ebook img

Quantum Spaces: Poincaré Seminar 2007 PDF

234 Pages·2007·2.776 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Spaces: Poincaré Seminar 2007

Progress in Mathematical Physics Volume53 Editors-in-Chief Anne Boutet de Monvel, Université Paris VII Denis Diderot Gerald Kaiser, The Virginia Center for Signals and Waves,AustinTexas, USA Editorial Board Sir M. Berry,University of Bristol, UK C. Berenstein, University of Maryland, College Park, USA P. Blanchard, University of Bielefeld, Germany A.S. Fokas, University of Cambridge, UK D. Sternheimer,Université de Bourgogne, Dijon, France C.Tracy,University of California, Davis, USA Quantum Spaces Poincaré Seminar 2007 Bertrand Duplantier Vincent Rivasseau Editors Birkhäuser Verlag Basel Boston Berlin (cid:3) (cid:3) (cid:3) Editors: Bertrand Duplantier Vincent Rivasseau Service de Physique Théorique Laboratoire de Physique Théorique Orme des Merisiers Université Paris XI CEA - Saclay 91405 Orsay Cedex 91191 Gif-sur-Yvette Cedex France France e-mail: [email protected] e-mail: [email protected] 2000 Mathematics Subject Classification: 81V70, 81R50, 81R60, 81T75, 81T17, 82B23 Library of Congress Control Number: 2007933916 Bibliographic information published by Die Deutsche Bibliothek (cid:39)(cid:76)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:37)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:87)(cid:75)(cid:72)(cid:78)(cid:3)(cid:79)(cid:76)(cid:86)(cid:87)(cid:86)(cid:3)(cid:87)(cid:75)(cid:76)(cid:86)(cid:3)(cid:83)(cid:88)(cid:69)(cid:79)(cid:76)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:76)(cid:81)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:49)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:69)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:74)(cid:85)(cid:68)(cid:191)e; detailed biblio- graphic data is available in the Internet at <http://dnb.ddb.de>. ISBN 978-3-7643-8521-7 BirkhäuserVerlag, Basel – Boston – Berlin This work is subject to copyright.All rights are reserved, whether the whole or part of the material is (cid:70)(cid:82)(cid:81)(cid:70)(cid:72)(cid:85)(cid:81)(cid:72)(cid:71)(cid:15)(cid:3)(cid:86)(cid:83)(cid:72)(cid:70)(cid:76)(cid:191)cally the rights of translation, reprinting, re-use of illustrations, broadcasting, repro- (cid:71)(cid:88)(cid:70)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:82)(cid:81)(cid:3)(cid:80)(cid:76)(cid:70)(cid:85)(cid:82)(cid:191)lms or in other ways, and storage in data banks. For any kind of use whatsoever, permission from the copyright owner must be obtained. © 2007 BirkhäuserVerlag,P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced of chlorine-free pulp.(cid:55)(cid:38)(cid:41)(cid:3)(cid:146) Printed in Germany ISBN 987-3-7643-8521-7 e-ISBN 978-3-7643-8522-4 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Contents Foreword.................................................................. xi V. Pasquier Quantum Hall Effect and Non-commutative Geometry 1 Introduction.......................................................... 1 2 Lowest Landau level physics.......................................... 3 2.1. Single particle in a magnetic field............................... 3 2.2. Non-commutative product...................................... 5 3 Interactions.......................................................... 7 3.1. Spring in a magnetic field....................................... 7 3.2. Structure of the bound state.................................... 8 3.3. Bosons at ν =1................................................ 9 4 Skyrmion and nonlinear σ-model..................................... 12 4.1. Non-commutative Belavin–Polyakovsoliton..................... 13 References............................................................ 16 V. Rivasseau Non-commutative Renormalization 1 Introduction.......................................................... 19 2 Commutative renormalization,a blitz review......................... 34 2.1. Functional integral............................................. 34 2.2. Feynman rules.................................................. 38 2.3. Scale analysis and renormalization.............................. 42 2.4. The BPHZ theorem............................................ 45 2.5. The Landau ghost and asymptotic freedom..................... 47 3 Non-commutative field theory........................................ 49 3.1. Field theory on Moyal space.................................... 49 3.1.1. The Moyal space RD.......................................... 49 θ 3.1.2. The Φ(cid:2)4 theory on R4 Moyal space........................... 52 θ 3.1.3. UV/IR mixing................................................ 53 3.2. The Grosse-Wulkenhaar breakthrough.......................... 54 3.3. The non-commutative Gross-Neveu model...................... 56 4 Multi-scale analysis in the matrix basis............................... 58 vi Contents 4.1. A dynamical matrix model..................................... 58 4.1.1. From the direct space to the matrix basis..................... 58 4.1.2. Topology of ribbon graphs.................................... 59 4.2. Multi-scale analysis............................................. 60 4.2.1. Bounds on the propagator.................................... 60 4.2.2. Power counting............................................... 62 5 Hunting the Landau ghost............................................ 64 5.1. One loop....................................................... 64 5.2. Two and three loops............................................ 66 5.3. The general Ward identity...................................... 68 5.3.1. Proof of Theorem 5.1......................................... 71 5.3.2. Bare identity................................................. 76 5.4. The RG flow................................................... 76 6 Propagatorson non-commutative space............................... 77 6.1. Bosonic kernel.................................................. 78 6.2. Fermionic kernel................................................ 78 6.3. Bounds......................................................... 80 6.4. Propagatorsand renormalizability.............................. 81 7 Direct space.......................................................... 82 7.1. Short and long variables........................................ 82 7.2. Routing, Filk moves............................................ 83 7.2.1. Oriented graphs.............................................. 83 7.2.2. Position routing.............................................. 83 7.2.3. Filk moves and rosettes....................................... 85 7.2.4. Rosette factor................................................ 85 7.3. Renormalization................................................ 87 7.3.1. Four-point function........................................... 87 7.3.2. Two-point function........................................... 