ebook img

Pairing state in the rutheno-cuprate superconductor RuSr2GdCu2O8: A point contact Andreev Reflection Spectroscopy study PDF

2.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pairing state in the rutheno-cuprate superconductor RuSr2GdCu2O8: A point contact Andreev Reflection Spectroscopy study

Pairingstateinthe rutheno-cuprate superconductor RuSr GdCu O : 2 2 8 A pointcontact Andreev reflection spectroscopy study S. Piano, F. Bobba, F. Giubileo and A. M. Cucolo, M. Gombos, A. Vecchione 6 Physics Department and INFM-CNR SUPERMAT Laboratory, 0 University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy 0 (Dated:February2,2008) 2 The results of Point Contact Andreev Reflection Spectroscopy on polycrystalline RuSr2GdCu2O8 pellets n arepresented. ThewidevarietyofthemeasuredspectraareallexplainedintermsofamodifiedBTKmodel a consideringad-wavesymmetryofthesuperconductingorderparameter. Remarkablylowvaluesoftheenergy J gap∆=(2.8±0.2)meV andofthe2∆/kBTc ≃2ratioareinferred. Fromthetemperatureevolutionofthe 0 dI/dV vsV characteristicsweextractasublineartemperaturedependenceofthesuperconductingenergygap. 3 Themagneticfielddependenceoftheconductancespectraatlowtemperaturesisalsoreported. Fromthe∆vs H evolution,acriticalmagneticfieldHc2 ≃30T isinferred. Toproperlyexplainthecurvesshowinggap-like ] featuresathighervoltages,weconsidertheformationofaJosephsonjunctioninserieswiththePointContact n junction,asaconsequenceofthegranularityofthesample. o c - PACSnumbers:74.50.+r,74.45.+c,74.20.Rp,74.72.-h r p u I. INTRODUCTION rationconditionswith some reportsshowingtransition onset s . ashighas50K6. TheRu-1212alsoshowsa magneticphase t a PointContactSpectroscopy1isaversatiletechniquewidely below135K. Ithasbeenreportedthatthemagneticorderof m used to study the basic properties of superconductors, such theRumomentsispredominantlyantiferromagneticalongthe - as the density of states at the Fermi level and the supercon- caxis7,whileaferromagneticcomponenthasbeenobserved d ductingenergygap. The techniqueconsistsin establishinga intheRuO2 planes,thatactaschargereservoir8. Atthemo- n contactbetweena tipof a normalmetal(N)anda supercon- ment,duetocomplexityofthiscompound,anexhaustivede- o c ductingsample(S),thusformingasmallcontactareathatisa scription of the interaction between the magnetic and super- [ “PointContact”junction. Byvaryingthedistanceand/orthe conductinglayersis still missing as wellas an unambiguous pressure between tip and sample it is possible to obtain dif- evaluationofthesymmetryoftheenergygap. 2 ferent tunnel barriers, that is different conductance regimes. Thepaperisorganizedasfollows: inSec.IIwebrieflyre- v 6 Indeed,quasiparticletunnelspectroscopyisobtainedforhigh viewtheresultsoftheBTKmodel9foraconventionals-wave 4 barriers, while Point Contact Andreev Reflection (PCAR) superconductorandtherecentextensions10 foranisotropics- 3 spectroscopy is achieved in case of low barriers. Often in waveandd-wavesymmetryoftheorderparameter.InSec.III 9 the experiments, intermediateregimesare realized, in which we describe the point contact experimentsin polycrystalline 0 throughtheN/Scontactbothquasi-particletunnelingandAn- Ru-1212pelletsshowingavarietyofconductancecurvesob- 5 dreevreflectionprocessesoccur. tained at T = 4.2K. Satisfactory theoretical fittings are 0 / AndreevReflections2,3takeplaceattheN/Sinterfacewhen achieved by using a modified BTK model for d-wave sym- at an electron, propagatingin the normalmetal with an energy metryoftheorderparameter. InSec.IVweshowthat,dueto m lower thanthe superconductingenergygap, entersin the su- thegranularityofthesamples,insomecases,theformationof