OXFORD Power Electronics Devices, Circuits and Industrial Applications V. R. MOORTHI Oxford University Press Copyright 2010 Oxford University Press ISBN 13: 978-0195670929 Table of Contents 1. Thyristor Physics 1 1.1 Introduction 1 1.2 Behaviour of Semiconductor Devices under Biased Conditions 3 1.2.1 Behaviour of a Thyristor under Biased Conditions 6 1.2.2 Gate Firing of the Thyristor 9 1.2.3 Two‐Transistor Analogy of the Thyristor 11 1.3 Methods for Triggering 12 1.3.1 Thermal Triggering 12 1.3.2 Triggering due to Light Radiation 12 1.3.3 Gate Triggering 12 1.3.4 Effect of Load Parameters on Current Rise 16 1.3.5 dv/dt Triggering 16 1.3.6 Reverse Characteristic 18 1.4 Gate Turn‐on Methods 19 1.4.1 DC Triggering 20 1.4.2 AC Triggering 21 1.4.3 Unijunction Transistor Trigger Pulse Generator 28 1.5 Thyristor Turn‐off 36 1.5.1 Current Reduction 38 1.5.2 AC Line Commutation 39 1.5.3 Forced Commutation Circuits 39 1.6 Ratings of a Thyristor 48 1.6.1 Voltage Ratings 48 1.6.2 Current Ratings 49 1.6.3 Average Forward Current (I or I ) 50 F (av) T 1.6.4 RMS Current Rating (I or I ) 54 TR RMS 1.6.5 Peak Repetitive Forward Current Rating (I ) 54 TRM 1.6.6 Surge Current Rating (I or I ) 55 TSM FM 1.6.7 I2 t Rating 55 1.6.8 Other Ratings 55 1.7 Protection of Thyristors 55 1.7.1 Protection against Voltage Surges 56 1.7.2 Protection against Direct Overcurrents 61 1.7.3 Protection against Alternating Overcurrents 63 1.7.4 Gate Protection Circuits 64 1.8 Other Members of the Thyristor Family 64 1.8.1 DIAC 65 1.8.2 TRIAC 66 1.8.3 Inverter Grade Thyristor 69 1.8.4 Gate Turn‐off Thyristor 69 1.8.5 Programmable Unijunction Transistor 73 1.8.6 Reverse Conducting Thyristor 76 1.8.7 Static Induction Thyristor 76 1.8.8 Light‐Activated SCR 76 1.8.9 MOS‐Controlled Thyristor 77 1.9 Other Power Electronic Devices 79 1.9.1 The Power Transistor 79 1.9.2 Power MOSFET 85 1.9.3 Insulated Gate Bipolar Transistor 89 1.10 Applications 90 Summary 91 Worked Examples 92 Exercises 106 2. Controlled Rectifiers 122 2.1 Introduction 122 2.2 Single‐Phase Rectifiers 124 2.2.1 Single‐Phase, Full‐Wave Circuit with Centre‐Tapped Secondary 125 2.2.2 Single‐Phase, Full‐Wave Bridge Rectifiers 127 2.3 Three‐Phase Rectifiers 134 2.3.1 Three‐Phase, Half‐Wave Controlled Rectifier 135 2.3.2 Three‐Phase, Full‐Wave Rectifiers 137 2.4 Voltage and Current Expressions for an n‐Phase Controlled Rectifier 145 2.4.1 n‐Phase Controlled Rectifier Feeding a Purely Resistive Load 145 2.4.2 n‐Phase Rectifier Feeding a Resistive Load in Series with a Battery of Voltage E 147 b 2.4.3 n‐Phase Rectifier Feeding an Inductive Load 150 2.4.4 n‐Phase Rectifier Feeding an Inductive Load in Series with a Battery of Voltage E 154 b 2.4.5 General Remarks Regarding n‐Phase Rectifiers 158 2.5 Inverting Mode of a Converter 159 2.5.1 Extinction Angle and its Significance 162 2.6 Ripple Factor 165 2.6.1 α ≤ sin‐1 (V /V ) ‐ (π/2 ‐ π/n) 165 α m 2.6.2 α> sin‐1 (V /V ) ‐ (π/2 ‐ π/n) 168 α m 2.7 Transformer Leakage Reactance and its Effects on Converter Performance 169 2.7.1 Effect of