ebook img

q Analogue of p adic log gamma functions associated with modified q extension of Genocchi numbers with weight alpha and beta PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview q Analogue of p adic log gamma functions associated with modified q extension of Genocchi numbers with weight alpha and beta

q-ANALOGUE OF p-ADIC log Γ TYPE FUNCTIONS ASSOCIATED WITH MODIFIED q-EXTENSION OF GENOCCHI NUMBERS WITH WEIGHT α AND β 2 1 0 SERKANARACIANDMEHMETACIKGOZ 2 n Abstract. The fundamental aim of this paper is to describe q-Analogue of a p-adic log gamma functions with weight alpha and beta. Moreover, we give J relationship between p-adic q-log gamma funtions with weight (α,β) and q- 0 extension of Genocchi numbers with weight alpha and beta and modified q- 2 Eulernumberswithweightα ] T N 1. Introduction . h t Assume that p be a fixed odd prime number. Throughout this paper Z, Zp, Qp a and C will denote by the ring of integers,the field of p-adic rationalnumbers and m p the completion of the algebraic closure of Q , respectively. Also we denote N∗ = p [ N 0 andexp(x)=ex.Letvp :Cp Q (Q is the field of rational numbers) ∪{ } → ∪{∞} 2 denotethep-adicvaluationofCp normalizedsothatvp(p)=1. Theabsolutevalue 9v on Cp will be denoted as |.|p, and |x|p = p−vp(x) for x ∈ Cp. When one talks of q-extensions, q is considered in many ways, e.g. as an indeterminate, a complex 0 number q C, or a p-adic number q C , If q C we assume that q < 1. If 3 p ∈ ∈ ∈ | | 1.1 tqh∈e Cfopll,owweinagssnuomtaeti|o1n−q|p <p−p−11, so that qx =exp(xlogq) for |x|p ≤1. We use 0 1 qx 1 ( q)x 2 (1.1) [x] = − , [x] = − − q 1 q −q 1+q 1 − v: where limq→1[x]q =x; cf. [1-24]. i For a fixed positive integer d with (d,f)=1, we set X X = X =limZ/dpNZ, r d ←− a N X∗ = a+dpZ p 0<a∪<dp (a,p)=1 and a+dpNZ = x X x a moddpN , p ∈ | ≡ where a Z satisfies the condition 0 a<dpN. (cid:8) (cid:0) (cid:1)(cid:9) ∈ ≤ It is known that qx µ x+pNZ = q p [pN] q (cid:0) (cid:1) Date:January20,2012. 2000 Mathematics Subject Classification. Primary46A15,Secondary41A65. Key words and phrases. Modifiedq-Genocchi numbers withweightalpha andbeta, Modified q-Eulernumberswithweightalphaandbeta, p-adicloggammafunctions. 1 2 SERKANARACIANDMEHMETACIKGOZ is a distribution on X for q C with 1 q 1. ∈ p | − |p ≤ Let UD(Z ) be the set of uniformly differentiable function on Z . We say that p p f is a uniformly differentiable function at a point a Z , if the difference quotient p ∈ f(x) f(y) F (x,y)= − f x y − has a limit f´(a) as (x,y) (a,a) and denote this by f UD(Z ). The p-adic p → ∈ q-integral of the function f UD(Z ) is defined by p ∈ pN−1 1 (1.2) I (f)= f(x)dµ (x)= lim f(x)qx q ZZp q N→∞[pN]q x=0 X The bosonic integral is considered by Kim as the bosonic limit q 1, I (f) = 1 → limq→1Iq(f). Similarly, the p-adic fermionic integration on Zp defined by Kim as follows: I−q(f)=q→lim−qIq(f)= Z f(x)dµ−q(x) Z p Let q 1, then we have p-adic fermionic integral on Z as follows: p → pN−1 x I−1(f)= lim Iq(f)= lim f(x)( 1) . q→−1 N→∞ − x=0 X Stirling asymptotic series are defined by Γ(x+1) 1 ∞ ( 1)n+1 B n+1 (1.3) log = x logx+ − x √2π − 2 n(n+1) xn − (cid:18) (cid:19) (cid:18) (cid:19) n=1 X where B are familiar n-th Bernoulli numbers cf. [6, 8, 9, 25]. n Recently, Araci et al. defined modified q-Genocchi numbers and polynomials with weight α and β in [4, 5] by the means of generating function: ∞ tn (1.4) gn(α,q,β)(x) n! =t Z q−βξe[x+ξ]qαtdµ−qβ(ξ) n=0 Z p X Sofromabove,weeasilygetWitt’sformulaofmodifiedq-Genocchinumbersand polynomials with weight α and β as follows: g(α,β) (x) (1.5) nn+1+,q1 = Z q−βξ[x+ξ]nqαdµ−qβ (ξ) Z p where g(α,β)(0) := g(α,β) are modified q extension of Genocchi numbers with n,q n,q weight α and β cf. [4,5]. In [21], Rim and Jeong are defined modified q-Euler numbers with weight α as follows: (1.6) ξ(α) = q−t[t] dµ (t) n,q qα −q Z Z p e From