perconductorformingan electron pair (Cooperpair) while a aJosephsonjunctioninserieswiththeN/Scontactoccurs.In- - d hole, with opposite momentum with respect to the incident deed,conductancecurvesshowinggap-likefeaturesathigher n electron,isreflectedinthenormalmetal. A singlereflection voltagesanddipsinthespectraarewellexplainedbythisas- o correspondstoanetchargetransferof2e,whereeistheelec- sumption.InSec.Vwereportthetemperatureevolutionofthe c troncharge,fromthenormalmetaltothesuperconductor. In conductancecurvesofaverystablejunction. Allthespectra : v the limitof lowbarriersat low temperatures,allthe incident arewellreproducedbythed-wavemodifiedBTKmodel,and Xi electrons at the N/S interface with energy eV < ∆ are An- weinferfromtheexperimentsthetemperaturedependenceof dreevreflectedandtheconductancedoublesthenormalstates thesuperconductingenergygap∆. InSec.VIweanalyzethe r a value. magnetic field behavior of the measured conductance spec- InthispaperwereportonPCARstudiescarriedoutinthe tra, providingan estimation of the upper critical field of the hybrid rutheno-cuprate RuSr GdCu O (Ru-1212) system4. Ru-1212 compound. Finally, in Sec. VII we summarize our 2 2 8 resultsanddrawsomeconclusions. Thiscompoundhasrecentlydrawngreatattentionamongthe- orists and experimentalists in the field of solid state physics due to the coexistence at low temperaturesof superconduct- ingandmagneticordering5. TheRu-1212structureissimilar II. THEBTKMODELANDITSEXTENSION tothatofYBa Cu O withmagnetic(2D)RuO planessub- 2 3 7 2 stitutingthe(1D)Cu-Ochains. Thesuperconductingcritical In this section, for sake of clearness, we review the main temperatureinthiscompoundstronglydependsontheprepa- resultsoftheoriginalBlonder-Tinkham-Klapwijk(BTK)the- 2 oreticalmodel9,asdevelopedforelectronictransportthrough a Point-Contactjunctionbetween a normalmetal and a con- Z = 0 Z = 0.5 Z = 5 s ventional BCS superconductor. We also summarize the 2m a) 3 b) 4c) -w Kashiwaya-Tanaka10extensionforasymmetrics-waveandd- VNor 2 3 av d1 2 e wavesuperconductors.Indeed,aclosecomparisonofthecal- dI/ 1 1 culatedconductancespectraisusefulforabetterunderstand- 0 0 0 ing of the peculiar transport processes that occur at an N/S -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3 interfacedependingonthesymmetryofthesuperconducting 2 d) 3 e) 4 f) d odrifdFfeeorrlelponawtriaainmlgceotthenred.uocrtiagnincaelcphaaprearc,twereiswticristefothreaeNx/pSrecsosniotancotfthtahte, dI/dV1Norm ==0/8 12 123 -wave =/4 accordingtotheBTKmodel9,isgivenby: 0 0 0 -3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3 eV/ eV/ eV/ a dI(eV) n GGNNNS(ZeV−+∞)∞=dE[d1V+A=(E)−B(E)](cid:20)−df(dE(e+Ve)V)(cid:21) (1) dI/dV12Norm g) ==0/8 12h) 1234 i) isotropic s-w =/4 a where eV is the applied potential, G = 4/(4 + Z2) is 0-3 -2 -1 0 1 2 30-3 -2 -1 0 1 2 30-3 -2 -1 0 1 2 3ve NN the normal conductance expressed in term of Z, a dimen- FIG. 1: Conductance characteristics, at low temperatures, for dif- sionless parameter modeling the barrier strength, f(E) is the ferentbarriersZ asobtainedbytheBTKmodelforaPointContact Fermi functionand A(E) and B(E) are, respectively, the An- junctionbetweenanormalmetalandas-wave(a,b,c),ad-wave(d,e,f) dreev reflection and normal reflection probabilities for an andananisotropics-wavesuperconductor(g,h,i). electron approaching the N/S interface. Eq.