ebook img

Radiatively efficient disks around Kerr black holes PDF

1.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Radiatively efficient disks around Kerr black holes

Mon.Not.R.Astron.Soc.000,1–9(2016) Printed2February2017 (MNLATEXstylefilev2.2) Radiatively efficient disks around Kerr black holes S. Campitiello1(cid:63), G. Ghisellini2, T. Sbarrato1, G. Calderone3 1DipartimentodiFisica“G.Occhialini”,Universita`diMilano–Bicocca,piazzadellaScienza3,I–20126Milano,Italy 2INAF–OsservatorioAstronomicodiBrera,viaE.Bianchi46,I–23807Merate,Italy 3INAF–OsservatorioAstronomicodiTrieste,ViaTiepolo11,I-34131,Trieste,Italy 7 1 2February2017 0 2 n ABSTRACT a Thepropertiesoftheradiationemittedbytheaccretiondiskaroundrotatingblackholeshave J beenstudiedonlyrecently,duetothedifficultiesincalculatingrelativisticeffectscausedby 1 the strong gravitational field and to the large velocities of the matter in the vicinity of the 3 laststablecircularorbit.Anumericalapproachisrequired,asdonebyLiandcollaborators, for the case of star-sized black holes. In this paper we build upon this numerical treatment ] E trying to interpolate the numerical results with simple analytical functions, that can be used for black holes of any size and spin. We especially emphasize the pattern of the produced H radiation,namelythefluxproducedasafunctionoftheangleθbetweenthelineofsightand . h thenormalofthedisk,andtherotationofboththeblackholeandthedisk.Lightbendingand p relativisticbeamingconcurtoenhancethefluxobservableatlargeθ (i.e.edgeon),contrary - tothestandardcosθpatternofdiskemissionaroundSchwarzschildblackholes. o r Keywords: galaxies:active—(galaxies:)quasars:general—blackholephysics—accre- t s tion,accretiondisks a [ 1 v 1 INTRODUCTION 2008,Wangetal.2009,Shenetal.2011).Or,alternatively,wecan 1 fit the accretion disk spectrum that depends in the simplest case 01 Inthelasttwodecadeswelearntthatatthecoreofalmostevery only from the black mass M and the accretion rate M˙, to find galaxythereisasupermassiveblackhole(SMBH),nowinactivein 0 both quantities through the two observables: the disk total lumi- mostcases,butthatwasnecessarilyactiveinthepast,tohaveac- 0 nosityanditspeakfrequency(hereafter“SEDfittingmethod”;see cretedthemassithas.TheproblemofmeasuringtheSMBHmass . Calderoneetal.2013).Allthesemethodsbearlargeuncertainties 02 abtlatchkehcoenlete-rgoaflgaxalyaxcioerseismcarsuscicaolrrteolaatsisoenss(et.hge. pMroapgeorrtriieasnoefttahle. (∼>0.4−0.5dex)thatarebuiltintheintermediatecorrelationused tofindthevirialmassandthesystematicsinvolvedinthecalibra- 7 1998,Gebhardtetal.2000,Ferrarese&Merrit2000,Marconi& 1 tion which will lead to significant biases of these BH mass esti- Hunt2003,Ha¨ring&Rix2004,Gu¨ltekinetal.2009,Beifiorietal. : mates (Peterson et al. 2004, Collin et al. 2006, Shen et al. 2008, v 2012, Kormendy & Ho 2013, McConnell & Ma 2013, Reines & Marconi et al. 2008, Kelly et al. 2009, Shen & Kelly 2010, Park i Volenteri2015),andhenceuptowhatdegreeweneedafeedback X et al. 2012), and in the model used for the SED fitting method: mechanismtoexplainthisrelation,orifmorethanoneprocessis standard accretion disk, geometrically thin, optically thick down r needed(seethereviewbyFabian2012andreferencestherein).Re- a totheinnermostradius(Shakura&Sunyaev1973),oftenwithno semblingtheladderofdistances,thereisnowasimilarladdercon- rotationandnorelativisticeffectsincluded. cerning black hole masses, starting from primary measurements, usingmaserswithintheaccretiondisk(seee.g.Greeneetal.2010, Giventheimportanceoffindingareliable(oratleastcomple- Kuoetal.2011andthereviewbyTarchi2012),orindirectlymea- mentary)methodtoestablishthemassofSMBHsandtheirspins,in suringthewidthofthebroademissionlinestoknowtheirvelocity thispaperwestudythepropertiesofaccretiondiskthatarestillge- dispersion, and the reverberation mapping (e.g. Blandfors & Mc- ometricallythinandopticallythickdowntotheirinnermostcircular Kee1982,Peterson1993,Petersonetal.2004)toknowtheirdis- orbit(R ),butconsideringKerrblackholesandaccountingfor ISCO tancefromtheblackhole.Ifthetwoquantitiesarelinkedbygrav- Special and General relativistic effects. Many authors tried to in- ity,wecanusedthevirialargumentandfindtheblackholemass cluderelativisticeffectstodescribetheemissionfromthedisk(e.g. (hereafter“virialmethod”,e.g.Vestergaard2002,McLure&Jarvis Novikov&Thorne1973,Page&Thorne1974,Riffert&Herold 2002,Greene&Ho2005,Vestergaard&Osmer2009,McGilletal. 1995),andwewillbaseourstudyonannumericalcodedeveloped by Li et al. (2005) called KERRBB and implemented on the in- teractiveX-rayspectral-fittingprogramXSPEC(seeArnaud1996 (cid:63) E–mail:[email protected] and references therein). This is specifically designed for Galactic (cid:13)c 2016RAS 2 Campitielloetal. binaries,butwewillshowastraightforwardmethodforextending G=c=h=1): itscapabilitiesforblackholesofanymass. (cid:90) dΩ Inthispaper,weconcentrateonaspecificaspectoftheprob- Fν,obs =2g3fc−o4lEe3m exp[E /k oTbs (R)]−1 (2) lem:howtofindaccurateanalyticalformulaethatcanreadilyde- Ω em B col scribetheemissionpatternoftheradiationemittedbydisksaround whereg istheredshiftofthephotonandEem thephotonenergy Kerr holes (including the case of zero spin) accounting for rela- whenitisemittedfromthedisk.Ifweaccountforlimbdarkening, tivisticeffectsthatarefoundbythenumericaltreatment,andhow thenweshouldaddtheextratermY(θ)(see§2.2andEq.