ebook img

Ramanujan summation of divergent series PDF

211 Pages·2017·0.836 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ramanujan summation of divergent series

Lecture Notes in Mathematics 2185 Bernard Candelpergher Ramanujan Summation of Divergent Series Lecture Notes in Mathematics 2185 Editors-in-Chief: Jean-MichelMorel,Cachan BernardTeissier,Paris AdvisoryBoard: MichelBrion,Grenoble CamilloDeLellis,Zurich AlessioFigalli,Zurich DavarKhoshnevisan,SaltLakeCity IoannisKontoyiannis,Athens GáborLugosi,Barcelona MarkPodolskij,Aarhus SylviaSerfaty,NewYork AnnaWienhard,Heidelberg Moreinformationaboutthisseriesathttp://www.springer.com/series/304 Bernard Candelpergher Ramanujan Summation of Divergent Series 123 BernardCandelpergher LaboratoireJ.A.Dieudonné.CNRS UniversitédeNice Côted’Azur,Nice,France ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-319-63629-0 ISBN978-3-319-63630-6 (eBook) DOI10.1007/978-3-319-63630-6 LibraryofCongressControlNumber:2017948388 Mathematics Subject Classification (2010): 40D05, 40G05, 40G10, 40G99, 30B40, 30B50, 11M35, 11M06 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Introduction: The Summation of Series Thestrangesums CX1 nD0C1C2C3C4C5C6C7C8C9C::: n(cid:2)0 and CX1 n3 D0C13C23C33C43C53C63C73::: n(cid:2)0 appearinphysicsaboutthestudyoftheCasimireffectwhichistheexistenceofan attractiveforcebetweentwoparallelconductingplatesinthevacuum. Theseseriesareexamplesofdivergentseriesincontrasttoconvergentseries;the notionofconvergenceforaserieswasintroducedbyCauchyinhisCoursd’Analyse inordertoPavoidfrequentmistakesinworkingwithseries.Givenaseriesofcomplex numbers a ,Cauchyconsidersthesequenceofthepartialsums n(cid:2)0 n s0 D 0 s1 D a0 s2 D a0Ca1 ::: sn D a0C:::Can(cid:3)1 v vi Introduction:TheSummationofSeries P andsaysthattheseries a isconvergentifandonlyifthesequence.s /hasa n(cid:2)0 n n finitelimitwhenngoestoinfinity.Inthiscasethesumoftheseriesisdefinedby CX1 a D lim s n n n!C1 nD0 P 1 TheclassicalRiemannseries isconvergentforeverycomplexnumbers n(cid:2)1 ns suchthatPRe.s/>1anddefinestheRiemannzetafunctiondefinedforRe.s/>1by (cid:2) Ws7! C1 1. nD1 ns Non-convergentseries are divergent series. For Re.s/ (cid:2) 1 the Riemann series is a divergent series and does not give a finite value for the sums that appear in the Casimir effect. A possible strategy to assign a finite value to these sums is to performananalyticcontinuationofthezetafunctionthishasbeendonebyRiemann (Edwards2001)whofoundanintegralformulafor(cid:2).s/whichisvalidnotonlyfor PRe.s/ > 1 but also for s 2 Cnf1g. By this method we can assign to the series nk withk>(cid:3)1thevalue(cid:2).(cid:3)k/;weget,forexample, n(cid:2)1 X 1 n0 D 1C1C1C1C1C1C:::7!(cid:2).0/D(cid:3) 2 n(cid:2)1 X 1 n1 D 1C2C3C4C5C6C:::7!(cid:2).(cid:3)1/D(cid:3) 12 n(cid:2)1 X n2 D 1C22C32C42C52C:::7!(cid:2).(cid:3)2/D0 n(cid:2)1 X 1 n3 D 1C23C33C43C53C:::7!(cid:2).(cid:3)3/D 120 n(cid:2)1 ::: Fork D(cid:3)1wehavethe“harmonicseries” X1 1 1 1 1 1 1 1 1 D1C C C C C C C C C::: n 2 3 4 5 6 7 8 9 n(cid:2)1 whichiseasilyprovedtobeadivergentseriessincethepartialsumss verify n Z Z Z 1 1 2 1 3 1 nC1 1 s D1C C:::C (cid:4) dxC dxC:::C dxDLog.nC1/ n 2 n 1 x 2 x n x Butthestrategyofanalyticcontinuationofthezetafunctiondoesnotworkinthis casesince(cid:2) hasapoleatsD1thatislims!1(cid:2).s/D1. Introduction:TheSummationofSeries vii Divergent series appear elsewhere in aPnalysis and are difficult to handle; for example,byusingtheprecedingvaluesof nk,itseemsthat n(cid:2)1 1 1 (cid:3) (cid:3) D1C2C3C4C5C6C:::C.1C1C1C1C1C1C:::/ 12 2 D2C3C4C5C6C7C::: D.1C2C3C4C5C6C7C:::/(cid:3)1 1 D(cid:3) (cid:3)1 12 Thisabsurdityshowsthatwithdivergentserieswecannotusetheclassicalrulesof calculation,andforagivenclassofseries,weneedtodefinepreciselysomemethod ofsummationanditsrulesofcalculation. Before