ebook img

PhD Thesis Avoiding vacuum arcs in high gradient normal conducting RF structures PDF

171 Pages·2016·22.8 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PhD Thesis Avoiding vacuum arcs in high gradient normal conducting RF structures

PhD Thesis Avoiding vacuum arcs in high gradient normal conducting RF structures Kyrre Ness Sjøbæk Department of Physics University of Oslo September 2016 9 2 1 6- 1 0 2 S- SI E H16 T0 N-/2 0 R1 E/ C14 Abstract InordertobuildtheCompactLInearCollider(CLIC),acceleratingstructuresreachingex- tremelyhighacceleratinggradientsareneeded. Suchstructureshavebeenbuiltandtested usingnormal-conductingcopper, poweredbyX-bandRFpowerandreachinggradientsof 100 MV/m and above. One phenomenon that must be avoided in order to reliably reach such gradients, is vacuum arcs or “breakdowns”. This can be accomplished by carefully designingthestructuregeometrysuchthathighsurfacefieldsandlargelocalpowerflows areavoided. The research presented in this thesis presents a method for optimizing the geometry of acceleratingstructuressothatthesebreakdownsaremadelesslikely,allowingthestructure tooperatereliablyathighgradients. Thiswasdoneprimarillybasedonaphenomenological scalingmodel,whichpredictedthemaximumgradientasafunctionofthebreakdownrate, pulselength,andfielddistributioninthestructure. Themodeliswritteninsuchawaythatit allowsdirectcomparisonofdifferentcriteria,i.e.thepeakelectricfield,thepeaklocalpower flow or “modified Poynting vector” S , and the global power flow per iris circumference. c Usingthismethod,asetofhighlyoptimizedacceleratingcellswerecreated,aswasaC++ librarycapableofestimatingtheperformanceofanRFstructurebasedontheseaccelerating cells. ThislibrarywasusedintherebaselingingoftheCLICmachine. Inadditiontothis,thethesisalsopresentsaparticleincellsimulationoftheinitialstages ofavacuumarc. Thismodelfollowsthedevelopmentofthearcfromasmallfieldemitter intoamulti-amperedischarge,trackingtheevolutionoftheplasmaandthecircuit,aswellas theinteractionbetweentheplasmaandthesurface. Fromthismodel,ourunderstandingof theimportanceoftheionbombardmentundertheplasmasheathwasimproved,especially the ion energy distribution and its effect on sputtering vs. the effective sputtering yields requiredforthearctosustainitselfandgrow. 3 Acknowledgments In the work leading up to this thesis I’ve had the good fortune of being a part of both the CERNCLICRFgroupandtheOsloexperimentalparticlephysicsgroup. Thisenvironment hasenabledmetolearnalotaboutacceleratorphysics,vacuumarcs,RFoptimization,elec- tromagnetics, high-performance computing and programming, how to present my results, andmanyotherthings. First,IwouldliketoexpressmygratitudetomythreesupervisorsSteinarStapnes,Erik Adli,andAlexejGrudiev: Steinar,youbroughtmeintohighenergyphysics,firstwithde- tectorsandlateraccelerators,whicharebothfieldsthatIenjoyworkingwith. Thankyoufor openingalotofdoors,makingsurethatIcouldfocusontheresearch,andallowingmeto workfromwhereIneededto. Erik,eventhoughyouattimeswerelocatedfaraway,youstill managedtofollowtheproject. Thankyouforgivingmelotsofvaluableadvice,guidance, discussions,intellectualchallengesandexplanations. Alexej,youintroducedmetoacceler- atorstructuresandRFdesign,andcameupwithmanyoftheunderlyingideasformythesis. Thank you for teaching me how optimize the structures for a given machine, and helping meunderstandhowtheycanarcandbreakdown. Inaddition,IwouldliketothankWalter Wuenschforvaluableadviceandaskingmanyveryusefulquestions,andforhelpingmefeel athomeintheCERNgroup. Youallgavemetheopportunitytogotoseveralconferences (IPAC’12,MevArc’12/’13,andHG’13),twolongvisitstotheACDdepartmentatSLAC, and several schools and courses (CAS’11, LCS’11, CW’10), something that gave me the oportunitymetolearnalot,andforwhichIamverygrateful. IwouldalsoliketothankHelgaTimkoforteachingmealotaboutPICandforbringingme intotheArcPICproject,aswellasLottaMether,FlyuraDjurabekovaandKaiNordlundfor manyenlighteningdiscussionsonvacuumarcsandnanoscalesurfacephysics,andthecom- plexinteractionsbetweenthem. ManythankstotheACDgroupatSLACwithArnoCandel, KiHwanLee,OleksiyKononenko,ChoNg,andKwokKoforallowingmetouseandhelp- ingmeunderstandtheACE3Pcode. AlsothankstoDanielSchultefordiscussionsrelatedto theworkIdidwiththeoptimizationandperformancepredictionofRFstructures,aswellas makingitusefulwiththere-baseliningstudies. Furthermore,thankstomyfellowcolleagues andfriendsNickholasShipmanandAndersKorsbäckforhelpingmeunderstandtheCERN