ebook img

Process Systems Engineering: For a Smooth Energy Transition PDF

444 Pages·2022·24.171 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Process Systems Engineering: For a Smooth Energy Transition

EdwinZondervan(Ed.) ProcessSystemsEngineering Also of interest Product-DrivenProcessDesign FromMoleculetoEnterprise EdwinZondervan,CristhianAlmeida-Riveraand KyleVincentCamarda, ISBN----,e-ISBN---- ProcessIntensification BreakthroughinDesign,IndustrialInnovationPractices,andEducation JanHarmsenandMaartenVerkerk, ISBN----,e-ISBN---- ProcessEngineering AddressingtheGapbetweenStudyandChemicalIndustry MichaelKleiber, ISBN----,e-ISBN---- EngineeringCatalysis DmitryYu.Murzin, ISBN----,e-ISBN---- PhysicalSciencesReviews e-ISSN-X Process Systems Engineering For a Smooth Energy Transition Edited by Edwin Zondervan Editor Prof.dr.ir.EdwinZondervan UniversityofTwente FacultyofScienceandTechnology Laboratoryofprocesssystemsengineering DeHorst2 7522LWEnschede Netherlands [email protected] ISBN978-3-11-070498-3 e-ISBN(PDF)978-3-11-070520-1 e-ISBN(EPUB)978-3-11-070531-7 LibraryofCongressControlNumber:2022941912 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheinternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Coverimage:akindo/DigitalVisionVectors/gettyimages.de Typesetting:TNQTechnologiesPvt.Ltd. Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Foreword WhenIstartedworkingonthisbookproject,Iwasinthemiddleofacareermove.In 2020 I moved back to the Netherlands and continued my work on process systems engineering(PSE)fortheenergytransitionatTwenteUniversity.WithmyteamImade great progress and I believed it was very much worthwhile to combine all these different projects of our PSE laboratory into this book; to show the diversity, the connectionsandtheshearamountofworkthatwasdoneoverthelastyears. ThemainquestionofthePSElabofTwenteUniversityis;howdowebattleclimate change and the increasing global energy demand efficiently? The answer is: by applying processsystemsengineering methods.Todealwith climatechangeandto securesaveandcleanaccesstoenergyaholistic,systemsapproachisessential. Processsystemsengineeringconcernsthesystematicanalysisandoptimizationof decision-makingprocessesforthediscovery,design,manufactureanddistributionof products.Theprocesssystemsengineerhasamanydecision-makingtoolsathandthat helphimtoimproveprocessesandproducts.Andtheuseofsuchtoolsisnotlimitedto thechemical-orprocessindustry.OvertheyearsthePSEcommunitymovedintomany newareas,pharmaceuticals,biomass,food,waterandalsoenergy. The PSE lab of Twente university has been tackling three challenges that are associatedwithasuccessfulenergytransition.Thefirstchallengeisrelatedtocreating flexibility;inotherwordshowtodealwithuncertaintywhentodesignoroperatenew process/energy systems where inlet, outlet and hardware can vary in quality and performance? The second challenge deals with sustainability; when designing or operating process/energy systems; what is the best mode or trade-off when multiple oftenconflictingobjectivesneedtoberealized(forexample;economics,environment, society).Thelastchallengeisthecomplexityissue.Oftenmodelsthatareusedforde- cision-makingarecomplex;howcanwedealandsolvesuchmodelswhilestillyielding accurateinformation.Wefacethesechallengesatdifferentspatialandtemporallevels: fromindividualtechnology,viafactoryorplantuptothecompletesupplychain. AtPSElabwearedevelopingkindofa“Tom-TomNavigator”thatcanbeusedfor mappingthebestroutesfrom(energy)feedstocktoproductorservice.Wedothisby convertingtheproblemintonetworkmodels(oftensuperstructures),wethentranslate thesenetworksintomathematicalmodels(ordigitaltwins),wereducethecomplexityor improvethesolutionapproach,weincludeuncertaintyinthemodelsandthenassess multiple,conflictingobjectives.Allwiththeaimtoprovidethebestdecisionspossible. In Figure 1 the core topics of the PSE lab are highlighted: batteries, biomass, hydrogen and carbon dioxide. Especially at the interfaces the important interactions occur. For example the hydrogen economy could be very well connected to carbon mitigationbyproductionofsyntheticfuels,notasanendobjectivebutasatransition strategy. Combining battery knowledge and hydrogen production in turn will create https://doi.org/10.1515/9783110705201-201 VI Foreword Figure1: TopicmatrixofthePSElaboratoryofTwenteUniversity flexibilityinquick-shorttermandslow-long-termenergystoragefunctionality.Biobased productioncanbeconnectedtocarbonmitigation,asbiomassneedscarbondioxide;in