50.21%) was the dominantspecies; othernumerically important species were Brechmorhoga praecox(14.16%) and Phyllogomphoides luisi(6.72%) (Fig. 2).A further61.54%of all species occurred in lowabundance(<1%)andwere consideredrare. Odonata larval assemblagefromRioPinolapa 291 SEASONALNUMERICAL DOMINANCE 95% 11.458.23 9.36 4,69 DuringspringErpetogomphus elaps(38.73%), Argiaoe- nea(17.40%), andProgomphus marcelae(14.95%) domi- -95% 9.55 6.33 8.01 2.78 nated numerically. Only seven species weredetectedin summer(fourofwhich were gomphids), withvery low totalandrelativeabundances.Nocoenagrionid wasre- Oxygen 10.5 7.28 8,68 3.74 corded in this season. E. elaps(44.15%) andB.praecox (28.39%) dominatedin autumn.Finally, duringwinter E. daps(60.10%) dominatedtheassemblage. Argiatezpi Pinolapa 95% 765.1 810.7 609.4 798.9 (8.74%) andPhyllogomphoides. luisi(6.52%)werepresent as codominantspecies together with E. daps. It is in- Rio teresting to note thatwhile E. elaps clearly dominated of -95% 647.6 693.3 526.3 681.4 throughout theyearinthelarvalstage,theimagoes were variables not very commonly encountered. Conductivity SEASONALASSEMBLAGES 706.33 752.00 567,83 740.17 physichemical TableIIIandFigure 3showtheseasonalecological pa- rameters. Thesmallestnumberofspecies was recorded I the 95% 8.81 9.08 8.19 8.63 in summer, spring andautumn were intermediate, and Table thehighest numberofspecies was foundinwinter. The for abundancepatternseemsto followtherichness one,be- intervals -95% 8.56 8.83 8.02 8.37 ing higher in winterand lower in summer. Shannon’s diversity index(//’)seems to vary littlethroughout the four seasons, although itwas a little higher in spring. confidence Dominance(D)was higherinwinter, mainly dueto the PH 8,68 8.95 8.11 8.50 greatabundanceofK elaps. Renyi's diversityprofilesare 95% showninFigure 4.Thesummerpattern was a straight line. Itshowedtheminimumnumberofspecies fora = and 95% 32.51 35.56 26.61 21,54 0(thebasic structureofassemblages), butforvaluesup Averages to2(Simpson index) the patternshowed thatsummer diversity was thehighest. -95% 31.29 34.34 25.75 20.32 SIMILARITY Temperature 31.90 34.95 26.18 20.93 TheOdonata larval assemblages from autumn and winterwere the mostsimilar, mainly due to theirhigh andsimilarabundance(Fig. 5), nevertheless, they were quitedifferentinrichnesssharinga high numberof spe- SpringSummer Autumn Winter cies (13). Some species like Argiaoculata, Erpetogom- phuscophias andPaltothemislineatipes wereexclusively 292 J.A.Gomez-Anaya&R.Novelo-Gutierrez TableII Richness andcomposition ofseasonalOdonatalarvalassemblagesfromRioPinolapa TTaaxxaa KKeeyy SSpprriinngg %% SSuummmmeerr %% AAuuttuummnn %% WWiinntteerr %% TToottaall %% NNuummbbeerrooffiinnddiivviidduuaallss 441100 1122..4455 2200 00..6611 11445522 4444..3322 11339966 4422..6611 33227788 NNuummbbeerrooffssppeecciieess 1155 5555..5566 77 2255..9933 1166 5599..2266 2222 8811..4488 110000 ZZYYGGOOPPTTEERRAA CCaalloopptteerryyggiiddaaee HHeettaaeerriinnaa aammeerriiccaannaa HHeeaamrn - - 442200..00 2222 11..5522 77 00..5500 3333 11..0011 PPllaattyyssttiiccttiiddaaee PPaallaaeemmnneemmaa ddoommiinnaa PPaaddoo 2233 55..6644 - 1166 11..1100 5544 33..8877 9933 22..8844 CCooeennaaggrriioonniiddaaee AArrggiiaaffuunncckkii AArrffuu 71 M1.722 -. . -. . _ _ 77 00..2211 AA..ooccuullaattaa AArroocc -- -- -- 33 00..2211 -- -- 33 00..0099 AA..ooeenneeaa AArrooee 7711 1177..4400 -- - 1144 00..9966 5533 33..8800 113388 44..2211 AA..ppaalllieennss AArrppaa 11 00..2255 -- - -- - 88 00..5577 99 00..2277 AA..ppuullllaa AArrppuu -- -- -- - -- -- 66 00..4433 66 00..1188 AA..tteezzppii AArrttee 11 00..2255 -- - 2200 11..3388 112222 88..7744 114433 44..3377 EEnnaallllaaggmmaa nnoovvaaeehhiissppaanniiaaee EEnnnnoo 55 11..2233 -. . -. . 