(4)).The topassfromstar-sizeblackholestoSMBHs. colortemperatureTcolisdefinedas: In this work, we adopt a flat cosmology with H = 68 km s−1Mpc−1andΩM =0.3,asfoundbyPlanckCollab0orationXIII Tcol(R)=fcolTeff(R)=fcol(cid:20)Foσut(R)(cid:21)1/4 (3) (2015). SB 2.2 Relativisticeffects 2 KERRBBSOFTWARE The effects of Special and General relativity caused by the black holegravitationalfield,stronglymodifytheemissionpatternofthe 2.1 Basicequations accretiondisk.Theseeffectsaremoreimportantintheinnerregion TheKERRBlackBody(KERRBB)accretiondiskmodelisanu- of the disk (closer to the black hole) than in the outer region (in mericalcodethatdescribestheemissionfromathin,steadystate, KERRBB the accretion disk extends from the inner most stable generalrelativisticaccretiondiskaroundarotatingblackhole,us- orbitRISCOto106Rg,Li05).Themainrelativisticeffectsare: ing the ray-tracing technique. It is described and compared with • Doppler beaming — Matter orbiting close to the black hole othermodelsinLietal.(2005,hereafterLi05)andrepresentsan movesatrelativisticvelocities.Thiscausesrelativisticaberration, extensionofapreviousrelativisticmodelcalledGRAD(Hanawa timedilationandblue/red–shifting(seebelow). 1989, Ebisawa et al. 1991), which assumes a non rotating black • Gravitationalredshift—Electromagneticradiation,produced hole. KERRBB is the best public code for fitting accretion disk in a deep potential well is observed redshifted by a distant ob- spectrabecauseittakesintoaccountalltherelativisticeffectsthat server2.Thiseffectbecomesmoreimportantasgravityincreases, othermodelsdonotordoonlyinpart.Italsotakesintoaccount i.e.closertotheblackhole theeffectsrelatedtotheangularmomentumoftheblackhole,that • Self irradiation of the disk — Photons emitted by the inner determinestheinnerradiusofthedisk(InnermostStableCircular diskcanirradiatetheouterregionsofthediskitselforcanbecap- Orbit,i.e.ISCO),andthereforetheradiativeefficiency.Theaccre- turedbytheblackholebecauseofthestronggravitationalpullthat tion disk emission is approximated by a diluted black body: the bendstheirtrajectories(forthisreason,itiscalledreturningradia- specificintensityatradiusRcanbewrittenas tion).Theeffectisstrongerforrapidlyrotatingblackholes,because (cid:20)T (R)(cid:21)4 RISCObecomessmallerforlargerspins.Forotherdetails,seeFig. Iν(R)= eTff Bν(Tcol) (1) 1inLi05. col • Limbdarkening—Thisopticalphenomenonmakesthecen- where B is the Planck function, T (R) is the effective tem- tralpartofthediskbrighterthanitsedge.Foranelectron-scattering ν eff peratureofthediskgivenbytheStefan-BoltzmannlawF(R) = atmosphere,itcanbedescribedbyafunctionY(θ)oftheanglebe- σ T4 (R),F(R)isthetotaldiskfluxdependingonthedistance tweenthewavevectoroftheemittedphotonsandthenormalofthe SB eff Rfromthecenter1,andT isthecolortemperature.Thelatter disksurface:Y(θ)=1forisotropicemission.Y(θ)= 1+3cosθ col 2 4 couldbehigherthantheeffectivelocaltemperatureif,forinstance, for limb-darkened emission (Chandrasekhar 1950, Cunningham ahotcoronaislocatedaboveandbelowanotherwisestandardac- 1975, Li et al. 2005). Hence, the outgoing intensity is related to cretiondisk.InthiscasetheComptonizationprocessoccurringin theoutgoingfluxby thecoronacanbemimickedbyassumingTcol >Teff. 1 ItistruethatinanAGNthehotcoronaispresentandactive, Iout = πFoutY(θ) (4) butonlyintheinnerregionsoftheaccretiondisk,whileitisunim- ThiseffectmodifiesEq.(2)withtheextratermY(θ)intheinte- portantatlargerradii.InthiscasethecorrespondingX-rayemis- gral. sioncannotbeapproximatedbyalargertemperatureofthediskbut • Frame dragging — (also known as Lense-Thirring effect). mustbetreatedasaseparateprocess.Therefore,inthiswork,we Thisprocessisrelatedtoarotatingblackholethatdragsthespace- assumedthehardeningfactorf = T /T = 1,anddidnot col col eff time itself: during its fall towards the black hole, a particle will accountfortheComptonizationprocess. gain angular momentum that forces it to a co-rotation with the An important feature of KERRBB is the self–irradiation of blackholespin,eveninthecaseofaradialfreefall.Whena = 0 the disk (i.e. returning radiation on the disk). The outgoing flux (Schwarzschildblackhole),sucheffectisnull. F isthesumofthestandardemittedfluxF calculatedignoring out 0 • Innertorque—Inthestandardtheoryofaccretiondisks,the returningradiation,andthecontributionoftheingoingcomponent torqueattheinneredgeofthediskisassumedzero.Thisisvalid F ,duetotheradiationfocusedbackontothediskbytheblack in fornon-magnetizedorweaklymagnetizedflowsandforthindisks hole gravity (for other details, see Section 3 and Appendix D in (Muchotrzeb & Paczynski 1985, Abramowicz & Kato 1989, Af- Li05).TheobservedspecificfluxF ,canbeexpressedas(with ν,obs shordi & Paczynski 2003). It has been suggested that a non-zero 1 The general form of F(R), depending also on the black hole spin, is 2 Aboutthiseffect,Li05correctedthewrongformulaintheGRADcode describedinPage&Thorne1974. fortheredshiftfactor. (cid:13)c 2016RAS,MNRAS000,1–9 DisksaroundKerrblackholes 3 torquecanarisefromtheconnectionbetweenthediskandthecen- tralblackholebyamagneticfield(Krolik1999,Gammie1999,Li 2000,Wangetal.2002),buttheproblemisstillunderdebate.A torqueg (cid:62) 0attheinnerboundaryoftheaccretiondiskmodifies thetotalpowerofthediskasfollows(withG=c=h=1): L =g Ω +ηM˙ (5) disk in in where Ω is the angular velocity of the inner boundary, η is the in radiativeefficiency,M˙ istheblackholeaccretionrate.Bydefining thedimensionlessparameterζ =g Ω /(ηM˙),Eq.(5)becomes in in L =(1+ζ)ηM˙ =ηM˙ (6) disk eff whereM˙ =M˙(1+ζ)istheeffectiveaccretionrate.Whenζ = eff 0,thesolutioncorrespondstoastandardKepleriandiskwithzero torqueattheinnerboundary.Forotherdetails,seeFig.7andFig. 