Leakage Reactance with α= 0 170 2.7.2 Effect of Leakage Reactance with α > 0 173 2.8 Rectifier Efficiency and Derating Factor of Rectifier Transformers 175 2.8.1 General Principles 176 2.8.2 Expressions for Rectifier Efficiency and Derating Factor 184 2.8.3 Summary of the Expressions for Rectifier Efficiency and Derating Factor 199 2.9 Input Power Factor 200 2.9.1 n‐Phase, Full‐Wave Fully Controlled Rectifier 201 2.9.2 Three‐Phase, Half‐Wave Controlled Rectifier 202 2.9.3 Three‐Phase, Half‐Wave Controlled Rectifier Fed by a Star/Zigzag Transformer 202 2.9.4 Six‐Phase, Half‐Wave Rectifier Fed by a Star/Interstar Transformer 204 2.9.5 Six‐Phase, Half‐Wave Rectifier Fed by a Delta/Interstar Transformer 205 2.10 Dual Converters 206 2.10.1 Non‐Simultaneous Control 206 2.10.2 Simultaneous Control 208 2.10.3 Circulating Current 208 2.11 Hoist Operation 211 2.12 Braking of DC Motors 214 2.12.1 Dynamic Braking 214 2.12.2 Plugging 215 2.12.3 Regenerative Braking 216 2.13 Power Factor Improvement 218 2.13.1 Extinction Angle Control 219 2.13.2 Symmetrical Pulse Width Modulation 222 2.13.3 Selective Harmonic Elimination Using PWM 224 2.13.4 Sinusoidal PWM 227 2.13.5 Sequence Control of Rectifiers 229 Summary 235 Worked Examples 236 Exercises 254 3. DC Choppers 277 3.1 Introduction 277 3.1.1 Principle of a DC Chopper 278 3.2 Step‐down and Step‐up Choppers 279 3.2.1 Step‐down Chopper 279 3.2.2 Analysis with DC Motor Load 284 3.2.3 Step‐up Chopper 286 3.3 Choppers Based on the Quadrants of Operation 289 3.3.1 Second‐Quadrant Chopper 290 3.3.2 Two‐Quadrant Chopper 293 3.3.3 Four‐Quadrant Chopper 300 3.4 Speed Control of a Chopper‐Controlled DC Series Motor 307 3.5 Commutation Circuits 309 3.5.1 Modified Parallel Resonant Turn‐off Circuit 309 3.5.2 Morgan Chopper 313 3.5.3 Jones Chopper 316 3.5.4 A Special Current‐Commutated Chopper 318 3.5.5 Load Commutated Chopper 321 3.5.6 Voltage Commutated Chopper 325 3.6 Applications 327 3.7 Advantages and Drawbacks of DC Choppers 328 Summary 328 Worked Examples 329 Exercises 340 4. AC Line Voltage Control 349 4.1 Introduction 349 4.2 Methods for AC Voltage Variation 351 4.2.1 AC Voltage Variation by a Smoothly Varying Transformer 352 4.2.2 On‐off Control 352 4.2.3 Time‐Ratio Control 352 4.2.4 Switching the Supply Once in a Half‐Cycle 352 4.2.5 Periodically Switching the Supply Several Times in a Half‐Cycle 354 4.3 Single‐Phase AC Choppers 354 4.3.1 A Single‐Phase Chopper with a Resistive Load 354 4.3.2 A Single‐Phase Chopper with an Inductive Load 357 4.4 Three‐Phase AC Choppers 360 4.4.1 Chopper Category A 360 4.4.2 Chopper Category B 364 4.4.3 Chopper Category C 370 4.4.4 Chopper Category D 376 4.4.5 A Comparative Study of Three‐Phase Choppers 379 4.5 Single‐Phase AC Choppers Used as Sequence Controllers 380 4.5.1 Single‐Phase Transformer Tap‐Changer 381 4.6 Application of AC Controllers to AC Drives 386 Summary 391 Worked Examples 391 Exercises 406 5. Inverters 414 5.1 Introduction 414 5.2 Classification of Inverters 415 5.3 Single‐Phase, Parallel Capacitor Inverter 416 