22 00..1144 77 00..2211 EE.. sseemmiicciirrccuullaarree EEnnssee -- -- -- - -- - 33 00..2211 33 00..0099 TTeelleebhaassiissssaallvvaa TTeessaa 22 00..4499 -- -- - - - 22 00..0066 PPrroottoonneeuurriiddaaee PPrroottoonneeuurraa ccaarraa PPrrccaa - - - 11 00..0077 11 00..0033 AANNIISSOOPPTTEERRAA GGoommpphhiiddaaee EErrppeettooggoommpphhuuss bhootthhrrooppss EErrbhoo - - - 11 00..0077 11 00..0033 EE.. ccoopphhiiaass EErrccoo -- - -- I1 00..0077 -- -- 11 00..0033 EE..eellaappss EErreell 115588 3388..7733 773355..00 664411 4444..1155 883399 6600..1100 11664455 5500..2211 PPrrooggoommpphhuuss cclleennddoonnii PPrrccll 1133 33..1199 22 1100..00 99 00..6622 88 00..5577 3322 00..9988 PP.llaammbbeerrtotoii PPrrllaa 11 00..2255 -- - 9911 66..2277 11 00..0077 9933 22..8844 PP.mmaarrcceellaaee PPrrmtnaa 6611 1144..9955 -- - 88 00..5555 6655 44..6666 113344 44..0099 PPhhyyllllooggoommpphhooiiddeesss lluuiissii PPhhlluu 2211 55..1155 22 1100..00 110066 77..3300 9911 66..5522 222200 66..7722 PP..ppaacciiffiiccuuss PPhhppaa -- -- 22 1100..00 99 00..6622 88 00..5577 1199 00..5588 LLiibbeelllluulliiddaaee DDyytthheemmiiss nniiggrreesscceennss DDyynnii - - - - - 77 00..5500 77 00..2211 BBrreecchhmmoorrhhooggaa pprraaeeccooxx BBrrpprr 55 11..2233 22 1100..00 441122 2288..3377 4455 33..2222 446644 1144..1166 EErryytthhrrooddipiplalaxxsspp.., EErrsspp -- 00..0000 -- -- - 77 00..5500 77 00..2211 MMaaccrrootthheemmiiss iinnaaccuuttaa MMaaiinn 17 11..7722 - - - 77 00..2211 MM..ppsseeuuddiimmiittaannss MMaappss 2288 66..8866 11 55..00 8833 55..7722 6600 44..3300 117722 55..2255 PPaallttootthheemmiiss lliinneeaattiippeess PPaallii - - - - 33 00..2211 - - 33 00..0099 PPeerriitthheemmiiss ddoommiittiiaa PPeeddmm - - - - - 22 00..1144 22 00..0066 PPsseeuuddoolleeoonn ssuuppeerrbhuuss PPssssuu 66 11..4477 -- 1144 00..9966 66 00..4433 2266 00..7799 OdonatalarvalassemblagefromRioPinolapa 293 Fig. 2.Relative abundance ofOdonataspecies fromRioPinolapa.Key tospecies inTableII. recorded in autumn,while othersas Argiapulla, Enallagma semicirculare, Pro- toneura cara,Dythemis nigrescensandErythrodiplax sp.,wereonlyfoundinwin- ter. Summercontainsanassemblage of very fewspecies. DIVERSITYANDABUNDANCE BYSTRATA TableIVshows theecological parametersof theOdonatalarval assemblages by strataof RP. Numberofspecies in the shoreswas almosttwice as much of thatoftheriffles (middle-channel), andmore thantwiceas much of thatofed- dies.However,theabundancewashigherinthemiddle-channelofthewaterbody. The diversity H’washigher in theshoreswhilethedominancedidineddies. The major amount of larvaein all strata was Erpetogomphus elaps, however, in theriffleswefoundahigher proportion ofBrechmorhoga praecox(24.42%). Whendiversity iscompared and orderedusing theRenyi’s profiles (Fig. 6),it Table III SeasonalityoftheecologicalparametersofOdonatalarval assemblagesatRio Pinolapa Spring Summer Autumn Winter Total Number ofspecies 15 7 16 22 28 Number ofspecimens 401 20 1452 1396 3269 Simpson(D) 0.22 0.21 0.29 0,38 0.29 Shannon-Weaver (//’) 1.89 1.76 1.63 1.61 1.85 Margalefrichness(R) 2.34 2.00 2.06 2.90 3.09 Pielouevenness(J) 0.70 0.90 0.59 0.52 0.57 294 J.A.Gomez-Anaya&R.Novelo-Gutierrez Fig. 3.Ecologicalparametersper seasonoftheOdonatalarval assemblageatRioPinolapa.Collec- tionsweremadebetween March2005and January2006. followsthegradientshores>riffles>eddies.Thisfactconfirmsthatshorescontain thehighest diversityofOdonatalarvaein RP. THEORETICALRICHNESSESTIMATION NON-PARAMETRIC MODELS. — The cumulativespecies curves generated by non parametricestimators Chao2, andBootstrapare showninFigure 