& GrahamR.Fulton WalterE.Boles 304 Bull B.O.C. 2002 122(4) Pneumaticity ofthe dorsal foramen and dorsal sulcus ofthe sternum in Australasian Passeriformes & by Graham R. Fulton Walter E. Boles Received 18September2001 ThePasseriformescomprisealmost60% ofthe9,000-10,000recentspeciesofbirds (Bock & Farrand 1980, Sibley & Monroe 1990). Songbirds are more widely distributedthananyotheravianorderbutaspectsoftheirintra-ordinalclassification remain unsettled. Avian systematics have been revitalized in recent years with the increased use ofmolecular and biochemical techniques (e.g. Christidis & Schodde & 1991, Sibley Ahlquist 1985, 1990). In particular, the classification of the & Passeriformeshasundergonesubstantialreorganization(e.g. Sibley Ahlquist 1985, 1990, Helm-Bychowski & Cracraft 1993; Barker et al. 2002; Ericson etal. 2002). Members of the Passeriformes share a strikingly similar osteological morphology and the identification of subordinal taxa is purportedly extremely difficult, if not impossible, because of this similarity (Olson 1985). Few characters of the post- cranialskeletonhavebeenstudiedinanydepth;thebestknownisthepneumotricipital fossaofthe humerus (Bock 1962). Here, an osteologicalcharacterofthe sternum is surveyed and the distribution ofits character states examined in light ofproposed relationships within theAustralasian Passeriformes. Methods Thisstudyfocusesonthedorsalpneumaticforamenanddorsalsulcusofthesternum (termedbyBaumel&Witmer(1993)asforamenpneumaticumandsulcusmedianus sterni, respectively). The sulcus runs anteroposteriorly (craniocaudally) along the midline ofthe dorsal (visceral) surface ofthe sternum. The pneumatic foramen lies at the anterior (cranial) end ofthe sulcus. It may be absent (Fig. la). When present, there may be considerable variation in its appearance, from a single and distinct foramen(Fig. lb)toagroupofforaminavaryinginsize(Fig. lc-e). Smallerforamina mayoccuraroundthedorsalforamenareaorextendposteriorlyfromthemaindorsal foramenareaalongthedorsalsulcus,approachingtheposteriormarginofthesternum (Fig. ld-e). These are all scored as 'present'. For the purposes of the following discussion, taxonomic divisions of the Passeriformes above the family level, and their sequence, follow Sibley & Monroe (1990). The sequence and delimitation ofAustralian families are afterChristidis & Boles (1994), as are the names of genera and species. For New Guinea and New Zealandtaxa, namesfollowBeehler&Finch(1985)andOSNZ(1990),respectively. Sterna were examined from the avian skeleton collections of the Australian Museum, Sydney; Australian National Wildlife Collection, CSIRO Division of & GrahamR.Fulton WalterE.Boles 305 Bull. B.O.C. 2002 122(4) SustainableEcosystems, Canberra; MuseumVictoria, Melbourne; SouthAustralian Museum, Adelaide; Queensland Museum, Brisbane; Queen Victoria Museum, Launceston; and Museum of New Zealand Te Papa Tongarewa, Wellington. For mostspecies, 1-3 specimenswereexamined. GreaternumbersofAustralasianrobins (Petroicidae) wereavailablebecausetheyhadbeenborrowedforanotherproject. In total,795 specimensof268speciesofPasseriformeswereexamined. Representatives ofthe Piciformes and Coraciiformes were also examined as possible outgroups to determine which character state might be ancestral. Results Thetaxa, numberofspecimens examinedandobservedcharacterstatesaregivenin Table 1. InrepresentativesofthreefamiliesofthePiciformes, therewas aparticular form of the present character state with no distinct pneumatic dorsal foramen; however, small foramina occurred along the caudal halfofthe dorsal sulcus. This was scored as present. In five families ofthe Coraciiformes, the pneumatic dorsal foramen and foraminawere presentin all but a single cerylidkingfisherand one of four alcedinid kingfishers. Only three families of suboscines (Suborder Tyranni) were examined, the AustralianPittidae, NewZealandAcanthisittidae andnon-AustralasianTyrannidae, representing the three infraorders recognised by Sibley & Monroe (1990). Other than one individual ofPitta, all specimens ofPittidae and Tyrannidae were scored as 'present'; foramina were absent in three specimens ofAcanthisittidae. In the Suborder Passeri (oscines), in most superfamilies one or both character states canbefound, althoughthese showpronounced segregationbetweenfamilies. Figure 1: Character states of the dorsal pneumatic foramen and dorsal sulcus of the sternum of Passeriformes.A.Dorsalforamenandaccompanyingforaminaabsent(Passeridae:Passerdomesticus). B-E. Dorsal foramen present, showing extreme and intermediate states of accompanying foramina surrounding the foramen andextending caudally along thedorsal sulcus: B. Pittidae: Pitta versicolor: C. Menuridae: Menura novaehollandiae; D. Meliphagidae: Phylidonyris nigra; E. Pachycephalidae: Pachycephalasimplex, df=dorsal foramen,ds=dorsal sulcus. & GrahamR.Fulton WalterE.Boles 306 Bull. B.O.C. 2002 122(4) Within the ParvorderCorvida, the Superfamily Menuroideahas the present state in all specimensofthelyrebirds (Menuridae) andbowerbirds (Ptilonorhynchidae),but the absent state in all treecreepers (Climacteridae). A similar disparity is found in the Meliphagoidea. The fairy-wrens (Maluridae) and pardalotes and acanthizid warblers (Pardalotidae) invariably lack any dorsal foramina whereas, other than a fewindividuals,allhoneyeatersandchats(Meliphagidae)havethepresentcharacter state. The greatest amount of variation within any Superfamily occurred in the Corvoidea. The presence of a pneumatic dorsal foramen and in some cases a pneumatic dorsal sulcus is most consistently seen in this Superfamily (there were odd individuals lacking this state). This pneumaticity is absent in the logrunners (Orthonychidae), Australo-Papuan babblers (Pomatostomidae) and sittellas (Neosittidae). There were differences between genera in the whipbirds and quail- thrushes (Eupetidae = Cinclosomatidae), whistlers and shrike-thrushes (Pachycephalidae), mudnest builders (Corcoracidae) and New Zealand wattlebirds (Callaeatidae). There was considerable variation both within and between species oftheAustralasian robins (Petroicidae) and cuckoo-shrikes (Campephagidae). Variation was minor within the Parvorder Passerida. In the three superfamilies Muscicapoidea, Sylvioidea and Fringilloidea, a sternal foramen was absent, with few exceptions, most of which (6 of 10) were restricted to just three families (Alaudidae, Pycnonotidae, Passeridae). Discussion BoththeCoraciiformesandPiciformeshavesternawithpneumaticforamina.While theCoraciiformesexhibitthegeneralcorvoidcondition,theconditionofthischaracter in the Piciformes differs from thatofany ofthe Passeriformes by lacking adistinct anterior dorsal foramen orforamina. Recent molecular studies have cast doubts on & the traditional association of these orders with the Passeriformes (e.g. Sibley Ahlquist 1990,Mindelletal. 1997). Itisnotcurrentlypossibletoassessthepolarity ofthecharacterstates. Becauseitisnotknownwhichstateis derived, thischaracter cannot be used for decisions about relationships at this time. Nonetheless, some comments can be made about the distribution ofthese states in light offindings of other authors. ThepositionoftheAcanthisittidaerelativetotheremainderofthePasseriformes is not settled. Although placed within the Tyranni by Sibley & Monroe (1990), the markedsegregationofcharacterstatesbetweenthisfamily andtheotherinfraorders ofsuboscines is consistent with the more trenchant differences found by Ericson et al. (2002), who placed this family as the sister-group to all other Passeriformes. As with the pneumotricipital fossa, members of suborders, parvorders, superfamiliesandfamiliesaregenerallycharacterizedbyaparticularstate,butthere areexceptions.Thepresenceofthesternalpneumaticfossaisthelargelypredominant stateintwoinfraordersofthesuboscinesandthesubfamiliesCorvinaeandDicrurinae & GrahamR.Fulton WalterE.Boles 307 Bull. B.O.C. 2002 122(4) TABLE 1 Distributionofcharacterstates(absentorpresent)ofdorsalpneumaticforaminainAustralasian Passeriformestogetherwith selectedPiciformesandCoraciiformes. Sequenceandnomenclatureof familiesgenerallyfollowsChristidis&Boles (1994), withhighertaxonomicdivisionsfollowing Sibley&Monroe(1990); generaandspeciesarearrangedalphabetically withinfamiliesor subfamilies.Thefiguresfollowingeach species' nameindicatethe numberofspecimensthat exhibitedeachcharacterstateforeachtaxon(absent/present). OrderPiciformes(0/13) Picidae(0/11): Colaptesauratus(0/8);Dendrocoposmajor(0/1);Melanerpes erythrocephalus(0/1);Picusviridis(0/1) Lybiidae(0/1): Tricholaemadiademata(0/1) Ramphastidae(0/1):Ramphastostoco(0/1) OrderCoraciiformes(2/33) Coraciidae(0/4): Euystomusorientalis(0/4) Alcedinidae(1/6):Alcedoatthis(0/2);A.azurea (1/4) Halcyonidae(0/21):Daceloleachii(0/1);D.novaeguineae(0/7); Tanysipterasylvia (0/1); Todirhamphusmacleayii(0/4); T.sanctus(0/6);Symatorotoro(0/1);S.megarhyncha(0/1) Cerylidae(1/0):Megacerylealcyon(1/0) Meropidae(0/2):Meropsornatus(0/2) OrderPasseriformes(336/474) SuborderTyranni(4/11) InfraorderAcanthisittides(3/0) Acanthisittidae(0/3):Acanthisittachloris(1/0);X.gilvivenris(1/0);Xenicuslongipes(1/0) InfraorderEurylaimides(1/7) Pittidae(1/7): Pittaerythrogaster(1/0);P.versicolor(0/7) InfraorderTyrannides(0/4) Tyrannidae(0/4): Contopussordidulus(0/1);Empidonaxdifficilis(0/1); Tyrannustyrannus (0/1), T. verticalis(0/1) SuborderPasseres(332/463) ParvorderCorvida(219/453) SuperfamilyMenuroidea(13/5) Menuridae(0/5):Menuraalberti(0/1);M.novaehollandiae(0/4) Climacteridae(13/0): Climacteriserythrops(1/0); C.melanura (1/0); C.picumnus(6/0); Cormobatesleucophaeus(4/0); C.placens(1/0) SuperfamilyMeliphagoidea(102/126) Maluridae(21/0):Amytornisdorotheae(3/0);A. woodwardi(2/0);Maluruscyaneus(7/0); M. cyanocephala(1/0);M. lamberti(6/0);Stipiturusmalachurus(2/0) Pardalotidae: Pardalotinae(7/0): Pardalotuspunctatus(1/0);P.striatus(6/0); Pardalotidae: Dasyornithinae(3/0):Dasyornisbrachypterus(3/0) Pardalotidae:Acanthizinae(66/0):Acanthizaapicalis(2/0);A. chrysorrhoa(2/0);A. lineata (6/0);A.nana (2/0);A.pusilla (6/0);A. reguloides(1/0);A. uropygialis(5/0); Aphelocephalaleucopsis(2/0); Chthonicolasagittata(5/0); Crateroscelis robusta (1/0); Gerygonechloronotus(1/0);G.fusca(4/0); G.levigaster(1/0);G.magnirostris(1/0);G G mouki(2/0); G. olivacea(2/0); palpebrosa(1/0);Hylacolacauta(1/0);H.pyrrhopygia (2/0); Origmasolitaria(2/0);Pycnoptilusfloccosus(1/0);Pyrrholaemusbrunneus(1/0); Sericorniscitreogularis(3/0);S.frontalis(5/0);5. magnirostris(6/0);Smicrornis brevirostris(1/0) & Graham R.Fulton WalterE.Boles 308 Bull. B.O.C. 2002 122(4) Meliphagidae: Meliphaginae(5/122):Acanthagenysrufogularis(0/4);Acanthorhynchus tenuirostris(1/4);Anthochaeracarunculata (0/4);A.chrysoptera(0/2);A. c. lunulata(0/1); Anthomismelanura (1/1); Certhionyxniger(0/1); C.pectoralis(0/2); C. variegatus(0/1); Conopophilaalbogularis(0/1); C. rufogularis(0/1); C. whitei(0/1);Entomyzoncyanotis (0/3); Grantiellapicta(0/1);Lichenostomuschrysops(1/3);L. cratitius(0/2);L.frenatus (0/2);Eflavescens(0/3);L.hindwoodi(1/2);L.keartlandi(0/2);L. tewco/is (0/2);L. ornatus(0/2);L.penicillatus(0/10);L.plumulus(0/1);L. unicolor(0/1);L. virescens(0/1); Lichmeraindistincta(0/2);Manorinaflavigula(0/1);M.melanocephala(0/6);M. melanophrys(0/3);Melidectestorquatus(0/1);Melilestesmegarhyncha (0/1);Meliphaga gracilis(0/1);M. lewinii(0/2);M.notata(0/2);Melipotesfumigatus(0/1);Melithreptus brevirostris(0/2);M. gularislaetior(0/1);M. lunatus(0/2);Myzomelaerythroeephala(0/ 1);M. obscura(0/3);M. sanguinolenta (0/2);Notiomystiscincta(1/0); Oedistoma iliolophus(0/1);Philemonargenticeps(0/1);P.buceroides(0/3);P.citreogularis(0/3);P. corniculatus(0/4);P.diemenensis(0/1);Phylidonyrisalbifrons(0/1);P.melanops(0/1);P. n/gra(0/1);P.novaehollandies(0/2);Plectorhynchalanceolata(0/1);Prosthemadera novaeseelandiae(0/2);Ptiliproraguisei(0/1);Ramsayornisfasciatus(0/1);P.modestus(0/ 1); Trichoderecockerelli(0/1);Xanthomyzaphrygia(0/7);Xanthotisflaviventer(0/1) Meliphagidae: Epthianurinae(0/4):Ashbyialovensis(0/2);Epthianuraalbifrons(0/1);P. tricolor(Oil); Superfamily Corvoidea(104/322) Petroicidae(65/131):Amalocichlaincerta(2/0);Drymodesbrunneopygia(1/17);D. superciliaris(0/1);Eopsaltriaaustralis(10/12);P. georgiana(0/5);P. griseogularis(1/3); P.pulverulenta(0/2);Heteromyiasalbispecularis(1/1);//. cinereifrons(0/1);Melanodryas cucullata(1/13);M. vi'ffafa (1/2);Microecafascinans(1/8);M.flavigaster(0/4);M. flavovirescens(0/3);M.papuana (0/3);Monachellamuelleriana (0/1);Pachycephalopsis polisoma(0/3);Peneothellocyanus(0/5);P.sigillatus(0/1);Petroicaaustralis(0/5);P. goodenovii(4/17);P.macrocephala(0/2);P.multicolor(11/4);P.phoenicea(14/1);P. rodinogaster(2/1);P. rosea(9/1);Poecilodryasalbonotata(0/3);P.placens(0/1);P. superciliosa(0/3);P.5. cerviniventris(0/2); Tregellasialeucops(3/3); P.capito(4/3) Orthonychidae(5/0): Orthonyxspaldingii(1/0); O. temminckii(4/0) Pomatostomidae(8/0):Pomatostomushalli(1/0);P. ruficeps(2/0);P.superciliosus(2/0);P. temporalis(3/0); Eupetidae(2/2): Cinclosomapunctatum(0/2);Psophodescristatus(1/0);P.olivaceus(1/0) Neosittidae(5/0): Daphoenosittachrysoptera (5/0) Pachycephalidae(4/33): Colluricinclaharmonica(1/5); C. megarhyncha (0/3); C. woodwardi(0/3); Falcunculusfrontatus(0/2);Mohouaalbicilla (1/0),M. novaeseelandiae (1/0),M.ochrocephala(1/0);Pachycephalainornata(0/1);P.lanioides(0/1);P.olivacea (0/3);P.pectoralis(0/7);P.rufiventris(0/4);P.simplex(0/2);Pitohuinigrescens(0/1); Rhagologusleucostigma (0/1) incertaecedis(0/3): Turnagracapensis(0/3) Dicruridae: Monarchinae(1/20):Arsestelescophthalmus(0/1); Clytorhynchus pachycephaloides(0/1);Machaerirhynchusflaviventer(1/0);Monarchaleucotis(0/1);M. melanopsis(0/4);M. trivirgatus(0/4);Myiagraalecto(0/3);M. cyanoleuca(0/1);M. inquieta(0/2);M. /. «ana(0/2);M. rubecula(0/1) Dicruridae: Rhipidurinae(0/33): Rhipidurafuliginosa (0/10);Rhipiduraleucophrys(0/10); P. rufifrons(0/10);P. r.tfryas(0/2);P. rufiventris(0/1) Dicruridae: Grallininae(0/6): Grallinabruijni(0/1); G. cyanoleuca(0/5) Dicruridae: Dicrurinae(0/2): Dicrurusbracteatus(0/2) & GrahamR.Fulton WalterE.Boles 309 Bull. B.O.C. 2002 122(4) Campephagidae(4/7): Coracinalineata(1/0); C.novaehollandiae(3/0); C.papuensis(0/ 2); C. tenuirostris(0/1);Lalageleucomela(0/2);L. sueurii(0/2) Oriolidae(0/11): Oriolussagittatus(0/3); O.flavocinctus(0/2);Sphecotheres viridis(0/6) Artamidae:Artaminae(0/14):Artamuscyanopterus(0/3);A. leucorhynchus(0/2);A.minor (0/2);A.personatus(0/3);A.superciliosus(0/4) Artamidae: Cracticinae(0/14): Cracticusnigrogularis(0/2); C. torquatus(0/2); Gymnorhinatibicen (0/2);Streperagraculina (0/8) Artamidae: Peltopsinae(0/1): Peltopsmontanus(0/1) Paradisaeidae(2/7): Cicinnurus regius(0/1);Epimachusmeyeri(0/1);Lophorhinasuperba (0/1);Manucodia comrii(2/0);M.keraudrenii(0/1);Parotialawesi(0/1);Ptiloris magnificus(0/1);P. victoriae(0/1) Corvidae(0/9): Corvwsbennetti(0/5); C. coronoides(0/2); C.mg//on (0/1); C.om*(0/1) Corcoracidae(2/6): Corcoraxmelanorhamphos(2/0); Struthideacinerea (0/6) Ptilonorhynchidae(0/22):Ailuroeduscrassirostris(0/3);A.melanotis(0/1);Amblyornis C subalaris(0/1); Chlamyderacerviniventris(0/1); C.maculata (0/3); nuchalis(0/1); Prionoduranewtoniana (0/1);Ptilonorhynchusviolaceus(0/4);Scenopoeetesdentirostris (0/1);Sericuluschrysocephalus(0/6) Callaeatidae(6/1): Callaeascinerea (4/0);Philesturnuscarunculatus(2/0);Heterolocha acutirostris(0/1) ParvorderPasserida(113/10) SuperfamilyFringilloidea(55/6) Alaudidae(0/3):Alaudaarvensis(0/2);Mirafrajavanica(0/1) Motacillidae(2/1):Anthusnovaeseelandiae(0/1);Motacillaalba(2/0) Passeridae: Passerinae(4/0): Passerdomesticus(4/0) Passeridae: Estrildinae(28/1):Emblemapictum (1/0);Erythruragouldiae(1/0);£". trichroa (2/0);Heteromuniapectoralis(1/0);Lonchuracastaneothorax(0/1);L. oryzivora(1/0); Neochmiaphaeton (1/0);/V. ruficauda (3/0);AT. temporalis (2/0);Poephilaacuticauda(3/ 0);P.cmcta(3/0);P.personata(2/0);Stagonopleurabella(2/0);5.gwftata(2/0); Taeniopygiabichenovii(2/0); 7\guttata(2/0) Fringillidae(6/1): Cardueliscarduelis(3/0); C. frwfw(3/0);Fringillacoelebs(0/1) Emberizinae(2/0): Emberizacalandra(1/0);£. citrinella(1/0) Nectarinidae(1/0):Nectariniajugularis(1/0) Dicaeidae(4/0):Dicaeumhirundinaceum(1/0);Melanocharisniger(1/0); Oreocharisarfaki (1/0);Rhamphomantiscrassirostris(1/0) SuperfamilySylvioidea(33/2) Hirundinidae(11/0):Hirundoariel(4/0);//. neoxena(6/0);//. nigricans (1/0) Pycnonotidae(0/2):Pycnonotusjocosus (0/2) C Sylviidae(13/0):Acrocephalusstentoreus(1/0); Cincloramphuscruralis(2/0); mathewsi (3/0); Cisticolaexilis(2/0);Eremiorniscarteri(2/0);Megalurusgramineus(1/0);M. (Bowdleria)punctata (1/0);M. timoriensis(2/0) Zosteropidae(9/0):Zosteropslateralis(6/0);Z. /wte«s(2/0);Z.strenuus (1/0) SuperfamilyMuscicapoidea(25/2) Muscicapidae(13/0): Turdusmerula (2/0); T.philomelos(2/0); 7\poliocephalus(3/0); Zoothera lunulata (6/0); Sturnidae(12/2):Acridotherestristis(2/0);Aploniscantaroides(1/0);A.fusca(4/0);A. metallica(0/2); Sturnusvulgaris(5/0) & GrahamR.Fulton WalterE.Boles 31 Bull. B.O.C. 2002 122(4) ofthe Corvidae sensu Sibley & Ahlquist (1990) and Sibley & Monroe (1990). In this, it parallels the distribution ofa single pneumotricipital fossa in these groups. ThiscontrastswiththePasserida,inwhichthepredominantstatesaretheabsenceof a sternal pneumatic fossa and the presence ofa double pneumotricipital fossa. ThissegregationofcharacterstatesbetweentheCorvidaandPasseridaismarked, but not absolute, and there are some intriguing discrepancies, particularly in the former group. In the Menuroidea, the treecreepers are conspicuous by lacking the sternalfossa.Theplacementofthesebirdsinthissuperfamilyhasbeenproblematic, and Sibley &Ahlquist(1990), whoproposedit, nonethelessexpresseddoubts about this action. Within the Meliphagoidea, there is a distinct division between the Pardalotidae (including the Acanthizinae) and Maluridae on one hand, and the Meliphagidae on the other. The presence of pneumatic foramina in the chats (Epthianura, Ashbyia) supports their association with the honeyeaters rather than the acanthizid warblers (Christidis etal. 1993). There is no obvious pattern in the distribution of character states within the Corvoidea, other than the apparent correlation between this character and the pneumotricipital fossa, mentioned above. The placement of the Mohoua in the & Pachycephalidae (Keast 1977, Sibley Ahlquist 1987) hasbeenchallenged(Olson 1990a). The absence of sternal pneumatisation in the three species of Mohoua contrastswiththepresencestateinallbutoneoftheotherpachycephalidspecimens examined.ThetaxonomicplacementofTurnagraremainsunresolved(e.g.Christidis etal. 1996). Becausethisgenus shares thepresenceofpneumatic foraminawiththe families with which it has been associated (Ptilonorhynchidae/Paradisaeidae, e.g. Olson et al. 1983, Christidis et al. 1996, Pachycephalidae, e.g. Mayr 1967), this character adds no support foreither alternative. ThePasseridaexhibitagreateruniformitythantheCorvoidea,withthecharacter state 'absent' being found in all but a few of the sampled taxa. These species are unequivocally placed in the Passeridaby molecular studies. Thebulbuls also differ from the 'normal' condition of the Passerida by having a single pneumotricipital fossa (Olson 1990b). (It is notable that the waxwings, Bombycillidae, whose placement in the Passerida has never been questioned, also have a single pneumotricipitalfossa(Bock 1962)andprominentpneumaticforamenofthesternum (pers. obs.)). It is possible that, because most of the sample sizes are small, these may not accuratelyreflecttheamountofvariationwithinaspecies.Intherobins(Petroicidae), forwhich sample sizes wereconsiderably larger, theoccurrenceinaspeciesofboth character states was more widespread. This could be a property of this family, however, as they also have a range of intermediate states in the pneumotricipital fossa (pers. obs.). Therangeofvariationencompassedbythe state 'present' isquitebroad(Fig lb- e), and it is likely that it will be possible to subdivide it into two or more states. Although the expression of this character may be related to age, no obvious relationship was discerned between the maturity ofthebird (as indicated by degree 1 & GrahamR.Fulton WalterE.Boles 31 Bull. B.O.C. 2002 122(4) ofcranial pneumatisation) and the character state. In specimens ofEastern Yellow RobinEopsaltriaaustralis,thecharacterstateswereaboutevenlydistributedbetween birds with unpneumatised and fully pneumatised skulls. This character invites further study. At present, it must be consideredjust one characterthatcanbeusedinconcertwithothers,butisbyitselfan insufficientbasis on which to make taxonomic decisions. It may be usefully re-evaluated in light of morerecent modifications ofpasserine phylogeny (e.g. Barker etah 2002; Ericson etal. 2002). Acknowledgements WethanktheornithologystaffoftheAustralianNationalWildlifeCollection,MuseumVictoria, South Australian Museum, Queensland Museum, and Queen Victoria Museum for the loan of specimens examinedinthisstudy. References: Barker, F.K., Barrowclough, G.F. & Groth, J.G. 2002. Aphylogenetic hypothesis for passerine birds: taxonomic andbiogeographic implicationsofananalysisofnuclearDNAsequencedata.Proc. R. Soc. LondonB269: 295-308. Baumel,J.J.&Witmer,L.M. 1993.Osteologia.In: Baumel,J.J.,King,A.S.,Breazile,J.E.,Evans,H.E. &VandenBerge,C. (Eds.)Handbookofaviananatomy. Publ. NuttallOrnith. CI. 23: 45-132. Beehler, B.M. & Finch, B.W. 1985. Species-checklist ofthe birds ofNew Guinea. Australasian OrnithologicalMonograph 1. RoyalAustralasianOrnithologistsUnion,Melbourne. Bock,W.J. 1962.Thepneumaticfossaofthehumerus inthePasseres.Auk79: 425-443. Bock,W.J. &Farrand,J.,Jr. 1980.Thenumberofspeciesandgeneraofrecentbirds: acontributionto comparativesystematics.Amer.Mus.Nov.2703: 1-29. Christidis,L.&Boles,W.E. 1994.TaxonomyandspeciesofbirdsofAustraliaanditsterritories.RAOU Monograph2. RoyalAustralasianOrnithologistsUnion,Melbourne. Christidis, L., Leeton, P.R. &Westerman, M. 1996. Werebowerbirds partofthe New Zealand fauna? Proc.Nat.Acad. Sci. USA 93: 3898-3901. Christidis,L.&Schodde,R. 1991.RelationshipsofAustralo-Papuansongbirds-proteinevidence.Ibis 133: 277-285. Christidis,L.,Schodde,R.&Robinson,N.A. 1993.AffinitiesoftheaberrantAustralo-Papuanhoneyeaters, Toxorhamphus, Oedistoma, Timeliopsis and Epthianura: protein evidence.Aust. J. Zool. 41: 423- 432. Ericson, P.G.P., Christidis, L., Cooper,A., Irestedt, M., Jackson, J., Johansson, U.S. & Norman, J.A. 2002. AGondwanan origin ofpasserine birds supported by DNAsequences ofthe endemic New Zealandwrens.Proc. R. Soc. LondonB269: 235 - 241. Helm-Bychowski, K.M. & Cracraft, J. 1993. Recovering phylogenetic signal from DNA sequences: relationships within the corvine assemblage (ClassAves) as inferred from complete sequences of mitochondrial DNAcytochrome-/?gene. Mol.Biol. Evol. 10: 1196-1214. Keast,J.A. 1977. TherelationshipsofFinschia andMohoua (FamilyMuscicapidae).Notornis 14: 50- 58. Mayr,E. 1967.Genusincertaesedis.Genus TurnagraLesson.P.52in: Paynter,R.A.,Jr. (Ed.). Check- listofbirdsoftheworld, Vol. 12. Mus. ComparativeZoology,Cambridge (MA). Mindell, D.P., Sorenson, M.D., Huddleston, C.J., Miranda, H., Knight, A., Sawchuk, S.J. & Yuri, T. 1997. Phylogenetic relationships among and within select avian orders based on mitochondrial DNA. Pp. 213-247 in: Mindell, D. P. (Ed.)Avian molecularevolution andsystematics. Academic Press,NewYork. Olson, S. L. 1985.Thefossil recordofbirds. Pp. 79-238 in: Farner, D. S. King, J. R. & Parkes, K. C. (Eds.)Avianbiology. Vol. HI. Academic Press, NewYork. 2 & Graham R.Fulton WalterE.Boles 31 Bull. B.O.C. 2002 122(4) Olson, S.L. 1990a. Commentson the osteology andsystematicsoftheNewZealandpasserinesofthe genusMohoua.Notomis37: 157-160. Olson, S.L. 1990b. Preliminary systematic notes on some OldWorld passerines. Riv. Ital. Omit. 59: 183-195. Olson, S.L., Parkes, K.C., Clench, M.H. & Borecky, S.R. 1983. The affinities of the New Zealand passerinegenus Turnagra.Notomis30: 319-336. OSNZ(Ornithological SocietyofNewZealandInc.). 1990. ChecklistofthebirdsofNewZealandand theRossDependency,Antarctica. 3rded.RandomCentury andOSNZ,Auckland. Sibley,C.G.&Ahlquist,J.E,Jr. 1985.ThephylogenyandclassificationoftheAustralo-Papuanpasserine birds.Emu 85: 1-14. Sibley,C.G.&Ahlquist,J.E.,Jr. 1987.TherelationshipsoffourspeciesofNewZealandpasserinebirds. Emu87: 63-66. Sibley, C.G & Ahlquist, J.E., Jr. 1990. Phylogeny and classification ofbirds. A study in molecular evolution.YaleUniv. Press,NewHaven&London. Sibley, C.G. & Monroe, B.L. 1990. Distribution and taxonomy ofthe birds ofthe world. Yale Univ. Press,New Haven&London. Address: GRF School ofNatural Sciences, Edith Cowan University, Joondalup, WA6027,Australia; [email protected],AustralianMuseum,Sydney,NSW2010 and School of Biological Sciences, University of New South Wales, NSW 2052, Australia; [email protected]. ©BritishOrnithologists' Club2002 A newly discovered paralectotype of Pteroptochos megapodius Kittlitz, 1830 E by D. Steinheimer Received 14December2001 In 1834, John Edward Gray (1800-1875) ofthe British Museum, now The Natural HistoryMuseum(BMNH),startedanextendedexchangewithEduardRiippell(1794- 1884) from Frankfurt am Main receiving at least 20 ofRiippell's Abyssinian types (Riippell 1835-40, 1845) (Steinheimer, in press). Among the BMNH Riippell specimens is also a single bird from Chile, a MoustachedTurcaPteroptochosmegapodius(BMNHreg. no. 1842.8.16.27),which was the first of this species to reach the BMNH. No entry for this specimen was found in the old BMNH Vellum catalogues, where many of Riippell's birds were listed, showing that the specimen had been received as part of a later exchange between 1837 and 1842 (Knox &Walters 1992). AsRiippellneverwenttoChile,thisearlyChileanspecimeninRiippell'smuseum atFrankfurtprobablycamefromBaronFriedrichHeinrichvonKittlitz(1799-1874), whoseChileancollection (March-April 1827) wentpartlytoFrankfurt(Steinbacher 1954), but also to Berlin and St. Petersburg. This specimen is unlikely tohave been part of the collection of another German, Eduard Friedrich Poppig (1798-1868),