otherwordsbiomass(suchasalgae)areanexcellentcarboncapturetechnique. Asstated,atthecrosspointsofthePSEmatrixtheimportantinteractionsoccur.In thisbookIpresent15topicsthatoperateattheseinterfaces. MohammedIsmaelwillshowhowhydrogencanbeproducedviawatersplitting overgraphitebasedmaterials.Mahmoud MostafaandChristopherVarelawillintro- duceanoptimizationmethodthatcanbeusedtocombinecarboncaptureandwater electrolysis for the production of chemicals. Timo Wassermann will show how to optimize the hydrogen supply from renewable electricity including cavern storage. PhilippKenkelwilldemonstratemulti-objectivedecisionmakingforsustainableprocess designandAnHuynhhasmadeanoverviewofhowprocessintensificationanddigital twinscanbeusedintheenergytransition.MaryamRaeisihighlightsthedevelopmentsin microalgaeasafeedstockforthebioeconomy.PolandJelihihasdevelopedadiagnostic tool that can be used to identify energy hotspots in industrial process systems. Tuan Nguyen, Anton Ochoa and Grazia Leonzio look at carbon dioxide supply chains in GermanyaswellasatEuropeanlevel.PaoloFracasshapesthefutureenergymarketvia hybridmulti-microgridsandJohannesRöderwilldiscussthepotentialofsectorcoupling fordistrictheatingsystemsviascenarioanalysiswhileMarielaTapiaisinvestigatinga resilienttransformationofpowersupplyinSouthAmerica. Foreword VII Wearelookingat15highlyimportantcontributionsthatcapturethemainresearch topicsoftheseresearchers.MostofthemactiveasPhDcandidate,recentlygraduated orclosetograduation.Thesechaptersreflectalmost50manyearsofworkinthefieldof processsystemsengineering. IamveryproudofthisachievementandIamconfidentthatyouwillappreciate readingaboutouractivitiesinthisexcitingbook:Processsystemsengineering–fora smoothenergytransition! Contents Foreword V Listofcontributingauthors XVII MohammedIsmael 1 Hydrogenproductionviawatersplittingovergraphiticcarbonnitride (g-C N )-basedphotocatalysis 1 3 4 1.1 Introduction 1 1.1.1 Background 1 1.1.2 TiO2ascommonphotocatalystsandotherphotocatalysts 2 1.1.3 Graphiticcarbonnitride(g-C3N4) 3 1.1.4 TheprincipleofH2productionviawatersplitting 5 1.2 Synthesisandmorphologytuningofg-C3N4-basedphotocatalysts 7 1.3 Characterizationofg-C3N4-basedphotocatalysts 13 1.4 Hydrogengenerationofg-C3N4-basedphotocatalysts 18 1.4.1 Metal-dopedg-C3N4 18 1.4.2 Nonmetal-dopedg-C3N4 20 1.4.3 Noble-metalloadingg-C3N4 22 1.4.4 Heterojunctionformationofg-C3N4-basedphotocatalysts 23 1.4.5 Largescaleproductionofhydrogenoverg-C N :simulationand 3 4 modeling 26 1.4.6 Scale-upanddesignofprocesses(theroleofprocesssystems engineering) 27 1.5 Conclusions 28 References 29 MahmoudMostafa,ChristopherVarelaandEdwinZondervan 2 Optimizationofelectrolysisandcarboncaptureprocessesforsustainable productionofchemicalsthroughPower-to-X 41 2.1 Introduction 41 2.2 Processmodellingandoptimization 42 2.2.1 Dynamiccarboncapture 42 2.2.2 Alkalinewaterelectrolysis 45 2.3 Resultsanddiscussion 49 2.3.1 Processintegrationwithrenewableenergies 49 2.3.2 Processintegrationwithelectrolysis 52 2.4 Conclusions 53 ListofAbbreviations 54 References 54 X Contents TimoWassermann,HenryMühlenbrock,PhilippKenkel,JorgThöming,and EdwinZondervan 3 Optimizationofhydrogensupplyfromrenewableelectricityincludingcavern storage 55 3.1 Introduction 56 3.2 Methodology 58 3.2.1 Problemstatement 59 3.2.2 Optimizationmodel 60 3.3 Casestudies 72 3.3.1 Windpower 73 3.3.2 Electricitygrid 75 3.3.3 Hydrogendemand 76 3.4 Simulationprocedure 76 3.5 Resultsanddiscussion 77 3.5.1 Optimalsystemconfigurationandschedule:presentH2demand 77 3.5.2 Optimalsystemconfigurationandschedule:PtMH2demand 80 3.5.3 Economicsandcarbonfootprint 82 3.5.4 Validationoflinearcavernmodel 85 3.6 Conclusionsandoutlook 86 Nomenclature 87 Indexofabbreviations 87 Optimizationmodel 87 Parametersandvariables 88 Appendix 89 References 92 PhilippKenkel,ChristianSchnuelle,TimoWassermannandEdwinZondervan 4 Integratingmulti-objectivesuperstructureoptimizationandmulti-criteria assessment:anovelmethodologyforsustainableprocessdesign 97 4.1 Introduction 98 4.2 Methodology 100 4.2.1 Superstructureformulation(step1) 100 4.2.2 Criteriadefinitionandimportanceweighting(steps2and3) 100 4.2.3 Singlecriterionoptimization(step4) 102 4.2.4 Normalization(step5) 103 4.2.5 Reformulationandmulti-objectiveoptimization(step6) 104 4.3 Casestudy 104 4.3.1 Generalassumptions 105 4.3.2 Power-to-Xprocess 107 4.3.3 Biomass-to-Xprocess 108 4.4 Resultsanddiscussion 109

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.