5.3.1 Analysis 420 5.3.2 Design of Commutating Elements 421 5.4 Voltage Source Inverters 425 5.4.1 Three‐Phase Bridge or Six‐Step Inverter 428 5.4.2 Single‐Phase McMurray Bridge Inverter 432 5.4.3 Three‐Phase McMurray Bridge Inverter 438 5.4.4 Single‐Phase McMurray‐Bedford Inverter 438 5.4.5 Analysis of the Single‐Phase McMurray‐Bedford Inverter 450 5.4.6 Three‐Phase McMurray‐Bedford Inverter 456 5.4.7 Three‐Phase 120°‐Mode VSI 457 5.4.8 Three‐Phase Input Circuit Commutated Inverter 458 5.5 Pulse Width Modulated VSIs 464 5.5.1 Single Pulse Width Modulated Inverters 464 5.5.2 Multiple Pulse Width Modulated Inverters 467 5.5.3 Sinusoidal PWM (SPWM) 469 5.5.4 Features of Output with PWM 470 5.5.5 Harmonics in Three‐Phase PWM Inverters 471 5.5.6 Advantages and Disadvantages of PWM Inverters 473 5.5.7 Constant Voltage‐to‐Frequency Operation of PWM Inverters 474 5.5.8 Reduction of Harmonics by the PWM Technique 474 5.6 Some Important Aspects of VSIs 476 5.6.1 Voltage Control of VSIs 476 5.6.2 Braking of VSI‐Based Drives 478 5.7 Current Source Inverters 480 5.7.1 Single‐Phase Current Source Inverter 481 5.7.2 Three‐Phase Bridge Type of Current Source Inverter 483 5.7.3 Regenerative Braking of CSI Drives 488 5.8 The Load Commutated Inverter 490 5.8.1 Line Commutated Converter 490 5.8.2 Bridge Inverter 490 5.8.3 Other Features of the LCI 495 5.8.4 Merits and Demerits of LCI 495 5.8.5 Applications of LCI 496 Summary 496 Worked Examples 497 Exercises 507 6. Cycloconverters 516 6.1 Introduction 516 6.2 Principle of the Cycloconverter 519 6.3 Non‐Simultaneous Control 520 6.4 Simultaneous Control 524 6.4.1 Inverse Cosine Firing 526 6.4.2 Firing Scheme for a Three‐Phase Dual Converter 528 6.4.3 Firing Scheme for a Single‐Phase, Line Commutated Cycloconverter 529 6.4.4 Four‐Quadrant Operation under Reactive Load Conditions 532 6.4.5 Circulating Currents in a Simultaneously Controlled Single‐Phase Cycloconverter 533 6.5 Circuit Analysis 535 6.5.1 Output Voltage 535 6.5.2 Input Displacement Factor 536 6.5.3 Fundamental RMS Current 537 6.5.4 Transformer Rating 539 6.5.5 Current Ratings 539 6.5.6 Peak Reverse‐ and Forward Blocking Voltage Ratings 540 6.6 Three‐Phase Cycloconverters 542 6.7 Frequency and Voltage Control 544 6.8 Load Commutated and Forced‐Commutated Cycloconverters 546 6.9 Cycloconverter versus Six‐Step VSI 547 Summary 548 Worked Examples 549 Exercises 558 7. DC Drives 565 7.1 Introduction 565 7.2 Steady‐State Relationships of a Separately Excited DC Motor 566 7.3 Speed Control of a Separately Excited DC Motor 568 7.3.1 Armature Control Method 568 7.3.2 Field Control Method 570 7.3.3 Combined Armature and Field Control Method 571 7.4 Single‐Phase Converter Drives 572 7.5 Three‐Phase Converter Drives 574 7.5.1 Discontinuous Conduction 574 7.5.2 Continuous Conduction 576 7.6 Dynamic Behaviour of a Separately Excited DC Motor Fed by Rectifiers 577 7.6.1 Speed Control Using Armature Voltage Variation 577 7.6.2 Speed Control Loop Incorporating Field Voltage Variation 580 7.6.3 Closed‐Loop Current Control 581 