and after Cauchy, some methods of summation of series have been introduced by several mathematicians such as Cesaro, Euler, Abel, BoPrel, and others.Thesemethodsofsummationassigntoaseriesofcomplexnumbers a n(cid:2)0 n a number obtained by taking the limit of some mePans of the partial sums sn. For example,theCesarosummationassignstoaseries n a thenumber n(cid:2)0 n XC s1C:::Csn an Dlimn!C1 (whenthislimitisfinite) n n(cid:2)0 FortheAbelsummation,wetake XA CX1 an D lim.1(cid:3)t/ snC1tn (whenthislimitisfinite) t!1(cid:3) n(cid:2)0 nD0 P wheretheseries n(cid:2)0snC1tnissupposedtobeconvergentforeveryt2Œ0;1(cid:3).Note thatthisexpressioncanbesimplifiedsince CX1 CX1 CX1 .1(cid:3)t/ snC1tn Ds1C .snC1(cid:3)sn/tn D antn; nD0 nD1 nD0 andwehave XA CX1 a D lim a tn (whenthislimitisfinite)I n n t!1(cid:3) n(cid:2)0 nD0 thisgives,forexample, XA CX1 1 1 .(cid:3)1/n D lim .(cid:3)1/ntn D lim D t!1(cid:3) t!1(cid:3)1Ct 2 n(cid:2)0 nD0 viii Introduction:TheSummationofSeries Theclassicalmethodsofsummationusethesetypesofmeansofpartialsumand canbebrieflypresentedinthefollowingform. Let T be a topological space of parameters and l some “limit point” of the compactification of T (if T D N, then l D C1; if T D Œ0;1(cid:3), then l D 1). Let .pn.t//n2N be aPfamily of complex sequences indexed by t 2 T such that for all t2T theseries p .t/isconvergent;thenweset n(cid:2)0 n P XT C1p .t/s a Dlim PnD0 n n n t!l C1p .t/ n(cid:2)0 nD0 n P when this limit is finite, and in this case, we say that the series a is T- n(cid:2)0 n summable. AtheoremofToeplitz(Hardy1949)givesnecessaryandsufficientconditionson thefamily.pn.t//n2Ntoensurethatincaseofconvergencethissummationcoincides withtheusualCauchysummation. Thesesummationmethodsverifythelinearityconditions XT XT XT .a Cb /D a C b n n n n n(cid:2)0 n(cid:2)0 n(cid:2)0 XT XT Ca DC a foreveryconstantC2C n n n(cid:2)0 n(cid:2)0 andtheusualtranslationproperty XT XT an Da0C anC1 n(cid:2)0 n(cid:2)0 ThislaPstpropertywhichseemsnaturalisin factveryrestrictive.Forexample,the series 1can’tbeT-summablesincethetranslationpropertygivesanabsurd n(cid:2)1 relation XT XT 1D1C 1 n(cid:2)0 n(cid:2)0 P Thus, if we need a method of summation such that the sums T nk are n(cid:2)0 well defined for any integer k, then we must abandon the translation property requirement and find a way to define summation procedures other than the way ofthe“limitofmeansofpartialsums.” Thiscanbedonebyusingasortofgeneratingfunctionforthetermsoftheseries. Itisbasedonthefollowingalgebraicframework(Candelpergher1995).LetEbea C-vectorspace(ingeneralaspaceoffunctions)equippedwithalinearoperatorD Introduction:TheSummationofSeries ix andalinearmapv0 W E ! C.Givenasequenceofcomplexnumbers.an/n(cid:2)0,we callanelementf 2Eageneratorofthissequenceif an Dv0.Dnf/ Wecanwriteformally X X X an D v0.Dnf/Dv0. Dnf/Dv0..I(cid:3)D/(cid:3)1f/I n(cid:2)0 n(cid:2)0 n(cid:2)0 thusifRverifiestheequation .I(cid:3)D/RDf; (1) thenweget X an Dv0.R/ n(cid:2)0 Of course, such an algebraic definition of summation needs some hypotheses, especially to assure uniqueness of the solution of Equation (1); this is presented inChap.5. It is easy to see that the Cauchy summation is a special case of this algebraic formalism: we take E as the vector space of convergent complex sequences uD.un/n(cid:2)0and D W .un/7!.unC1/ v0 W .un/7!u0 Inthiscasethegeneratorofasequenceofcomplexnumbers.an/n(cid:2)0ispreciselythis sequencef D.an/n(cid:2)0since.Dnf/k DakCn:IfwesetRD.rn/n(cid:2)0,Eq.(1)becomes thedifferenceequation rn(cid:3)rnC1 Dan The solution of this equation is defined up to an arbitrary constant; thus to get a uniquesolution,weneedtoimposeaconditionon.rn/n(cid:2)0.Since r0(cid:3)rn Da0C:::Can(cid:3)1; weseethatifweaddthecondition lim r D0; n n!C1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.