8inLi05. • Light-bending—Photontrajectoriesarebentbecauseofthe strong gravitational pull exerted by the central black hole. Since R decreasesforlargerspins,thiseffectbecomesmoreimpor- ISCO tantforlargerspins.Asaresultoflight-bending,thephotonsini- tially emitted in a direction normal to the disk, are bent to larger angles,increasingtheradiationobservededgeon(seeFig.1).For otherdetails,seeFig.4andFig.9inLi05. The effect of light-bending on the photon emission pattern fromtheaccretiondiskissketchedinFig.1.Thetoppanelshows a Shakura-Sunyaev accretion disk (Shakura & Sunyaev 1973). In this model all relativistic effects are neglected and even the photons emitted close to R = 3R are not bent by gravity. ISCO S The KERRBB code instead accounts for all relativistic effects evenifthediskdoesnotrotate.Thiscaseissketchedinthecentral panel. The dotted blue circle around the black hole contains the regionwhererelativisticeffectsarestronger.Thephotonsproduced by the outer regions are not affected by the gravitational field of the black hole and are not (or only moderately) bent: for this Figure1.Schematicviewofthephotonemissionpatternofanaccretion reason, the Shakura–Sunyaev and KERRBB models are similar diskaround ablackhole.A distantobserveris atthebottomof thefig- in the low frequency part, because the flux at these frequencies uresandsees thediskface-on.PanelA:Shakura-Sunyaevcase. Theab- is produced by regions far from the black hole where relativistic senceofrelativisticeffects(mostnotably,light-bending)makesallthepho- effects are weak and can be neglected. Instead, photons emitted tonsemittedfromthediskgostraighttowardsadistantobserverwithno inside the strong influence region (i.e. inside the blue circle) are modification.Alsothereisnoreturningradiationontothediskbecausethe stronglyaffectedbylight-bending:theseenergeticphotonsarelost light-bending effect is absent. Panel B: a/M = 0 KERRBB case. The inonedirectionandappearinanother.Furthermore,somephotons circularregionaroundtheBHiswheretheeffects,likelight-bending,are emittedclosetotheblackholehavetrajectoriessobentthatcould moreimportant.Photonsemittedfromtheouterpartofthediskgostraight tothedistantobserverbecausethegravitationalfieldoftheblackholeis bedirectedtowardsthediskitself:theseenergeticphotonscanbe notsostrongtobendtheirtrajectories.Photonsinitiallyemittedinthedi- identifiedasthereturningradiationontothediskthatisre-emitted rectionnormaltothedisk(initsinnerregions),cannotreachthedistant as an additional component of the disk flux. The bottom panel observeranymorebecausetheirtrajectoriesarebentindifferentdirections shows a KERRBB model with a/M = 0.998: this is the case by the strong gravitational field. Together with the gravitational redshift of the strongest light-bending. In fact the extreme spin moves (neglected in the Shakura-Sunyaev model), this explains why the KER- the inner radius of the disk down to almost the event horizon: RBBspectrum(witha/M = 0)islessbrightthantheShakura-Sunyaev correspondingly, the radiative efficiency is maximum, due to the onewhenviewedface-on.Furthermore,someclosestphotonstotheblack enhanced emission of high energy radiation (see Fig. (8)). All holehavetrajectoriessobentthatcouldbedirectedtowardsthediskitself: these features make the disk emission brighter than the previous theseenergeticphotonscanbeidentifiedasthereturningradiationontothe cases. diskthatisre-emittedasanadditionalcomponentofthediskflux.Panel C:a/M = 0.998M KERRBBcase.Photonsemittedintheouterregion gostraighttothedistantobserver.Innerphotonshavetrajectoriesbentby Thesketchcanbeusefulalsoforlargeviewingangles:inthis thestronggravitationalfield.Themostenergeticphotonscouldbestrongly case photons emitted in the outer region can intercept the strong bentinalldirectionsandsomeofthemcanbedirectedontothedisk.The influenceregion(bluecircle)andcanbebentinotherdirections. strongrelativisticeffectsandthehighradiativeefficiencymaketheemis- However the main effect is that energetic photons emitted in the sionbrighterthenpreviouscases,evenifthediskisedge-on.Thetopaxis innerregionofthediskcanbeseenbyobserversatlargeangles: isthelogarithmicdistancefromthecentralblackholeinunitofRg:RISCO this explains why the KERRBB model with a large spin has an andradiusRPEAK (radiusatwhichthefluxismaximized)areshownas observedbolometricluminosityalmostconstantwhilevaryingthe well. viewingangle(seeFig.(8)). (cid:13)c 2016RAS,MNRAS000,1–9 4 Campitielloetal. 2.3 Mainparameters TheKERRBBcodeisbasedon4mainparameters,listedbelow: (i) BlackholemassM:inunitofsolarmassesM .KERRBB (cid:12) isdesignedforstellarblackholeshencetheblackholemassrange isfrom0.01to100solarmasses.Fig.2showshowaccretiondisk spectrascalewithdifferentblackholemasses.Thiswillbeuseful toscaletheKERRBBresultsfromastellartoasupermassiveblack hole(see§3). (ii) AccretionrateM˙:inunitof1018gs−1.Therange,designed forstellarblackhole,isfrom0.01to1000.Thisparametercorre- spondstotheeffectiveaccretionratedescribedinEq.(6)andthere- foredependsontheinnertorqueζ.Inthiswork,weassumethat theinnertorqueisalwaysnull,sotheaccretionrateissimplythe oneofthediskM˙ = M˙ .Fig.2andFig.3showhowaccretion eff diskspectrascalewithdifferentaccretionrates. (iii) Blackholespina:inunitofM,theratioa/M isdimen- sionless. KERRBB allows to compute the spectrum for all spins between the values a/M = −1 and +0.9999. In this work, we Figure2. KERRBBaccretiondiskspectrawithdifferentmassesandac- have considered this range, even if it goes beyond the canonical cretionrates.Theinitial10M(cid:12)spectrum(bluesolidline)moveshorizon- tally(i.e.infrequency)whentheblackholemasschanges(orangearrow), maximumspina/M = 0.9982(Thorne1974).Fig.3showshow diagonally(i.e.inbothfrequencyandluminosity)whentheaccretionrate theaccretiondiskspectrumchangeswiththespin. changes(redarrow).Thepositionofthepeakinfrequencyνandluminosity (iv) Viewingangleofthediskθ:betweenthenormaltothedisk νLν,foragivenspinvalue,followsthesameshiftingequationsfoundby andthelineofsight.KERRBBallowstocomputethespectrumin Calderoneetal.