expressions of (1.5) and (1.6), we get the following Proposition 1: ON THE q-ANALOGUE OF p-ADIC log GAMMA TYPE FUNCTIONS 3 Proposition 1. The following (α) gn(α+,11),q (1.7) ξ = n,q n+1 is true. e In previous paper [6], Araci, Acikgoz and Park introduced weighted q-Analogue of p-Adic log gamma type functions and they derived some interesting identities in Analytic Numbers Theory and in p-Adic Analysis. They were motivated from paperofT.Kimby”Ona q-analogueofthe p-adicloggammafunctionsandrelated integrals, J. Number Theory, 76 (1999), no. 2, 320-329.” We also introduce q- Analogue of p-Adic log gamma type function with weight α and β. We derive in this paper some interesting identities this type of functions. On p-adic log Γ function with weight α and β In this part, from (1.2), we begin with the following nice identity: n−1 (1.8) I(β) q−βxf +( 1)n−1I(β) q−βxf =[2] ( 1)n−1−lf(l) −q n − −q qβ − l=0 (cid:0) (cid:1) (cid:0) (cid:1) X where f (x)=f(x+n) and n N (see [4]). n ∈ In particular for n=1 into (1.8), we easily see that (1.9) I(β) q−βxf +I(β) q−βxf =[2] f(0). −q 1 −q qβ With the simple appli(cid:0)cation, i(cid:1)t is easy(cid:0)to ind(cid:1)icate as follows: ∞ ( 1)n+1 (1.10) ((1+x)log(1+x))´=1+log(1+x)=1+ − xn n(n+1) n=1 X where ((1+x)log(1+x))´= d ((1+x)log(1+x)) dx By expression of (1.10), we can derive ∞ ( 1)n+1 (1.11) (1+x)log(1+x)= − xn+1+x+c, where c is constant. n(n+1) n=1 X If we take x = 0, so we get c = 0. By expression of (1.10) and (1.11), we easily see that, ∞ ( 1)n+1 (1.12) (1+x)log(1+x)= − xn+1+x. n(n+1) n=1 X It is considered by T. Kim for q-analogue of p adic locally analytic function on C Z as follows: p p \ (1.13) G (x)= [x+ξ] log[x+ξ] 1 dµ (ξ) (for detail, see[5,6]). p,q Z q q− −q Z p (cid:16) (cid:17) By the same motivation of (1.13), in previous paper [6], q-analogue of p-adic locally analytic function on C Z with weight α is considered p p \ (1.14) Gp(α,q)(x)= Z [x+ξ]qα log[x+ξ]qα −1 dµ−q(ξ) Z p (cid:16) (cid:17) (1) In particular α=1 into (1.14), we easily see that, G (x)=G (x). p,q p,q 4 SERKANARACIANDMEHMETACIKGOZ Withthesamemanner,weintroduceq-Analogeofp-adiclocallyanalyticfunction on C Z with weight α and β as follows: p p \ (1.15) G(α,β)(x)= q−βξ[x+ξ] log[x+ξ] 1 dµ (ξ) p,q Z qα qα − −qβ Z p (cid:16) (cid:17) From expressions of (1.9) and (1.16), we state the following Theorem: Theorem 1. The following identity holds: G(α,β)(x+1)+G(α,β)(x)=[2] [x] log[x] 1 . p,q p,q qβ qα qα − (cid:16) (cid:17) It is easy to show that, 1 qα(x+ξ) (1.16) [x+ξ] = − qα 1 qα − 1 qαx+qαx qα(x+ξ) = − − 1 qα − 1 qαx 1 qαξ = − +qαx − 1 qα 1 qα (cid:18) − (cid:19) (cid:18) − (cid:19) = [x] +qαx[ξ] qα qα Substituting x qαx[ξ]qα into (1.12) and by using (1.16), we get interesting → [x]qα formula: (1.17) [x+ξ] log[x+ξ] 1 = [x] +qαx[ξ] log[x] + ∞ (−qαx)n+1[ξ]nqα+1 [x] qα qα − qα qα qα n(n+1) [x]n − qα (cid:16) (cid:17) (cid:16) (cid:17) nX=1 qα Ifwesubstitute α=1into(1.17), wegetKim’sq-Analogueofp-adicloggamma fuction (for detail, see[8]). From expressionof (1.2) and (1.17), we obtain worthwhile and interesting theo- rems as follows: Theorem 2. For x C Z the following p p ∈ \ (1.18) G(α,β)(x)= [2]qβ [x] +qαxg2(α,q,β) log[x] + ∞ (−qαx)n+1 gn(α+,β1,)q [x] [2]qβ p,q 2 qα 2 ! qα n=1n(n+1)(n+2) [x]nqα − qα 2 X is true. Corollary 1. Taking q 1 into (1.18), we get nice identity: → G ∞ ( 1)n+1 G (α,β) 2 n+1 G (x)= x+ logx+ − x p,1 2 n(n+1)(n+2) x − (cid:18) (cid:19) n=1 X where G are called famous Genocchi numbers. n Theorem 3. The following nice identity (1.19) G(α,1)(x)= [2]q [x] +qαxξ(α) log[x] + ∞ (−qαx)n+1 ξ(nα,q) [2]q [x] p,q 2 qα 1,q qα n(n+1) [x]n − 2 qα (cid:18) (cid:19) nX=1 e qα is true. e ON THE q-ANALOGUE OF p-ADIC log GAMMA TYPE FUNCTIONS 5 Corollary 2. Putting q 1 into (1.19), we have the following identity: → ∞ ( 1)n+1 E G(α,β)(x)=(x+E )logx+ − n x p,1 1 n(n+1) xn − n=1 X