88 7.3.3. The Langmann-Szabo-Zarembomodel........................ 88 7.3.4. Covariantmodels............................................. 88 8 Parametric representation............................................ 91 8.1. Ordinary Symanzik polynomials................................ 91 8.2. Non-commutative hyperbolic polynomials, the non-covariantcase.......................................... 95 8.3. Non-commutative hyperbolic polynomials, the covariantcase.............................................. 99 9 Conclusion........................................................... 100 References............................................................ 102 Contents vii A.P. Polychronakos Non-commutative Fluids 1 Introduction.......................................................... 109 2 Review of non-commutative spaces................................... 110 2.1. The operator formulation....................................... 110 2.2. Weyl maps, Wigner functions and ∗-products................... 113 3 Non-commutative gauge theory....................................... 114 3.1. Background-independent formulation........................... 115 3.2. Superselection of the non-commutative vacuum................. 116 3.3. Non-commutative Chern-Simons action......................... 117 3.4. Level quantization for the non-commutative Chern-Simons action........................................... 121 4 Connection with fluid mechanics...................................... 122 4.1. Lagrange and Euler descriptions of fluids....................... 122 4.2. Reparametrization symmetry and its non-commutative avatar.......................................................... 124 4.3. Gauging the symmetry......................................... 125 4.4. Non-commutative fluids and the Seiberg-Witten map........... 126 5 The non-commutative description of quantum Hall states............. 130 5.1. Non-commutative Chern-Simons description of the quantum Hall fluid......................................... 130 5.2. Quasiparticle and quasihole classical states ..................... 132 5.3. Finite number of electrons: the Chern-Simons matrix model..... 133 5.4. Quantum Hall ‘droplet’ vacuum................................ 134 5.5. Excited states of the model..................................... 135 5.6. Equivalence to the Calogero model............................. 137 6 The quantum matrix Chern-Simons model............................ 138 6.1. Quantization of the filling fraction.............................. 138 6.2. Quantum states................................................ 141 6.3. Final remarks on the matrix model............................. 143 7 The non-commutative Euler picture and bosonization................. 144 7.1. Density description of fermionic many-body systems............ 144 7.2. The correspondence to a non-commutative fluid................. 146 7.3. Quantization and the full many-body correspondence........... 147 7.4. Higher-dimensional non-commutative bosonization.............. 148 8 τα´ πα´ντα ρ(cid:7)˜ι ... (and it all keeps flowing...)........................ 155 References............................................................ 155 viii Contents J.-M. Maillet Heisenberg Spin Chains: From Quantum Groups to Neutron Scattering Experiments 1 Introduction.......................................................... 161 2 Heisenberg spin chain and algebraic Bethe ansatz..................... 170 2.1. Algebraic Bethe ansatz......................................... 170 2.2. Description of the spectrum.................................... 172 2.3. Drinfel’d twist and F-basis...................................... 173 2.4. Solution of the quantum inverse problem....................... 175 2.5. Scalar products................................................. 176 2.6. Action of operatorsA, B, C, D on a general state.............. 177 3 Correlation functions: Finite chain.................................... 178 3.1. Matrix elements of local operators.............................. 178 3.2. Elementary blocks of correlationfunctions...................... 179 3.3. Two-point functions............................................ 181 3.4. Towards the comparisonwith neutron scattering experiments.................................................... 183 4 Correlation functions: Infinite chain.................................. 186 4.1. The thermodynamic limit....................................... 187 4.2. Elementary blocks.............................................. 189 5 Exact and asymptotic results......................................... 190 5.1. Exact results at ∆=1/2....................................... 190 5.1.1. The emptiness formation probability.......................... 190 5.1.2. The two-point function of σz.................................. 191 5.2. Asymptotic results............................................. 192 5.3. Asymptotic behavior of the two-point functions................. 194 6 Conclusion and perspectives.......................................... 195 Acknowledgments.................................................... 196 References............................................................ 196 A. Connes Non-commutative Geometry and the Spectral Model of Space-time 1 Background.......................................................... 203 2 Why non-commutative spaces........................................ 205 3 What is a non-commutative geometry?............................... 206 4 Inner fluctuations of a spectral geometry............................. 208 5 The spectral action principle......................................... 209 6 The finite non-commutative geometry F.............................. 212 6.1. The representation of A in H ................................ 212 F F 6.2. The unimodular unitary group SU(A )......................... 213 F 6.3. The classification of Dirac operators............................ 214 Contents ix 7 The spectral action for M ×F and the standard model............... 215 8 Detailed form of the bosonic action................................... 216 9 Detailed form of the spectral action without gravity.................. 218 10 Predictions........................................................... 220 10.1. Unification of couplings........................................ 220 10.2. See-saw mechanism for neutrino masses........................ 220 10.3. Mass relation Y (S)=4g2..................................... 222 2 10.4. The Higgs scattering parameter............................... 223 10.5. Naturalness................................................... 223 10.6. Gravitationalterms........................................... 224 11 Final remarks........................................................ 225 References............................................................ 226

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.