(2013):correctedEq.(9)andEq.(10)(dependingalsoon therange0◦ (cid:54)θ(cid:54)85◦.InthecaseofaclassicalShakura-Sunyaev theblackholespina)canbefoundusingKERRBBresults(inthespecific model,theflux(andsotheluminosity)scalesas∝cosθ(Shakura caseofaface-ondisk). &Sunyaev1973,Calderoneetal.2013).IntheKERRBBmodel the accretion disk luminosity does not follow this simple scaling becauseoftherelativisticeffects.Theviewingangleatwhichthe observerseesthemaximumluminosityislargerthanθ = 0◦ and dependsontheblackholespin.SeeTable2. Along with these main parameters, KERRBB allows to reg- ulate the influence of the other features described above. For our work, we considered the self-irradiation of the disk, in order to haveamorerealisticdescriptionofthediskemission.Ontheother hand,weneglectedtheeffectsoflimb-darkeningandinnertorque ζ.Regardingthehardeningfactorf ,wechosetosetitequalto1, col becausetheComptonizationeffectisover-simplifiediftreatedwith thisapproximation,asalreadydiscussedin§2.1. 3 SCALINGWITHBLACKHOLEMASSAND ACCRETIONRATE AsshowninFig.2andFig.3,thechangesinaccretionrateM˙ and blackholemassM shiftthespectrumpeakbyaprecisevaluere- latedtothetwoparametersthemselves.Fortheclassicaldescription Figure3. KERRBBaccretiondiskspectrawithdifferentaccretionrates ofageometricallythinandopticallythickaccretiondiskarounda andspins,butsameblackholemass(10M(cid:12)).WhenM˙ increases,thespec- trumpeakincreasesalso(redarrow),butlessthantheincreaserelatedtothe nonrotatingblackhole,givenbytheShakura-Sunyaevmodel,the increaseofthespin(orangearrow).Thelowfrequencypartofthespectrum, positionofthepeakfrequencyν andthepeakluminosityν L p p νp whenachanges,remainsconstant,butthisoccursatfrequenciesnotvisible scalewiththemassandtheaccretionrateaccordingtoCalderone inthefigure.Thelowfrequencyfluxisproducedbytheouterregionsofthe etal.(2013).Theseequations,adaptedfortheobserveddiskemis- disk,unaffectedbytheblackholespin.Aboutthiseffect,seealsoFig.(8). sion3,canbewrittenas: ν (cid:16) η (cid:17)3/4(cid:20) M˙ (cid:21)1/4(cid:20) M (cid:21)−1/2 p =A (7) whereηistheradiativeefficiencyandtheconstantsareLogA = [Hz] 0.1 M yr−1 109M (cid:12) (cid:12) 15.25 and Log B = 45.66. Note that for the Shakura-Sunyaev νpLνp =B(cid:16) η (cid:17)(cid:20) M˙ (cid:21)cosθ (8) modeTl,hηet∼wo0.e1qusoatitohnesη,/fo0r.1afi∼xe1dinvibewotihngeqaunagtlieonθs,.giveunivocally [erg/s] 0.1 M yr−1 (cid:12) the position of the spectrum peak corresponding to a given mass and accretion rate for a Shakura-Sunyaev model. For KERRBB, 3 In Calderone et al. 2013, these equations are related to the total disk Eq.(7)andEq.(8)havethesameform,butdependalsoonthespin, emission. that changes the efficiency η and the radiation pattern, no longer (cid:13)c 2016RAS,MNRAS000,1–9 DisksaroundKerrblackholes 5 Figure5.Scalingmassandaccretionratefromastellarblackholetoasu- Figure4. WecanobtainthesameKERRBBspectrum(i.e.theemission permassiveblackhole.Theinitialmodel(thinsolidblueline)isfirstshifted peakinthesameposition)fordifferentvaluesoftheblackholemassM, infrequencybychangingthemassvaluetheninluminosity(andfrequency) accretionrateM˙ andspina/M.Thereisthereforeafamilyofsolutions. bychangingtheaccretiondiskvalueaccordingtoEq.(12)andEq.(13).In ConsiderthespectrumA(thicksolidblueline),andsupposetoincrease thisway,itispossibletodescribetheaccretiondiskemissiondatarelated M atconstantM˙ andspin.WewouldobtainthespectrumB.Nowsup- tosupermassiveblackholeswithKERRBB.Notethattheinitialandthe posetoincreasethespin,butkeepM andM˙ constant.Sincealargerspin finalspectrahavethesameEddingtonratioL/LEdd =0.053.IntheAp- correspondstoalargerefficiency,weobtainthespectrumC.Finally,sup- pendix,Eq.(12)andEq.(13)areexpressedasafunctiononlyoftheblack posetodecreaseM˙:wecanobtainthespectrumD,whichisalmostexactly holemass,byconsideringthattheEddingtonratiooftheinitialandthefinal equaltotheinitialspectrumA(theyslightlydifferinthehighfrequency, modelsmustbeequal. exponentialpart). trumD,whichisequaltotheinitialspectrumA.Theoverlappingof equal to cosθ. The mass and accretion rate dependences are the twomodelscanbedonebecause,asshowninFig.3,theaccretion samebecausetheassumptionofageometricallythinandoptically rate and the spin move the spectrum peak in different directions. thickdiskisvalidforbothmodels.ByusingKERRBBresults,it Strictlyspeaking,modelAandDarenotexactlyequal:thereare ispossibletofindnewequations,applicableforKerrblackholes. verysmalldifferencesinthehighfrequency,exponentialpartofthe Theycanbewrittenas spectra:forlargerspinvalues,theexponentialtailisbrighter. ν (cid:20) M˙ (cid:21)1/4(cid:20) M (cid:21)−1/2 SinceKERRBBspectrummovesontheLogν,LogνLν plane p =A g (a,θ) (9) accordingtotheproportionalitiesofEq.(9)andEq.(10),wecan [Hz] M yr−1 109M 1 (cid:12) (cid:12) scalethespectrumfromstellarblackholemasstoasupermassive blackholemass,withthesamespinvalue.Itisimportanttonote νpLνp =B(cid:20) M˙ (cid:21)g (a,θ) (10) thatthisprocedurecanbedoneiftheemissionprocessesfroman [erg/s] M(cid:12)yr−1 2 accretion disk around a star-sized and a supermassive black hole arethesame.Inourcase,inbothsystemstheemissionisrequired The functions g and g describe the dependencies on the 1 2 tobeamulti-colorblackbody.Someauthorshavepointedoutsome black hole spin a (and hence also on the radiative efficiency) problemswiththemulti-colorblackbodyinterpretationforSMBHs and the viewing angle θ. We derived a functional form for both g (a,θ = 0◦) and g (a,θ = 0◦) by fitting the variation of the (Koratkar&Blaes1999,Davis&Laor2011),buthereweassume 1 2 spectrumpeakpositionatdifferentspinvaluesandfixedθ=0◦: thatitisagoodenoughapproximationinordertouseEq.(9)and Eq.(10).Fig.5showsanexampleofourprocedure:startingfrom gi(a,θ=0◦) = α+βx1+γx2+δx3+(cid:15)x4+ζx5+ιx6 a stellar black hole mass (thin solid blue line), the spectrum can x ≡ log(n−a) i=1,2 (11) beshiftedinfrequencyandluminositybyquantitiesrelatedtothe n initialandthefinalmass: whereaistheadimensionalblackholespin.Table1givesthepa- rametervaluesofthetwofunctions.TheaccuracyofEq.11isof νfin =(cid:20)M˙fin(cid:21)1/4(cid:114)Min (12) theorderof∼ 1%.Itisimportanttonotethatthepeakfrequency νin M˙in Mfin andluminosity,describedbyEq.(9)andEq.(10),aredegenerate inmass,accretionrateandspin(ifθisfixed).Inotherwords,the νL M˙ samespectrumcanbefittedbyafamilyofsolutions,bychanging νfin = fin (13) theblackholemass,accretionrateandspininaproperway.Fig.4 νLνin M˙in showsthisdegeneracy:startingfrommodelA,supposetoincrease Inthisway,itispossibletodescribetheaccretiondiskemis- M atconstantM˙ andspin:wewouldobtainthespectrumB.Now siondatarelatedtosupermassiveblackholeswithKERRBB.Inthe supposetoincreasethespin,butkeepM andM˙ constant:sincea Appendix,Eq.(12)andEq.(13)areexpressedasafunctiononlyof largerspincorrespondstoalargerefficiency,weobtainthespec- theblackholemass,byrequiringtheEddingtonratiooftheinitial trumC.Finally,supposetodecreaseM˙:wecanobtainthespec- andthefinalmodelsequal[Eq.(A4)andEq.(A5)]. (cid:13)c 2016RAS,MNRAS000,1–9 6 Campitielloetal. Parameters α β γ δ (cid:15) ζ ι g1 1001.3894 -0.061735 -381.64942 8282.077258 -40453.436 66860.08872 -34974.1536 g2 2003.6451 -0.166612 -737.3402 16310.0596 -80127.1436 132803.23932 -69584.31533 Table1.Parametersofthefunctionsg1 andg2 inEq.(9)andEq.(10),writtenasageneralfunctional(11),inthecasewiththeviewingangle0◦.Using KERRBBresults,itispossibletofindsimilarequationsforthecaseswiththediskviewingangle>0◦. 4 EMISSIONPATTERN Spinvalue[a/M] θmax Spinvalue[a/M] θmax 4.1 Accretiondiskbolometricluminosity 0.998 63.9◦ 0.6 0.3◦ IntheclassicalnonrelativisticShakura-Sunyaevcase,thebolomet- 0.98 46.4◦ 0.5 0.1◦ ric luminosity observed at an angle θ is related to the total disk 0.95 24.6◦ 0.4 0.1◦ luminosityL bythefollowingexpression(Calderoneetal.2013): 0.94 19.1◦ 0.3 0.028◦ d 0.92 12.5◦ 0.2 0.009◦ LoSbSs(θ)=2cosθLd =2cosθηM˙c2 (14) 0.9 8.7◦ 0.1 0.002◦ As mentioned before, this is no longer valid in the general 0.8 2.2◦ 0 0.0005◦ 0.7 0.8◦ −1 0◦ relativistic case for a Kerr black hole. In this case, the emission pattern depends not only on M˙ and θ but also on the black hole spina.Ourtaskwastofindananalyticexpressionforit.Tothis Table2.Valuesoftheviewingangleθmax atwhichthediskbolometric aim,wewrotetheobservedbolometricluminosityas: luminosityismaximized,fordifferentspins.Notetheextremeeffectatspin a/M =0.998andlittlefluctuationsfrom0◦forsmallerspins.Inasense, LoKbesrr =f(θ,a)η(a)M˙c2 (15) theseresultsshowthedeviationfromthecosθ-lawatdifferentspins. wheretheradiativeefficiencyη(a)dependsontheblackholespin. Werequiredthatthislastequationsatisfies: 1 (cid:90) Thevaluesofα,β,γ,δ,(cid:15),ι,κofEq.20areinTableB2inthe Lobs (θ,a)dΩ=η(a)M˙c2 (16) Appendix.TheaccuracyofEq.20isof∼ 1%.Asanexample,in 4π Ω Kerr thecasewitha/M = 0(η = 0.057),M˙ = 1018g/s,thefunction UsingEq.15,thisimplies: thatinterpolatestheobserveddiskluminosityfordifferentanglesθ (cid:90) π/2 is: f(θ,a)sinθdθ=1 (17) 0 LoKbesrr(θ) =8.475·1037cosθ[1−0.958·(sinθ)6.675]0.121 First,weconsideredthebolometricluminosityofthespectragiven [erg/s] [1−(sinθ)1.918]0.202 bytheKERRBBcode,fixingthevaluesM˙,M,aandvaryingonly (21) the viewing angle. In this way, we derived the emission pattern FollowingtheparallelstructureofemissionpatternsinKER- numerically. Therefore we looked for an analytic expression that RBBandShakura-Sunayev,wedidnotexpectanydependenceof couldinterpolatethenumericalresultswithagoodaccuracy.Since thefunctionf(θ,a)ontheblackholemassM andindeedwedid wewantedtocomparethefinalpatternwiththesimple2cosθterm notfindany.Therefore,thebolometricluminosityLobs isonlya Kerr inEq.(14),weassumedthatthefirsttermofthefinalanalyticex- functionofθ,aandM˙,aswritteninEq.(15). pression (function of θ) is just cosθ. Therefore, considering Eq. (15),weassumed: Lobs =[cosθ·(termsfunctionsofθ)] η(a)M˙c2 (18) 4.2 Pattern Kerr (cid:124) (cid:123)(cid:122) (cid:125) ThroughEq.(15),whoseexplicitformisEq.(19),itispossibleto =f(θ,a) studytheemissionpatternoftheKerrblackholeaccretiondisk.For Weobtainedagoodmatchusingthefollowingfunctionalform: theShakura-Sunyaevmodel,thepatternfollowsthecosθ-law[Eq. LoKbesrr =Acosθ[1−(sinθ)C]B[1−E(sinθ)F]D η(a)M˙c2 (14)],themaximumluminosityisat0◦anditisnullat90◦.KER- (cid:124) (cid:123)(cid:122) (cid:125) RBB radically changes the θ-dependence and the angle at which =f(θ,a) (19) theobservedluminosityismaximized(θmax)isnotnecessarily0◦. TheaccuracyofEq.(19)isof<1%,hencerepresentsavery Itispossibletofindthisθmaxbyputtingequalto0thederivativeof goodapproximation.Wealsotriedapolynomialfunctionwiththe Eq.(19)withrespecttheviewingangleθ.Settingη(a)M˙c2 = 1, samenumberofparameterbuttheaccuracywaslower(> 1%)at weobtain: smallandlargeangles,fordifferentspinvalues.Alltheparameters ∂Lobs (θ,a) A,B,C,D,EandF arefunctionsofthespina.Wethenrepeated Kerr = [1−(sinθ)C]·[1−E(sinθ)F]+ ∂θ thisanalysisusingdifferentspinvalues.TableB1inAppendixlists +CB(sinθ)C−2cos2θ[1−E(sinθ)F]+ thevaluesoftheparametersfordifferentspins.Withthisapproach, we studied how the values of A, B, C, D, E and F change by +FED(sinθ)F−2cos2θ[1−(sinθ)C]=0 changingthespin.Again,welookedforananalyticalfunctionthat (22) interpolatesthenumericalresults(seeFig.B1andFig.B2inthe Appendix).Wefoundthatagoodrepresentationisgivenby: Theanglesθmaxincreasesforincreasingspina.Asanexam- ple,θ (cid:39) 64◦ fora/M = 0.998and(cid:39) 25◦ fora/M = 0.95. H(a) = α+βx1+γx21+δx31+(cid:15)x41+ιx51+κx61 By remduacxing the spin value, θmax approaches 0◦ (see Table 2 for x = log(1−a) (20) other spin values). Note that Eq. (22) is equal to zero also for 1 (cid:13)c 2016RAS,MNRAS000,1–9 DisksaroundKerrblackholes 7 Figure 6. Emission pattern for different models: the radial axis is the observed efficiency, given by ηobs ≡ f(θ,a)η(a). The classical non relativistic Shakura-Sunyaev model (dashed blue line) is compared with a/M =−1(orangeline),a/M =0(greenline)anda/M =0.797(red Figure8.KERRBBmodelbehavioratdifferentanglesandspins.Allmod- line)KERRBBpatterns.NotethatfortheShakura-Sunyaevmodel,theob- elshavethesameM andM˙.Whena/M = 0case(bluelines),thedisk servedefficiencyisηobs =2cosθηSS ≈0.17cosθ.Thea/M =0.797 luminositydecreasesincreasingtheviewingangleinawaysimilartocosθ. casedescribesthemostsimilarKERRBBmodeltoaShakura-Sunyaevwith Whenthespinismaximala/M =0.998(redlines),light-bendingeffect, sameparameters(massandaccretionrate)atθ=0◦.Atdifferentviewing alongwithDopplerbeamingandgravitationalredshiftaresostrongthatthe angles,theKERRBBmodelisbrighter.Notealso,howfortheShakura- luminosityisalmostthesame,evenatlargeangles.Inthiscase,thetrajecto- Sunyaevmodel,theemissionhasacircularpatternwhileforKERRBB,the riesoftheenergeticphotons,producedclosetotheblackholehorizon,are patternis“warped”bytherelativisticeffects.Reddotsindicatetheangleat bentinalldirectionsmakingtheradiationintensitytobealmostthesame whichtheKERRBBluminosityismaximized(Table2andFig.7). atallviewingangles. and0.797(redline)KERRBBpatterns.ForShakura-Sunyaev,the emissionisgivenbyacircle:forKERRBB,thiscircleis“warped” byrelativisticeffects.Thea/M = 0.797casedescribesthemost similar KERRBB model to a Shakura-Sunyaev, at θ = 0◦, with thesameblackholemassandaccretionrate4:inordertoemitthe sameluminosity,theKERRBBmodelmusthavealargerefficiency, hencealargerspinvalue.Inthisway,thetwomodelsareequiva- lentaroundθ = 0◦ butatdifferentviewingangles,theKERRBB model is brighter because of the strong relativistic effects. Fig. 7 isequivalenttoFig.6:theShakura-Sunyaeviscomparedwiththe a/M = −1(greenline),0.95(orangeline)and0.998(redline) KERRBBpatterns.Notehow,fortheextremeKERRBB,theemis- sionisstronglymodifiedwithrespecttotheothercases.Reddots indicatetheanglesatwhichtheemissionpatternismaximized. Figure 7. Emission pattern for different models: the radial axis is the Thestrongmodificationofthespectrumemissionduetothe observed efficiency, given by ηobs = f(θ,a)η(a). The classical non combinationofviewingangleandspinisalsovisualizedinFig.8: relativistic Shakura-Sunyaev model (dashed blue line) is compared with a/M = −1(greenline),a/M = 0.95(orangeline)anda/M = 0.998 thebluespectracorrespondtoa/M =0,theredonesarethesame (red line) KERRBB patterns. Note how, for the extreme KERRBB, the witha/M =0.998(MandM˙ areconstant).Inthea/M =0case, emission is strongly modified with respect to the others. The angles at relativisticeffectsareveryweakandthespectrumseemtofollow whichtheKERRBBluminosityismaximizedareindicatedwithreddots: theclassicalcosθ -law.Instead,inthea/M = 0.998cases,the fora/M =0.998,θmax(cid:39)64◦,andfora/M =0.95,θmax(cid:39)25◦(see emitted luminosity is almost constant, even for the largest view- Table2forotherspinvalues). ingangles.Thisisduetothecombinationofdifferentrelativistic effects(Dopplerbeaming,gravitationalredshiftandlight-bending) alongwiththeblackholespin:thetrajectoriesoftheenergeticpho- θ = 90◦: this solution must not be considered because Eq. (19) tons coming from the innermost region of the disk (that are very isdefinedintheinterval[0◦ :85◦](see§2.3). closetothehorizonfora/M → 1),arebentinalldirectionsand In order to plot the different emission patterns for different theintensityofradiationisalmostthesameatallviewingangles. anglesandspins,wekeptconstantthevalueoftheaccretionrate M˙ in Eq. (15) and computed the observed efficiency defined by η ≡f(θ,a)η(a).Fig.6showstheemissionpatternfordifferent obs models:theradialaxisistheobservedefficiencyplottedatdifferent 4 Forthesamemass(oraccretionrate)value,thepreciseoverlappinghas viewingangles.FortheclassicalnonrelativisticShakura-Sunyaev asmallerspin(∼0.76)butadifferentaccretionrate(ormass)value(dif- model (dashed blue line), ηobs = 2cosθηSS ≈ 0.17cosθ. It ferencesoftheorderof∼1%).Theoverlappingcasewitha/M =0.797 is compared with the a/M = −1 (orange line), 0 (green line) istheclosestonewiththesameMandM˙,evenifimprecise. (cid:13)c 2016RAS,MNRAS000,1–9 8 Campitielloetal. 5 DISCUSSIONANDCONCLUSIONS KERRBB emission must have a larger efficiency, hence a larger BHspinvalue.Inthisway,thetwomodelsareequivalentaround In this work, we studied the radiation and emission pattern from θ = 0◦ but, at larger viewing angles, the KERRBB model is an accretion disk around a spinning black hole. Our aim was to brighterbecauseofthestrongrelativisticeffects. buildananalyticapproximationoftheemissionpattern,givenby • Relativistic effects modifies the pattern at different viewing thenumericalmodelKERRBB(Lietal.2005),alreadydeveloped angles:thesimplecosθ-law(followedbyShakura-Sunyaev)isno forX-raybinariesandaccountingforalltherelativisticeffects(i.e. longer valid, mostly due to light-bending (see Fig. 1). Hence the Dopplerbeaming,gravitationalredshift,self-irradiationofthedisk, maximumobservedluminosityisnolongeratθ=0◦butatlarger light-bending),inordertoefficientlyextenditsusetosupermassive viewingvalues. blackholes. • Theobservedluminosityismaximizedatdifferentanglesde- Wefirsttestedsomefeaturesofthemodelcomparingittothe pendingontheblackholespin:forlargerspinvalues,θ hasa classicalnonrelativisticdescriptionbyShakura&Sunyaev(1973): max largervalue(seeTab.2foritsvalueatdifferentspins). weverifiedhowtherelativisticeffectsaffecttheemissionprofileof thedisk,mainlyinthevicinityoftheblackhole.Afterwards,we focusedonthechangesinthespectrumimpliedbychangesinthe With our approach, we introduced a simple analytic tool to 4mainparametersofthemodel:blackholemass,accretionrate, studytheimpactofdifferentspinvaluesonobservablefeaturesof spin and inclination angle of the disk with respect to the line of the accretion disks surrounding supermassive black holes. In up- sight.AfirstanalysisshowedthattheKERRBBmodelisaffected comingpublications,wewilldetailhowouranalyticapproximation bychangesinmassandaccretionrateinthesamewayasastan- canbeusedtoderiveaccretionandblackholefeatures(introduc- dard Shakura-Sunyaev model: the assumption of a geometrically inganewmethodtoestimatetheblackholespinfromthediskSED thinandopticallythickdiskisvalidforbothmodelshencethedisk fittingprocess),andlikelybeusedforawideactivegalacticnuclei emissionscaleswiththesameblackholemassandaccretionrate sample. proportionalitiesfoundbyCalderoneetal.(2013).Thisusefulin- formationallowstoshifttheKERRBBspectrum,fromastar-sized toasupermassiveblackhole,byusingEq.12andEq.13(orequiv- alentlyEq.A4andEq.A5if,inthetrasformation,theEddington ratiooftheinitialandthefinalmodeliskeptconstant).Also,us- ingKERRBBresults,theequationsrelatedtothepeakfrequency REFERENCES andluminosityofthespectrum,foundbyCalderoneetal.,canbe Abramowicz,M.A.&Kato,S.1989, ApJ,336,304. adaptedtorotatingblackholes:newequations9and10andFig.4 Afshordi,N.&Paczynski,B.2003, ApJ,592,354. showedthatthesamespectrumcanbereproducedbyafamilyof Arnaud,K.A.1996, AstronomicalDataAnalysisSoftwareand solutions,withdifferentvaluefortheBHmass,theaccretionrate SystemsV.ASPConferenceSeries,Vol.101,eds.G.H.Jacoby andthespin. andJ.Barnes,p.17. Themostimportantpartofthisworkisrelatedtotheanalysis oftheemissionpattern,i.e.howtheobservedluminosityLobs of Beifiori,A.,Courteau,S.,Corsini,E.M.,&Zhu,Y.2012, MN- RAS,419,2497. theaccretiondiskdependsontheviewingangleandtheBHspin. ThepresenceofrelativisticeffectsmakestheKERRBBLobs dif- Blandfors,R.D.&McKee,C.F.1982, ApJ,255,419. ferentfromtheclassicalShakura-SunyaevLobs:thislatteKrecrarnbe Calderone,G.,Ghisellini,G.,Colpi,M.,&Dotti,M.2013, MN- SS RAS,431,210. analytically found simply by considering anisotropic the emitted Chandrasekhar,S.1950, Oxford:OxfordUniv.Press. fluxoftheaccretiondisk,leadingtoEq.14(Calderoneetal.2013). Collin, S., Kawagushi, T., Peterson, B. M., & Vestergaard, M. ByusingKERRBBresults,wetriedtorecoverananalyticexpres- 2006, A&A,456,75. siondependingonlyontheviewingangleandtheblackholespin, Cunningham,C.T.1975, ApJ,202,788. andweobtainedaphenomenologicalfunctionf(θ,a)thatwellap- Davis,S.W.&Laor,A.2011, ApJ,728,98. proximatesthevariationoftheobservedluminosityatdifferentθ Ebisawa,K.,Mitsuda,K.,&Hanawa,T.1991, ApJ,367,213. andavalues:theobservedluminositycanbewrittenasinEq.19. Fabian,A.C.2012, ARA&A,50,455. The availability of an analytic expression for the bolometric Ferrarese,L.&Merrit,D.2000, ApJ,539,L9. luminosityrelatedtoaspinningblackholecanbeextremelyuseful Gammie,C.F.1999, ApJ,522,L57. in the analysis of the emission features of both stellar and super- Gebhardt,K.etal.2000, ApJ,539,L13. massiveactiveblackholes.ThesefeaturescanbevisualizedinFig. Greene,J.E.etal.2010, ApJ,721,26. 6andFig.7(seecaptionsforthediagramdetails).Theanalysisof Greene,J.E.&Ho,L.C.2005, ApJ,630,122. thepatternshowedthat: Gu¨ltekin,K.,Richstone,D.O.,&Gebhardt,K.2009, ApJ,698, • Alargerspinimpliesalargerbolometricluminosity.Thein- 198. creaseofluminosityandtherelativisticeffectsonthepatternare Hanawa,T.1989, ApJ,341,948. morepronouncedfora/M ∼>0.8. Ha¨ring,N.&Rix,H.-W.2004, ApJL,604,L89. • The KERRBB model with a/M = 0 is dimmer than the Kelly,B.C.,Vestergaard,M.,&Fan,X.2009, ApJ,692,1388. equivalentShakura-SunyaevatfixedM andM˙:thisisduetothe Koratkar,A.&Blaes,O.1999 PASP,111,1. presence of relativistic effects and a smaller radiative efficiency Kormendy,J.&Ho,L.C.2013, ARA&A,51,51. (η =0.057). Krolik,J.K.1999, ApJ,515,L73. KERR • At a fixed viewing angle, there is a KERRBB model equiv- Kuo,C.Y.etal.2011, ApJ,727,2. alent to a Shakura-Sunyev one with the same parameters (mass Li,L.-X.2000, ApJ,533,L115. andaccretionrate).Atθ = 0◦,theequivalentKERRBBhasspin Li,L.-X.,Zimmerman,E.R.,Narayan,R.,&McClintock,J.E. a/M = 0.797.Infact,inordertoemitthesameluminosity,the 2005, ApJ,157,335-370. (cid:13)c 2016RAS,MNRAS000,1–9 DisksaroundKerrblackholes 9 Magorrian,J.,Tremaine,S.,Richstone,D.,&R.1998, AJ,115, νLνp,fin = Mfin (A5) 228. νLνp,in Min Marconi,A.,Axon,D.J.,Maiolino,R.,Nagao,T.,Pastorini,G., Pietrini,P.,Robinson,A.,&Torricelli,G.2008, ApJ,678,693. Marconi,A.&Hunt,L.K.2003, ApJL,589,L2. APPENDIXB: KERRBBOBSERVEDLUMINOSITY McConnell,N.J.&Ma,C.-P.2013, ApJ,764,18. In§4.1,weshowedthatananalyticexpressionthatapproximates McGill, K. L., Woo, J., Treu, T., & Malkan, M. A. 2008, ApJ, theobserved,frequencyintegratedluminosityofanaccretiondisk 673,703. aroundarotatingblackhole,canbewrittenas: McLure,R.J.