7.6.4 Armature Control with an Inner Current Loop 582 7.6.5 A Comprehensive Control Scheme for Wide‐Range Speed Control 583 7.6.6 Closed‐Loop Drive with Four‐Quadrant Operation 584 7.6.7 Speed Control of a Rectifier Controlled DC Series Motor 587 7.7 Chopper‐Based DC Drives 589 7.7.1 Analysis of a Chopper‐Based Drive 590 7.7.2 Regenerative Braking of a Separately Excited DC Motor 591 7.7.3 Regenerative Braking of a DC Series Motor 595 Summary 597 Worked Examples 597 Exercises 618 8. AC Drives 627 8.1 Introduction 627 8.2 Induction Motor Drives 628 8.2.1 Equivalent Circuit and Analytical Relationships 629 8.2.2 Circuit Analysis 631 8.2.3 Speed‐Torque Curves 632 8.2.4 Methods for Speed Control 635 8.2.5 Control Schemes for Speed Control of Induction Motors 648 8.3 Rotor‐Related Control Systems for a Wound Rotor Induction Motor 652 8.3.1 Rotor Resistance Control 653 8.3.2 Slip Energy Recovery Scheme 659 8.4 Synchronous Motors 669 8.4.1 Cylindrical Rotor Machine 669 8.4.2 Salient Pole Machine 674 8.4.3 Speed and Torque Control 676 8.4.4 Open‐ and Closed‐Loop Control Schemes 677 8.4.5 Applications of Synchronous Motor Drives 681 Summary 682 Worked Examples 683 Exercises 717 9. Brushless DC Motors 731 9.1 Introduction 731 9.2 Sinusoidal and Trapezoidal Brushless DC Motors 732 9.3 Electronic Commutator 733 9.3.1 Optical Sensors 738 9.4 Torque Production 738 9.4.1 The Sinusoidal‐Type Two‐Phase, Brushless DC Motor 739 9.4.2 Three‐Phase, Half‐Wave, Brushless DC Motor 740 9.4.3 Three‐Phase, Full‐Wave, Brushless DC Motor 742 9.5 Control of Brushless DC Drives 744 9.5.1 A Typical Brushless DC Drive 745 9.6 Other Current Controllers 748 9.6.1 Ramp Comparison Current Control 748 9.6.2 Delta Current Control 748 9.6.3 Space Vector Current Control 749 9.7 Recent Trends 750 9.7.1 Materials Used for the Permanent Magnet 751 9.7.2 Alternative Methods for Rotor Position Sensing 751 9.7.3 Estimation of Winding Currents 751 9.8 Brushless DC Motors Compared with other Motors 751 9.8.1 Brushless DC Motor versus Brush DC Motor 751 9.8.2 Brushless DC Motor versus Induction Motor 752 9.8.3 Brushless DC Motor versus Brushless Synchronous Motor 753 Summary 753 Exercises 754 10. Control Circuits for Electronic Equipment 757 10.1 Introduction 757 10.2 Pulse Transformers 758 10.3 Opto‐Isolators 763 10.4 A Typical Scheme for Gate Firing 766 10.4.1 Firing Pulse Requirements for Inductive Loads 766 10.5 Zero Crossing Detection 770 10.5.1 Zero Voltage Detection 771 10.5.2 Zero Current Detection 774 10.6 Gate Firing Schemes for a Three‐Phase Bridge Converter 775 10.6.1 Ramp‐Comparator Method 775 10.6.2 Digital Firing Scheme 777 10.7 Gate Drive Circuits 779 10.7.1 Pulse Amplifier Circuit for Thyristors 779 10.7.2 Drive Circuit for Power Transistors 780 10.7.3 Drive Circuit for GTOs 782 10.7.4 Drive Circuit for MOSFETs 784 10.8 Transformer‐Isolated Circuits for Driving MOSFETs and IGBTs 785 10.8.1 Multipurpose Use of the Isolating Transformer 785 10.8.2 A Circuit with Smooth Duty Ratio Transition 787 Summary 787 Exercises 788
Description: