ebook img

Physics of Light and Optics - Optics Education - Brigham Young PDF

344 Pages·2014·17.72 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physics of Light and Optics - Optics Education - Brigham Young

Physics of Light and Optics JustinPeatross MichaelWare BrighamYoungUniversity 2013Edition May21,2014 Preface Thiscurriculumwasoriginallydevelopedforafourth-yearundergraduateoptics courseintheDepartmentofPhysicsandAstronomyatBrighamYoungUniversity. Topicsareaddressedfromaphysicsperspectiveandincludethepropagationof lightinmatter,reflectionandtransmissionatboundaries,polarizationeffects, dispersion, coherence, ray optics and imaging, diffraction, and the quantum natureoflight.Studentsusingthisbookshouldbefamiliarwithdifferentiation, integration, and standard trigonometric and algebraic manipulation. A brief reviewofcomplexnumbers,vectorcalculus,andFouriertransformsisprovided inChapter0,butitishelpfulifstudentsalreadyhavesomeexperiencewiththese concepts. Whiletheauthorsretainthecopyright,wehavemadethisbookavailablefree ofchargeatoptics.byu.edu.Thisisourcontributiontowardafutureworldwith freetextbooks!Thewebsitealsoprovidesalinktopurchaseboundcopiesofthe bookforthecostofprinting. Acollectionofelectronicmaterialrelatedtothe textisavailableatthesamesite,includingvideosofstudentsperformingthelab assignmentsfoundinthebook. Thedevelopmentofopticshasarichhistory. Wehaveincludedhistorical sketchesforaselectionofthepioneersinthefieldtohelpstudentsappreciate someofthishistoricalcontext. Thesesketchesarenotintendedtobeauthor- itative; theinformationformostindividualshasbeengleanedprimarilyfrom Wikipedia. [email protected]. Weenjoyhearing reportsfromthoseusingthebookandwelcomeconstructivefeedback.Weocca- sionallyrevisethetext.Thetitlepageindicatesthedateofthelastrevision. Wewouldliketothankallthosewhohavehelpedimprovethismaterial.We especiallythankJohnColton,BretHess,andHaroldStokesfortheircarefulreview andextensivesuggestions. ThiscurriculumbenefittedfromaCCLIgrantfrom theNationalScienceFoundationDivisionofUndergraduateEducation(DUE- 9952773). iii Contents Preface iii TableofContents v 0 MathematicalTools 1 0.1 VectorCalculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0.2 ComplexNumbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0.3 LinearAlgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 0.4 FourierTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Appendix0.A TableofIntegralsandSums . . . . . . . . . . . . . . . . 19 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1 ElectromagneticPhenomena 25 1.1 Gauss’Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.2 Gauss’LawforMagneticFields . . . . . . . . . . . . . . . . . . . . 27 1.3 Faraday’sLaw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4 Ampere’sLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5 Maxwell’sAdjustmenttoAmpere’sLaw. . . . . . . . . . . . . . . . 31 1.6 PolarizationofMaterials . . . . . . . . . . . . . . . . . . . . . . . . 34 1.7 TheWaveEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2 PlaneWavesandRefractiveIndex 43 2.1 PlaneWaveSolutionstotheWaveEquation . . . . . . . . . . . . . 43 2.2 ComplexPlaneWaves . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3 IndexofRefraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 TheLorentzModelofDielectrics . . . . . . . . . . . . . . . . . . . 49 2.5 IndexofRefractionofaConductor . . . . . . . . . . . . . . . . . . 52 2.6 Poynting’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.7 IrradianceofaPlaneWave . . . . . . . . . . . . . . . . . . . . . . . 56 Appendix2.A Radiometry,Photometry,andColor . . . . . . . . . . . 58 Appendix2.B Clausius-MossottiRelation . . . . . . . . . . . . . . . . 61 Appendix2.C EnergyDensityofElectricFields . . . . . . . . . . . . . 64 Appendix2.D EnergyDensityofMagneticFields . . . . . . . . . . . . 66 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 v vi CONTENTS 3 ReflectionandRefraction 71 3.1 RefractionatanInterface . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 TheFresnelCoefficients . . . . . . . . . . . . . . . . . . . . . . . . 75 3.3 ReflectanceandTransmittance . . . . . . . . . . . . . . . . . . . . 76 3.4 Brewster’sAngle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.5 TotalInternalReflection . . . . . . . . . . . . . . . . . . . . . . . . 79 3.6 ReflectionsfromMetal . . . . . . . . . . . . . . . . . . . . . . . . . 81 Appendix3.A BoundaryConditionsForFieldsatanInterface . . . . 82 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 MultipleParallelInterfaces 87 4.1 Double-InterfaceProblemSolvedUsingFresnelCoefficients. . . 88 4.2 TransmittancethroughDouble-InterfaceatSubCriticalAngles . 92 4.3 BeyondCriticalAngle:TunnelingofEvanescentWaves . . . . . . 95 4.4 Fabry-PerotInstrument . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.5 SetupofaFabry-PerotInstrument . . . . . . . . . . . . . . . . . . 98 4.6 DistinguishingNearbyWavelengthsinaFabry-PerotInstrument 100 4.7 MultilayerCoatings . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.8 PeriodicMultilayerStacks . . . . . . . . . . . . . . . . . . . . . . . 107 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Review,Chapters1–4 115 5 PropagationinAnisotropicMedia 121 5.1 ConstitutiveRelationinCrystals . . . . . . . . . . . . . . . . . . . 121 5.2 PlaneWavePropagationinCrystals. . . . . . . . . . . . . . . . . . 123 5.3 BiaxialandUniaxialCrystals . . . . . . . . . . . . . . . . . . . . . . 127 5.4 RefractionataUniaxialCrystalSurface . . . . . . . . . . . . . . . 128 5.5 PoyntingVectorinaUniaxialCrystal . . . . . . . . . . . . . . . . . 129 Appendix5.A SymmetryofSusceptibilityTensor . . . . . . . . . . . . 131 Appendix5.B RotationofCoordinates . . . . . . . . . . . . . . . . . . 133 Appendix5.C ElectricFieldinaCrystal . . . . . . . . . . . . . . . . . . 135 Appendix5.D Huygens’EllipticalConstructforaUniaxialCrystal . . 138 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6 PolarizationofLight 143 6.1 Linear,Circular,andEllipticalPolarization . . . . . . . . . . . . . 144 6.2 JonesVectorsforRepresentingPolarization . . . . . . . . . . . . . 145 6.3 EllipticallyPolarizedLight . . . . . . . . . . . . . . . . . . . . . . . 146 6.4 LinearPolarizersandJonesMatrices . . . . . . . . . . . . . . . . . 147 6.5 JonesMatrixforaPolarizer . . . . . . . . . . . . . . . . . . . . . . . 150 6.6 JonesMatrixforWavePlates . . . . . . . . . . . . . . . . . . . . . . 151 6.7 PolarizationEffectsofReflectionandTransmission . . . . . . . . 153 Appendix6.A Ellipsometry . . . . . . . . . . . . . . . . . . . . . . . . . 155 Appendix6.B PartiallyPolarizedLight . . . . . . . . . . . . . . . . . . 156 CONTENTS vii Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7 SuperpositionofQuasi-ParallelPlaneWaves 169 7.1 IntensityofSuperimposedPlaneWaves . . . . . . . . . . . . . . . 170 7.2 Groupvs.PhaseVelocity:SumofTwoPlaneWaves . . . . . . . . 172 7.3 FrequencySpectrumofLight . . . . . . . . . . . . . . . . . . . . . 174 7.4 WavePacketPropagationandGroupDelay . . . . . . . . . . . . . 178 7.5 QuadraticDispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.6 GeneralizedContextforGroupDelay. . . . . . . . . . . . . . . . . 183 Appendix7.A PulseChirpinginaGratingPair . . . . . . . . . . . . . . 187 Appendix7.B CausalityandExchangeofEnergywiththeMedium . . 189 Appendix7.C Kramers-KronigRelations . . . . . . . . . . . . . . . . . 194 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8 CoherenceTheory 201 8.1 MichelsonInterferometer . . . . . . . . . . . . . . . . . . . . . . . 201 8.2 CoherenceTimeandFringeVisibility. . . . . . . . . . . . . . . . . 205 8.3 TemporalCoherenceofContinuousSources . . . . . . . . . . . . 207 8.4 FourierSpectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8.5 Young’sTwo-SlitSetupandSpatialCoherence . . . . . . . . . . . 209 Appendix8.A SpatialCoherenceforaContinuousSpatialDistribution 213 Appendix8.B VanCittert-ZernikeTheorem . . . . . . . . . . . . . . . 214 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Review,Chapters5–8 221 9 LightasRays 227 9.1 TheEikonalEquation . . . . . . . . . . . . . . . . . . . . . . . . . . 228 9.2 Fermat’sPrinciple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 9.3 ParaxialRaysandABCDMatrices . . . . . . . . . . . . . . . . . . . 234 9.4 ReflectionandRefractionatCurvedSurfaces . . . . . . . . . . . . 236 9.5 ABCDMatricesforCombinedOpticalElements . . . . . . . . . . 238 9.6 ImageFormation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 9.7 PrincipalPlanesforComplexOpticalSystems . . . . . . . . . . . 244 9.8 StabilityofLaserCavities . . . . . . . . . . . . . . . . . . . . . . . . 246 Appendix9.A AberrationsandRayTracing . . . . . . . . . . . . . . . . 248 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 10 Diffraction 257 10.1 Huygens’PrincipleasFormulatedbyFresnel . . . . . . . . . . . . 258 10.2 ScalarDiffractionTheory . . . . . . . . . . . . . . . . . . . . . . . . 260 10.3 FresnelApproximation . . . . . . . . . . . . . . . . . . . . . . . . . 262 10.4 FraunhoferApproximation . . . . . . . . . . . . . . . . . . . . . . . 264 10.5 DiffractionwithCylindricalSymmetry . . . . . . . . . . . . . . . . 265 Appendix10.A Fresnel-KirchhoffDiffractionFormula . . . . . . . . . . 267 viii CONTENTS Appendix10.B Green’sTheorem . . . . . . . . . . . . . . . . . . . . . . . 270 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 11 DiffractionApplications 275 11.1 FraunhoferDiffractionwithaLens . . . . . . . . . . . . . . . . . . 275 11.2 ResolutionofaTelescope . . . . . . . . . . . . . . . . . . . . . . . . 280 11.3 TheArrayTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 11.4 DiffractionGrating . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 11.5 Spectrometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 11.6 DiffractionofaGaussianFieldProfile . . . . . . . . . . . . . . . . 288 11.7 GaussianLaserBeams . . . . . . . . . . . . . . . . . . . . . . . . . 290 Appendix11.A ABCDLawforGaussianBeams . . . . . . . . . . . . . . 292 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 12 InterferogramsandHolography 301 12.1 Interferograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 12.2 TestingOpticalSurfaces . . . . . . . . . . . . . . . . . . . . . . . . 302 12.3 GeneratingHolograms . . . . . . . . . . . . . . . . . . . . . . . . . 303 12.4 HolographicWavefrontReconstruction . . . . . . . . . . . . . . . 304 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Review,Chapters9–12 309 13 BlackbodyRadiation 315 13.1 Stefan-BoltzmannLaw . . . . . . . . . . . . . . . . . . . . . . . . . 316 13.2 FailureoftheEquipartitionPrinciple . . . . . . . . . . . . . . . . . 317 13.3 Planck’sFormula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 13.4 Einstein’sAandBCoefficients . . . . . . . . . . . . . . . . . . . . . 322 Appendix13.A ThermodynamicDerivationoftheStefan-Boltzmann Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Appendix13.B BoltzmannFactor . . . . . . . . . . . . . . . . . . . . . . 326 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 Index 331 PhysicalConstants 336 Chapter 0 Mathematical Tools Beforemovingontochapter1whereourstudyofopticsbegins,itwouldbegood tolookoverthischaptertomakesureyouarecomfortablewiththemathematical toolswe’llbeusing.Thevectorcalculusinformationinsection0.1isusedstraight awayinChapter1,soyoushouldreviewitnow.InSection0.2wereviewcomplex numbers.Youhaveprobablyhadsomeexposuretocomplexnumbers,butifyou arelikemanystudents,youhaven’tyetfullyappreciatedtheirusefulness. Your lifewillbemucheasier ifyouunderstandthematerialinsection0.2byheart. Complexnotationispervasivethroughoutthebook,beginninginchapter2. YoumaysafelyprocrastinatereviewingSections0.3and0.4untiltheycome upinthebook.ThelinearalgebrarefresherinSection0.3isusefulforChapter4, whereweanalyzemultilayercoatings,andagaininChapter6,wherewediscuss polarization.Section0.4providesanintroductiontoFouriertheory.Fouriertrans- formsareusedextensivelyinoptics,andyoushouldstudySection0.4carefully RenØ Descartes(1596-1650,French) wasbornininLaHayeenTouraine beforetacklingChapter7. (nowDescartes),France. Hismother diedwhenhewasaninfant. Hisfather wasamemberofparliamentwhoen- 0.1 VectorCalculus couragedDescartestobecomealawyer. Descartesgraduatedwithadegreein lawfromtheUniversityofPoitiers Eachpositioninspacecorrespondstoauniquevector r≡xxˆ+yyˆ+zzˆ,where in1616. In1619,hehadaseriesof dreamsthatledhimtobelievethathe xˆ,yˆ,andzˆareunitvectorswithlengthone,pointingalongtheirrespectiveaxes. shouldinsteadpursuescience. Descartes Boldfacetypedistinguishesavariableasavectorquantity,andtheuseofxˆ,yˆ, becameoneofthegreatestmathemati- andzˆ denotesaCartesiancoordinatesystem. Electricandmagneticfieldsare cians,physicists,andphilosophersof alltime. Heiscreditedwithinventing vectorswhosemagnitudeanddirectioncandependonposition,asdenotedby thecartesiancoordinatesystem,which E(r)orB(r). AnexampleofsuchafieldisE(r)=q(r−r )(cid:177)4π(cid:178) |r−r |3,which isnamedafterhim. Forthe(cid:28)rsttime, 0 0 0 geometricshapescouldbeexpressedas isthestaticelectricfieldsurroundingapointchargelocatedatpositionr .The 0 algebraicequations. (Wikipedia) absolute-valuebracketsindicatethemagnitude(orlength)ofthevectorgivenby |r−r |=(cid:175)(cid:175)(x−x )xˆ+(cid:161)y−y (cid:162)yˆ+(z−z )zˆ(cid:175)(cid:175) 0 0 0 0 (cid:113) (0.1) = (x−x )2+(cid:161)y−y (cid:162)2+(z−z )2 0 0 0 1 2 Chapter0 MathematicalTools Example0.1 Computetheelectricfieldatr=(cid:161)2xˆ+2yˆ+2zˆ(cid:162)Åduetoapositivepointchargeq positionedatr =(cid:161)1xˆ+1yˆ+2zˆ(cid:162)Å. 0 Solution:Asmentionedabove,thefieldisgivenbyE(r)=q(r−r )(cid:177)4π(cid:178) |r−r |3. 0 0 0 Wehave r−r =(cid:161)(2−1)xˆ+(2−1)yˆ+(2−2)zˆ(cid:162) Å =(cid:161)1xˆ+1yˆ(cid:162) Å 0 and (cid:112) (cid:112) |r−r |= (1)2+(1)2Å = 2Å 0 Theelectricfieldisthen q(cid:161)1xˆ+1yˆ(cid:162) Å E= (cid:112) 4π(cid:178) (cid:161) 2Å(cid:162)3 0 Figure0.1Theelectricfieldvec- Inadditiontoposition,theelectricandmagneticfieldsalmostalwaysdepend torsaroundapointcharge. ontimeinopticsproblems. Forexample, acommontime-dependentfieldis E(r,t)=E cos(k·r−ωt).Thedotproductk·risanexampleofvectormultiplication, 0 andsignifiesthefollowingoperation: k·r=(cid:161)k xˆ+k yˆ+k zˆ(cid:162)·(cid:161)xxˆ+yyˆ+zzˆ(cid:162) x y z =k x+k y+k z (0.2) x y z =|k||r|cosφ whereφistheanglebetweenthevectorskandr. Proofofthefinallineof(0.2) (cid:48) (cid:48) Considertheplanethatcontainsthetwovectorskandr.Callitthex y -plane.In thiscoordinatesystem,thetwovectorscanbewrittenask=kcosθxˆ(cid:48)+ksinθyˆ(cid:48)and r=rcosαxˆ(cid:48)+rsinαyˆ(cid:48),whereθandαaretherespectiveanglesthatthetwovectors makewiththe x(cid:48)-axis. Thedotproductgivesk·r=kr(cosθcosα+sinθsinα). Thissimplifiestok·r=krcosφ(see(0.13)),whereφ≡θ−αistheanglebetween the vectors. Thus, the dot product between two vectors is the product of the magnitudesofeachvectortimesthecosineoftheanglebetweenthem. Anothertypeofvectormultiplicationisthecrossproduct,whichisaccom- plishedinthefollowingmanner:1 (cid:175) (cid:175) (cid:175) xˆ yˆ zˆ (cid:175) E×B=(cid:175)(cid:175) Ex Ey Ez (cid:175)(cid:175) (cid:175) (cid:175) (0.3) (cid:175) B B B (cid:175) x y z =(cid:161)E B −E B (cid:162)xˆ−(E B −E B )yˆ+(cid:161)E B −E B (cid:162)zˆ y z z y x z z x x y y x 1Theuseofthedeterminanttogeneratethecrossproductismerelyaconvenientdevicefor rememberingitsform.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.