&Jarvis,M.J.2002, MNRAS,337,109. Muchotrzeb,B.&Paczynski,B.1985, ActaAstron.32,1. Lobs = Acosθ[1−(sinθ)C]B[1−E(sinθ)F]DL Kerr d Novikov,I.D.&Thorne,K.S.1973, inBlackholes,ed.C.De L = η(a)M˙c2 (B1) WittandB.DeWitt(NewYork:GordonandBreach),343. d Page,D.N.&Thorne,K.S.1974, ApJ,191,507. whereLdisthetotaldiskluminosity.AlltheparametersA,B,C, Park,D.etal.2012, ApJ,747,30. D,E,F arefunctionsonlyoftheblackholespina,liketheradia- Peterson,B.M.1993, PASP,105,247. tiveefficiencyη(a).Inordertofindtheexpressionfortheobserved Peterson,B.M.etal.2004, ApJ,613,682. luminosity,foragivenvalueofa,ithasbeenchosenasetofview- Reines,A.E.&Volenteri,M.2015, ApJ,813,82. ing angle θ (from 0◦ to 85◦ 5), and computed the integrals over Riffert,H.&Herold,H.1995, ApJ,450,508. frequencyoftheKERRBBspectra.Wefittedtheselatterandfound Shakura,N.I.&Sunyaev,R.A.1973, AA,24,337. theempiricalexpression(B1).Parametervaluesfordifferentspin Shen,J.,Berk,D.E.V.,Schneider,D.P.,&Hall,P.B.2008, AJ, valuesareinTablesB1. 135,928. Fig. B1 shows the bolometric luminosities of the KERRBB Shen,Y.etal.2011, ApJS,194,45. spectra as a function of the viewing angle, for spin a/M = −1, Shen,Y.&Kelly,B.C.2010, ApJ,713,41. −0.6,0.6and0.998(reddots),andthefittingfunction(B1)(blue Tarchi,A.2012, IAUSymp.,287,323(arXiv:1205.3623). line).Notethedifferentbehaviors:inthecasesa/M = −1,−0.6 Thorne,K.S.1974, ApJ,191,507-519. and0.6,thebolometricluminosity,betweenthecases0◦and85◦, Vestergaard,M.2002, ApJ,571,733. decreasesbyafactorof∼7,6.6and4.4,respectively6.Inthecase Vestergaard,M.&Osmer,P.S.2009, ApJ,699,800. witha/M = 0.998,thestrongrelativisticeffectsmakethelumi- Wang,D.-X.,Xian,K.,&Lei,W.H.2002, MNRAS,335,655. nosity reach a maximum value at ∼ 64◦ (see Table 2), and then Wang,J.G.etal.2009, ApJ,707,1334. makeitdropatlargerviewingangles.Thecaseswith0◦ and85◦ havealmostthesameluminosity,(seealsoFigure8),contrarytothe small-spincases.Notehowtheresidualsarealwaysoftheorderof ∼ 0.01%,hencefunction(B1)representsaverygoodapproxima- APPENDIXA: SHIFTINGEQUATIONS tion. Fig.B2showstheparametersA,B,C,D,E andF fordif- Eq. (12) and Eq. (13) describe the relations that allow to rescale the initial spectrum with mass M and M˙ , to a new spectrum ferent values of the spin, in order to find their dependence on it. in in with final M and M˙ , with a fixed black hole spin. The peak Asshownin§4.1,thecommonfittingequation(blueline)canbe fin fin frequencyν andluminosityν L followtheserelations: writtenas: p p νp ν (cid:16)M˙ (cid:17)1/4(cid:114)M H(a) = α+βx1+γx21+δx31+(cid:15)x41+ιx51+κx61 p,fin = fin in (A1) νp,in M˙in Mfin x1 = log(1−a) (B2) Thevaluesofα,β,γ,δ,(cid:15),ι,κareinTableB2.Notehowthe νLνp,fin = M˙fin (A2) residualsarealwaysoftheorderof1%(orless),exceptforF (of νLνp,in M˙in theorderof∼ 10%).Theselargeuncertaintiescouldbereduced usingmorethan6parametersforthefit,butwefounditunneces- If, in the transformation, the Eddington ratio (cid:96) = L/L Edd saryfortheaimofthiswork. remainsthesame,thepreviousequationsbecomefunctionsonlyof theblackholemass.Infact,onecanwrite: L =ηM˙ c2 L =ηM˙ c2 in in fin fin L =CM L =CM Edd,in in Edd,fin fin whereC =6.9·104ergs−1g−1.TheEddingtonratioswillbe: ηM˙ c2 ηM˙ c2 (cid:96) = in (cid:96) = fin in CM fin CM in fin If(cid:96) =(cid:96) ,oneobtains: in fin M˙ M in = in (A3) M˙fin Mfin 5 TheKERRBBcodeallowstochoseaviewinganglebetweenthesetwo Inthisway,Eq.(12)andEq.(13)become: limitingvalues. νp,fin =(cid:16)Min(cid:17)1/4 (A4) 6 Inthecasewithnorelativisticeffects(i.e.Shakura-Sunyaevcase),there ν M wouldhavebeenafactorof∼11.5,betweenthecases0◦and85◦. p,in fin (cid:13)c 2016RAS,MNRAS000,1–9 10 Campitielloetal. FigureB1.KERRBBdiskbolometricluminosityasafunctionoftheviewingangleofthedisk,inthecaseswitha/M =−1,a/M =−0.6,a/M =0.6 anda/M = 0.998.Thefittingfunction(blueline)hasthegeneralformof(19)withdifferentvaluesfortheparameters,inthedifferentcases.Notethe differentbehaviors:inthecasesa/M =−1,−0.6and0.6,thebolometricluminosity,betweenthecases0◦and85◦,decreasesbyafactorof∼7,6.6and 4.4,respectively.Inthecasewitha/M =0.998,theluminosityreachesamaximumvalueat∼64◦(seeTable2)thendropsatlargerviewingangles. Par a=0.998M a=0.95M a=0.8M a=0.6M a=0.4M LogA −0.04950±0.00029 0.06055±0.00029 0.13668±0.00017 0.17345±0.00011 0.19378±0.00008 B −0.59008±0.00508 −0.46635±0.00576 −0.35544±0.00471 −0.28623±0.00382 −0.24788±0.00346 C 1.90743±0.01574 1.87187±0.02087 1.87208±0.01959 1.87674±0.01806 1.89046±0.01758 D 0.16910±0.00415 0.20649±0.00473 0.18649±0.00393 0.15944±0.00311 0.14239±0.00272 E 1.00344±0.00121 0.99368±0.00146 0.98357±0.00159 0.97466±0.00203 0.96833±0.00251 F 12.00334±0.56470 10.6638±0.4250 8.75966±0.26306 7.86278±0.20588 7.28707±0.18300 Par a=0 a=−0.2M a=−0.4M a=−0.6M a=−1M LogA 0.21802±0.00007 0.21991±0.00008 0.22547±0.00008 0.23317±0.00008 0.23836±0.00007 B −0.20169±0.00433 −0.18812±0.00527 −0.18213±0.00716 −0.17351±0.00730 −0.16644±0.00889 C 1.91789±0.02450 1.94180±0.03034 1.99089±0.03919 2.01418±0.04000 2.08771±0.04433 D 0.12095±0.00310 0.11501±0.00369 0.11359±0.00537 0.10989±0.00548 0.10898±0.00723 E 0.95794±0.00514 0.95591±0.00694 0.96097±0.00785 0.96081±0.00828 0.96786±0.00751 F 6.67478±0.23957 6.37660±0.28415 5.88852±0.32039 5.67540±0.31558 5.09754±0.29246 TableB1.Parametervaluesofthefunction(B1),fordifferentspinvalues.Byusingthesevalues,itwaspossibletodescribethemwithageneralfunctional (B2),whoseparametersareinTableB2.Thedifferentparametersalongwiththefittingfunctionandresiduals,areshowninFig.B2. (cid:13)c 2016RAS,MNRAS000,1–9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.