DCsparkexperiments,aswellasReidarLillestøl,RobinRajamäki,AndriyNosych,Vasim Khan, Hugo Day, Miriam Colling, Tomoko Muranaka, Nikolay Schwerg, Yngve Levin- sen, Tobias Persson, Alexander Gerbershagen, Veronica Berglyd Olsen, and many others formanygooddiscussionsandlotsoffun. Finally,manythankstomynewcolleaguesatthe CERNABPgroupwithHelmutBurkhardt,AndreaSantamaríaGarcía,RiccardodeMaria, Miriam Fitterer, Roderik Bruce, Regina Kwee-Hinzmann, Benoit Salvant, Massimo Gio- vanozzi,andmanyotherswhoI’vebeenworkingwithforthelast11/2years–I’velearned alotfromallofyouaswell. Atlast,averyspecialthankstomybestfriend,fellowstudent,andwifeHelgaHolmestad; Yousupportedme, engagedindiscussions, readmypapers, andkeptmemotivatedinthe timeittooktopiecethematerialstogethertothisthesis. 5 Contents Abstract 3 Acknowledgments 5 Contents 7 1. Introduction 11 1.1. Particlecolliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2. TheCompactLInearCollider(CLIC) . . . . . . . . . . . . . . . . . . . . 14 1.3. Acceleratingstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4. Vacuumarcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5. Simulationtools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.1. ACE3P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.2. 2DArcPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.6. Applicationsofhighgradientaccelerationoutsidehigh-energyphysics . . . 21 1.7. Lookingahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2. RF structures for particle acceleration 25 2.1. RFacceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2. Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1. Theeigenmodesofpillboxcavities. . . . . . . . . . . . . . . . . . 26 2.3. Travelingwavestructures . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4. FiniteelementcalculationofRFmodes . . . . . . . . . . . . . . . . . . . 31 2.4.1. PhasedifferencebetweenE(cid:126) andB(cid:126) . . . . . . . . . . . . . . . . . . 32 2.4.2. CalculationoffieldpatternsusingOmega3P. . . . . . . . . . . . . 33 2.4.3. ExtractionofRFparametersfromthefieldpattern . . . . . . . . . 35 3. High gradient acceleration challenges 39 3.1. RFbreakdownsinacceleratingstructures . . . . . . . . . . . . . . . . . . 39 3.2. ModelsofRFbreakdowns . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1. SurfaceelectricfieldandtheKilpatriccriterion . . . . . . . . . . . 40 3.2.2. Powerflowthroughthestructureandiriscircumference. . . . . . . 42 3.2.3. ThemodifiedPoyntingvectorS . . . . . . . . . . . . . . . . . . . 42 c 3.3. ScalingphenomenologyforRFbreakdowns . . . . . . . . . . . . . . . . . 46 3.3.1. Highgradientlimits . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4. Pulsedsurfaceheatingfrommagneticfields . . . . . . . . . . . . . . . . . 51 3.5. Summaryandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7 CONTENTS 4. Simulation of vacuum arcs 53 4.1. Vacuumarcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1.1. Theoriginoftheemissionsite . . . . . . . . . . . . . . . . . . . . 55 4.1.2. Coldfieldemissionofelectrons . . . . . . . . . . . . . . . . . . . 55 4.1.3. Evaporationofneutralatoms . . . . . . . . . . . . . . . . . . . . . 57 4.1.4. Sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2. Simulationmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.1. 2DArcPicandTheParticleinCell(PIC)method . . . . . . . . . . 59 4.2.2. Monte-Carlocollisions . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.3. Parallelizationofcollisions . . . . . . . . . . . . . . . . . . . . . . 61 4.2.4. Accuracyofthefieldsolverneartheemitteratr =z =0 . . . . . . 63 4.2.5. Shockley-Ramo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.6. Circuitmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.7. Surfacephysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3. Simulationresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.1. Effectsofvaryingthemodelparameters . . . . . . . . . . . . . . . 75 4.4. Discussion,conclusions,andoutlook . . . . . . . . . . . . . . . . . . . . . 75 5. Cell geometry optimization 77 5.1. Cellgeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2. Optimizationalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.1. 1Dfitfrequencytuning . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2.2. 2Dsurfacefitfrequencytuning. . . . . . . . . . . . . . . . . . . . 82 5.3. Optimizationgoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3.1. Minimizingthebreakdownrate . . . . . . . . . . . . . . . . . . . 83 5.3.2. Minimizingpulsedsurfaceheating . . . . . . . . . . . . . . . . . . 84 5.4. Peakfieldextraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.1. Outerwall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.2. Iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.5. TheAcdOptiGUIoptimizationtool . . . . . . . . . . . . . . . . . . . . . . 85 5.6. Atypicaloptimizedcell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.7. Thecelldatabase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.8. Summaryandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6. Wake fields 97 6.1. Wakefieldmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2. Wakefunctions,bunchpotentials,andimpedance . . . . . . . . . . . . . . 98 6.2.1. Theimpedancespectrumofadampedresonance . . . . . . . . . . 100 6.3. Thefundamentaltheoremofbeamloading . . . . . . . . . . . . . . . . . . 100 6.4. Transversekicks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.5. ThePanofsky-Wenzeltheorem . . . . . . . . . . . . . . . . . . . . . . . . 102 6.6. Dipolewake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.7. CalculatingwakefieldsusingACE3P . . . . . . . . . . . . . . . . . . . . 106 6.7.1. Treatmentoftheimpedancespectra . . . . . . . . . . . . . . . . . 109 6.7.2. Wakefielddampingwaveguides . . . . . . . . . . . . . . . . . . . 111 6.7.3. Wakefieldsfromtypicalcelldesignandthecelldatabase . . . . . . 114 6.8. Summaryandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8 CONTENTS 7. Structure parameter calculation 117 7.1. ConvertingcellgeometryparameterstocellRFparameters: thecelldatabase117 7.2. Frequencyscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.2.1. Acceleratingmodeparameters . . . . . . . . . . . . . . . . . . . . 118 7.2.2. Transversewakefieldmodeparameterswithwaveguidedamping . . 119 7.3. ParameterinterpolationalongtheRFstructure . . . . . . . . . . . . . . . . 120 7.4. Fieldprofile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.5. Powerandvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.6. Pulseshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.7. RF-to-beamefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.8. Peakfieldsandpulselengthlimits . . . . . . . . . . . . . . . . . . . . . . 129 7.8.1. Pulselengthlimitsfromscalinglaws . . . . . . . . . . . . . . . . 131 7.8.2. Pulselengthlimitsfrompulsedsurfaceheating . . . . . . . . . . . 131 7.9. Transversewakefields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.10.ValidationofthemodelandtheCLICoptilibrary . . . . . . . . . . . . . . 136 7.10.1. GradientprofileG(z)calculation . . . . . . . . . . . . . . . . . . 136 7.10.2. Accuracyofpowerrequirementpredictions . . . . . . . . . . . . . 137 7.10.3. Pulselengthandbreakdownrate . . . . . . . . . . . . . . . . . . . 138 7.10.4. Wakefield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.11.Summaryandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8. Summary, conclusions, and outlook 139 Bibliography 141 A. Finite element calculation of electromagnetic eigenmodes 155 Publications: Papers and reports 159 B. Design of an accelerating structure for a 500 GeV CLIC using ACE3P 159 C. Surface field optimization of accelerating structures for CLIC using ACE3P on remote computing facility 161 D. New Criterion for Shape Optimization of Normal-Conducting Accelerator Cells for High-Gradient Applications 163 E. FromFieldEmissiontoVacuumArcIgnition: aNewToolforSimulatingCopper Vacuum Arcs 165 F. CLIC notes and other materials 167 F.1. BenchmarkingofOmega3Pfiniteelementelectromagneticeigenmodesolver167 F.2. LongitudinalspacechargeeffectsintheCLICdrivebeam . . . . . . . . . . 167 F.3. Design of waveguide damped cells for 12 GHz high gradient accelerating structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 F.4. TheCLICoptiRFstructureparameterestimator . . . . . . . . . . . . . . . 169 F.5. BreakdownlocalizationintheFixedGapSystem . . . . . . . . . . . . . . 169 9 CONTENTS F.6. 2DArcPICCodeDescriptionandUser/DeveloperManual(secondedition) 170 F.7. UpdatedbaselineforastagedCompactLinearCollider . . . . . . . . . . . 171 10

Description:
PyGTK [144] and Matplotlib [145] for the user interface. pulse length by the addition of a Marx generator high-voltage power supply [168], which.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.