where E are familiar Euler numbers. n References [1] Araci, S., Acikgoz, M., and Seo, J-J., A note on the weighted q-Genocchi numbers and polynomialswithTheirInterpolationFunction, Accepted inHonamMathematical Journal. [2] Araci, S., Erdal, D., and Seo., J-J., A study on the fermionicp adic q- integral representa- tiononZp associated withweighted q-Bernsteinandq-Genocchi polynomials,Abstract and AppliedAnalysis,Volume2011,ArticleID649248,10pages. [3] Araci, S., Seo, J-J., and Erdal, D.,New construction weighted (h,q)-Genocchi numbers and polynomialsrelatedtoZetatypefunction,DiscreteDynamicsinnatureandSociety,Volume 2011,ArticleID487490,7pages. [4] Araci,S.,Acikgoz,M.,Qi,Feng.,andJolany,H.,Anoteonthemodifiedq-Genocchinumbers and polynomials with weight (α,β) and Their Interpolation function at negative integer, submitted. [5] Araci, S., Acikgoz, M., and Ryoo, C-S., A note on the values of the weighted q-Bernstein PolynomialsandModifiedq-GenocchiNumberswithweightαandβviathep-adicq-integral onZp,submitted [6] Araci, S., Acikgoz, M., Park, K-H., A note on the q-Analogue of Kim’s p-adic log gamma functions associated with q-extension of Genocchi and Euler polynomials with weight α, submitted. [7] Acikgoz,M.,andSimsek,Y.,OnmultipleinterpolationfunctionsoftheN¨orlundtypeq-Euler polynomials,AbstractandAppliedAnalysis,Volume2009,ArticleID382574, 14pages. [8] Kim, T., A note on the q-analogue of p-adic log gamma function, arXiv:0710.4981v1 [math.NT]. [9] Kim,T.,Onaq-analogueofthep-adicloggammafunctionsandrelatedintegrals,J.Number Theory,76(1999), no.2,320-329. [10] Kim,T.,Ontheq-extensionofEulerandGenocchinumbers,J.Math.Anal.Appl.326(2007) 1458-1465. [11] Kim, T., On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008)481-486. arXiv:0801.0978v1[math.NT] [12] Kim,T., Onthe weighted q-Bernoullinumbers and polynomials, Advanced Studies inCon- temporaryMathematics 21(2011), no.2,p.207-215,http://arxiv.org/abs/1011.5305. [13] Kim,T.,q-Volkenbornintegration,Russ.J.Math.phys.9(2002),288-299. [14] Kim, T., An invariant p-adic q-integrals on Zp, Applied Mathematics Letters, vol. 21, pp. 105-108,2008. [15] Kim, T., q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math.Phys.,14(2007), no.1,15–27. [16] Kim, T., New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), no.2,218–225. [17] Kim,T., Someidentities onthe q-Eulerpolynomialsof higher orderand q-Stirlingnumbers bythefermionicp-adicintegralonZp,Russ.J.Math.Phys.,16(2009), no.4,484–491. [18] Kim, T. and Rim, S.-H., On the twisted q-Euler numbers and polynomials associated with basic q-l-functions, Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 738–744, 2007. [19] Kim, T., On p-adic q-l-functions and sums of powers, J. Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.07.071 [20] Ryoo. C. S., A note on the weighted q-Euler numbers and polynomials, Advan. Stud. Con- temp.Math.21(2011), 47-54. [21] Rim, S-H., and Jeong, J., A note on the modified q-Euler numbers and Polynomials with weightα,International Mathematical Forum,Vol.6,2011, no.65,3245-3250. [22] Simsek, Y., Theorems on twisted L-function and twisted Bernoulli numbers, Advan. Stud. Contemp.Math.,11(2005), 205-218. 6 SERKANARACIANDMEHMETACIKGOZ [23] Simsek,Y.,Twisted(h,q)-Bernoullinumbersandpolynomialsrelatedtotwisted(h,q)−zeta functionandL-function,J.Math.Anal.Appl.,324(2006), 790-804. [24] Simsek, Y., On p-Adic Twisted q-L-Functions Related to Generalized Twisted Bernoulli Numbers,RussianJ.Math.Phys.,13(3)(2006), 340-348. [25] Zill,D.,andCullen,M.R.,AdvancedEngineeringMathematics, JonesandBartlett,2005. UniversityofGaziantep,FacultyofScienceandArts,DepartmentofMathematics, 27310Gaziantep,TURKEY E-mail address: [email protected] UniversityofGaziantep,FacultyofScienceandArts,DepartmentofMathematics, 27310Gaziantep,TURKEY E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.