(1) shows that, whileordinaryreflectionsreducethetransportcurrentthrough thejunction,Andreevreflectionsincreasethisbytransferring E− E2−∆2 ± twoelectrons(Cooperpair)inthesuperconductingelectrode Γ± = q , (5) on the other side of the barrier. The case Z = 0 corre- ∆± sponds to a completely transparent barrier so that the trans- ∆± = ∆cos[2(α∓ϕ)]. (6) portcurrentispredominantlydueto Andreevreflectionsand G (V < ∆)/G (V >> ∆) = 2 is found(Fig.1a). By So,atagivenenergyE,thetransportcurrentdependsboth NS NN increasingZ,theAndreevreflectionsarepartiallysuppressed ontheincidentangleϕoftheelectronsattheN/Sinterfaceas andtheconductancespectratendtothecaseofaN/I/Stunnel well as on the orientationangle α, that is the angle between junctionshowingpeaksateV =±∆(Figs. 1b,c). thea-axisof thesuperconductingorderparameterandthe x- Recently, Kashiwaya and Tanaka10 extended the BTK axis.WhenapplyingEqs. (2)-(6)toPCARexperiments,there model by considering different symmetries of the order pa- isnopreferentialdirectionofthequasiparticleinjectionangle rameter. Indeed, for a d-wave superconductor, the electron- ϕintothesuperconductor,sothetransportcurrentresultsby likeandhole-likequasiparticles,incidentattheN/Sinterface, integration over all directions inside a semisphere weighted experience different signs of the order parameter, with for- by the scattering probability term in the current expression. mationofAndreevBoundStatesattheFermilevelalongthe Moreover,because our experimentsdeal with policrystalline nodaldirections.ThepresenceofAndreevBoundStatesmod- samples,theangleαisapureaveragefittingparameter,which ifythetransportcurrentandtheexpressionofthedifferential dependsontheexperimentalconfiguration. conductanceisgivenby: Incase ofd-wave symmetry,forZ → 0, the conductance curves at low temperatures show a triangular structure cen- +∞dE +π2 dϕσ(E,ϕ)cosϕ −df(E+eV) tered at eV = 0, quite insensitive to variations of α with GNS(V)= R−+∞∞dER−−π2df(E+eV) +π2 dϕσh (ϕd)(ceVos)(ϕi), (mFaigx.im1du)m.Haomwpelivteurd,efoGrhNiSgh(Verb=arr0ie)/rsG,tNheNc(oVnd>uc>tan∆ce)c=har2- R−∞ h d(eV) iR−π2 N (2) acteristics show dramatic changes as function of α. In par- ticular as soon as α 6= 0, the presence of Andreev Bound where StatesattheFermilevelproducesstrongeffectsmoreevident σ(E,ϕ)=σN(ϕ)(1+σN(1(ϕ+))(Γσ2+N+(ϕ()σ−N(1ϕ)Γ)+−Γ1−))(2Γ+Γ−)2, a0l)o/nGgNthNe(Vno>da>l d∆ir)ec>tio2nis(αfou=ndπ(/F4ig)sf.o1rew,f)h.ich GNS(V = (3) For comparison, we report the conductance behavior for isthedifferentialconductanceand anisotropics-wave superconductor,in whichonlythe ampli- tude of the order parameter varies in the k-space, while the phaseremainsconstantandEq. (6)reducesto: 1 σ (ϕ) = , Z˜(ϕ)=Zcos(ϕ), (4) N 1+Z˜(ϕ)2 ∆+ =∆− =∆cos[2(α−ϕ)]. (7) 3 Again, in the limit Z → 0, an increase of the conductance 1.6 1.3 forE < ∆with a triangularprofileisfoundwith maximum 1m.5 Z==00..468 a) Z==00..591 b) (aFmigp.l1itgu)d.eOGnNthSe(oVthe=rh0a)n/dG,NfoNrh(Vigh>er>Z,∆w)e=ob2taianttzuenrnoebliinags V1Nor.4 D=y2ne.s8=m0.e6VmeV 1.2 D=y3ne.s0=m0.e7VmeV d1.3 conductancespectra that show the characteristic “V”-shaped dI/1.2 1.1 profile in comparison to the classical “U”-shaped structure 1.1 foundforanisotropics-waveorderparameter(Figs.1h,i). We 1.0 1.0 notice that in this case all the curves are quite insensitive to -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 variationoftheαparameterandazerobiaspeakisobtained V(mV) V(mV) onlyforlowbarriers. 2.0 1.6 Z=0.85 c) d) IIEI.XPPECRAIMRESPNETCSTARNODSTCHOEPOYROENTRICUASLR2FGITDTCIUN2GOS8: dI/dV11Norm..24 D==y02ne..s46=3m0.e1V3meV 111 ...468 ZD===y020ne...s384=9m50meVeV ZRD===Jy/020nRe...s484P=C4m50=.e00V.80m5eV 1.2 IJ=30A 1.0 1.0 The Ru-1212 samples used for this study were direction- ally solidified pellets, grown by means of the Top-Seeded -15 -10 -5 0 5 10 150.8-15 -10 -5 0 5 10 15 V(mV) V(mV) Melt-Textured method starting from Ru-1212 and Ru-1210 (RuSr GdO )powdermixtureswitharatioRu-1212/Ru-1210 = 0.2.2The6details of the preparationprocedure are reported 1m.15 Z==00..3795 e) 22..02 Z==01..975 f) 1el2s1e2whpehraes.e11wIansthfoeuXnd-.RaIyn tdhieffrraecstiisotinviptyattmerenass,uaremsinegnltes vReur-- dV1Nor.10 RD=Jy/3nRe.s0P=Cm1=.e18V.m14eV 11..68 RD=Jy/3nRe.s0P=Cm0=.e31V.m5eV sus temperature, the onset of the superconducting transition dI/1.05 IJ=6.4A 11..24 IJ=30A was observed at Tocn ≃ 43K with Tc(ρ=0) ≃ 24K and 1.00 1.0 ∆T = 12K (∆T is defined as the difference between the 0.8 c c -40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 temperatures measured at 90% and 10% of the normal state resistance). Wenoticethatabroadeningofthesuperconduct- V(mV) V(mV) ingtransitionisoftenobservedinpolycrystallinesamplesand FIG. 2: (Color online) The dI/dV vs V characteristics measured itisusuallyrelatedtotheformationofintergrainweakJoseph- in different Ru-1212/Pt-Ir PC junctions at 4.2K. The experimental sonjunctions5,12,13. Weaddressthispointinthenextsection. data(dots)areshowntogetherwiththebesttheoreticalfittings(solid lines)obtainedbyamodifiedBTKmodelforad-wavesymmetryof To realizeourexperimentswe useda Pt-Ir tip, chemically thesuperconductingorderparameter. etchedina40%solutionofHCl,whileRu-1212sampleswere cleaned in an ultrasound bath in ethyl alcohol. Sample and tip were introduced in the PCAR probe, in which three mi- crometricscrewsareallocated,eachdrivenbyitsowncrank. structure, the main features appearing for each contact with Two screws allow to vary the distance between tip and sam- differentshapes, amplitudesandenergywidths. Quite often, ple, with a precision of 1µm and 0.1µm, respectively. The oscillationsare observedon the conductancebackground,as thirdscrewisdevotedtochangetheinclinationofthesample shownin Figs. 2 c–f. We observethatthe ZBCP appearsas holder varying the contact area on the sample surface. The a simple structure in Fig. 2b, while in the remaining spec- PointContactjunctionswereformedbypushingthePt-Irtip tra it results to be structured with variationsof slope or sec- on the Ru-1212 pellet surface with the probe thermalized in ondary maxima, as in Fig. 2e. The maximum conductance the liquid He4 bath. The Current-Voltage (I vs V) charac- ratio GNS(V = 0)/GNN(V >> ∆) is less than 2 for all teristics were measured by using a conventional four-probe the curves, howeverGNS(V = 0)/GNN(V >> ∆) ≃ 2.2 method and a lock-in technique with an amplitude of the ac for the data in Fig. 2f. In addition to this, the energywidth current less than 1µA was used to measure the differential ofthemainzerobiastriangularstructureislowerthan10mV conductance(dI/dV vsV)spectraasfunctionoftheapplied in Figs. 2a–d while it results wider, around 40mV, in Figs. voltage. 2e,f. At a first qualitative analysis, these data appear quite In Fig. 2, we show a variety of normalized conductance puzzlingandcouldbeinterpretedintermoflocal,largevari- spectra obtainedat T = 4.2K byestablishingdifferentcon- ations of the superconductingenergy gap. In the following, tactsondifferentareasofthesameRu-1212pellet. Thejunc- wewillshowthatthetheoreticalfittingsofallthespectragive tionresistancesvariedbetween10Ωand100Ω. Byusingthe clearindicationofad-wavesymmetryofthesuperconducting Sharvin relation,14 it has been possible to achive an estima- orderparameter,withconsistentvaluesoftheinferredampli- tion of the size of the contact area. Indeed R = ρl/4a2, tudeoftheenergygap. whereρ = 0.4mΩcmisthelowtemperaturesresistivityand Firstofall,letusquantitativelyanalyzethecurvesofFigs. l≈1000A˚,asestimatedinRef.11.Inourcase,wehavefound 2a–d. Wewerenotabletoreproducetheconductancespectra thatthetypicalcontactsizevariedbetween300A˚ and1000A˚. reportedinFig. 