7.Thees- timatednumberofspecies was 41.4, and32.4species, respectively, whichgavea sampling efficiency of67.6%, and 86.3, respectively. Theserichness estimators indicatealackofregisterfrom4to 13species. Theestimatednumberofspecies using theMaoTauupperlimitof classintervalwas 34.7,whichmeansthatstill should beaddedto the list6-7 species, being theefficiency ofthe totalsampling effortof80%.Thenumberofspecies withasingle individual(singletons) was 3, withtwo individuals (doubletons) was 2, thenumberof unique species was 11, and for duplicated oneswas 3. PARAMETRIC MODELS. - TableIV Figure 8 shows cumulative Ecological parameters of the Odonata larval assemblages species curves generated by by stratumatRio Pinolapa the Clench’s and Linear de- pendence functions.Thefirst Index/stratum Shores Riffles Eddies functionpredicted 30.67spe- cies and explained 98% of Number ofspecies 25 14 10 Number ofspecimens* 1062 1713 323 datavariation, whilethe sec- ondonepredicted 25.74spe- Simpson(D) 0.27 0,32 0,47 cies and explained 95% of Shannon-Weaver (//’) 1.93 1.54 1.18 data variation.TheClench’s Margalef’srichness(R) 3.44 1.61 1.56 modelindicatesthatthereare Pielou’s (J)eveness 0.60 0.60 0.51 3species toberegistered yet, *Some sampleswereomitted because of insufficient field andthelineardependence in- data. Odonatalarval assemblagefromRio Pinolapa 295 Fig. 4.Renyi’sdiversityprofilesforthefourseasonal Odonatalarval assemblagesfromRioPinola- pa. dicatesthe listhasbeen completed. Based on theexplained variance (R2 deter- , minationcoefficient),theClench’sestimationexplainedbetterthedatavariation; its prediction is consideredfurther.Finally, slopes forbothcurveswere 0.10for Clench’sfunctionand0.04forLineardependence. THE SPECIES-ENVIRONMENT RELATIONSHIPS The resultsof the CCA were globally significant (trace = 0.937, F = 1.59,p <0.05, Tab.V).Thefirstthree axes offereda good solutionto the ordinationof thephysicochemical variablesandabundanceof species, sincefromthetotalvari- ability inthedata(inertia =3.701), itwaspossible toexplain 87.9%by meansof thesegroupofaxes. Thesignificance testofthefirst canonicalaxisshoweditwas significant (eigenvalue = 0.292,F =2.822,p<0.05). Fig. 5.Dendrogramshowingthefaunal relationshipsamongthe yearseasonsassemblagesofodo- natelarvae. Based ona Bray-Curtissimilaritymatrix andthe unweightedpair-grouparithmeticav- eraging(TJPGMA). 296 J.A.Gomez-Anaya&R.Novelo-Gutierrez TableV Resultsofthecanonical correspondenceanalysis(CCA)oflog-transformedOdonatalarvae abundance asafunctionoftheirenvironmental variables Axes 1 2 3 4 Total inertia Eigenvalues 0.29 0.25 0.18 0.09 3.705 Species-environmentcorrelations 0.82 0.85 0.76 0.66 Cumulativepercentagevariance ofspecies data 7.9 14.7 19.5 22 ofspecies-environmentrelation 31.2 58 76.9 86.8 Sumofalleigenvalues 3,705 Sumofall canonical eigenvalues 0.937 Thefirstaxiswas themostimportant, explaining31.2%ofvariance, anditwas also the moststrongly correlatedwith pH, rifflesandautumn. The second axis explained 26.8%of variance, and itcorrelated strongly withconductivity. The thirdand fourthaxes explained only 16.7%and 12.1%of variance, respectively, andwerenot consideredfurther. When the distributionofthe species in theeight collectionsand threestrata is analyzed togetherwith theCCAofthe Figure9,it is posible to makethe fol- lowing precisions: Paltothemislineatipes, Erpetogomphus cophias, Progomphus Fig.6. Renyi’sdiversityprofilesforthree strataassemblagesofOdonatalarvaefrom RioPinolapa. Profiles differmainlyattheir basic level ofstructure, thenumber ofspecies.Profiles nevercrossin arange from 1to4.ValuesofRenyiwhen a = 4were: shores profile=0.982,rifflesprofile=0.969 andeddies profile=0.535.