2a,bbyusingeithertheconventionals-wave We observe that all the reported spectra are characterized modelortheanisotropicone,evenbyconsideringsmallZval- by a Zero Bias Conductance Peak (ZBCP) with a triangular ues, indicativeof low barriers. On the otherhand, as can be 4 observedinFig.1,thes-wavefittingscannotmodelthestruc- tancecurvesreportedinFigs. 2e,f,withawiderZBCP.Inthis tured conductances reported in Figs. 2 c,d. The solid lines respect, we observe that, due to the granularity of the com- inthefiguresarethetheoreticalfittingsobtainedbyconsider- pound,insamecases,anintergrainJosephsonjunctioncanbe ingad-wavesymmetryoftheorderparameterinthemodified formedinserieswiththePointContactone,asschematically BTK model, Eqs. 2-6. A satisfactory agreementis obtained drawn in Fig. 3. This topic has been recently addressed in byusingasfittingparametersthesuperconductingenergygap PCARstudiesonMgCNi 17andMgB 18. 3 2 ∆,thebarrierstrengthZ,theangleαandaphenomenological To provide a quantitative evaluation of the conductance factorΓDynes15totakeintoaccountpairbreakingeffectsand spectra, we consider a real configuration in which the Pt-Ir finitequasiparticlelifetime16.Wenoticethatintheconsidered tiprealizesaPCjunctiononasingleRu-1212grain,which,in spectra, both quasiparticle tunneling and Andreev reflection turn,isweaklycoupledtoanothergrain,soformingaJoseph- processestake place, since intermediateZ valueshave to be sonjunction.Inthiscasethemeasuredvoltagecorrespondsto usedtosimulatethebarrierstrength(0.45≤Z ≤0.9).More- thesumoftwoterms: over,theangleαvariesbetween0.39and0.51,indicatingthat theaveragetransportcurrentmainlyflowsalonganintermedi- V (I)=V (I)+V (I), (8) measured PC J atedirectionbetweenthenodalone(α=π/4)andthatofthe maximumamplitudeoftheenergygap(α=0).Themodified whereV andV arethevoltagedropsattheN/SPointCon- d-waveBTKmodelallowstosatisfactorilyreproducethevari- PC J tactjunctionandattheS/I/SintergrainJosephsonjunction,re- ationsofslopearound±1mV ofthestructuredZBCPinFigs. spectively.ThislastcontributioncanbecalculatedbytheLee 2a,c,dwithalightdiscrepancyinmodelingthefullheightof formula19which,inthelimitofsmallcapacitanceandatlow thepeakinFig. 2d. Weshowinthenextsectionthatamore temperatures,reducestothesimplifiedexpression20: satisfactory fitting for this contactcan be obtainedby taking intoaccountanadditionalinseriesintergrainjunction. 0 forI <I ; We remark that the values of the superconducting energy V = J (9) gap, inferred from the theoretical fittings, are all consistent J (cid:26)RJIJ [(I/IJ)2−1] forI ≥IJ . andenableustoestimateanaveragevalueoftheamplitudeof p theorderparameter∆=(2.8±0.2)meV. Thisvalueissur- Atthe same time, forthe PointContactcontribution,we use prisinglylowincomparisonwiththeamplitudeoftheenergy againtheextendedBTKmodelforad-wavesuperconductor. gapinothercupratesuperconductors,howeverthepossibility TheI(V)characteristicisthencalculatedbyinvertingEq.(8) that the presence of the RuO magnetic planes can play an andtheconductancespectrumisgivenby: 2 importantroleinthecomplexRu-1212systemhastobetaken into account. We notice that the ratio between the smearing dI dV dV −1 PC J factorΓDynes andthesuperconductingenergygapresultsal- σ(V)= = + . (10) dV (cid:18) dI dI (cid:19) ways less than 20% and it vanishes for the fitting shown in Fig. 2d. We consider this fact as an indication of the good By applying this simple model we have satisfactory fitted qualityofourpoint-contactjunctions. the experimental data reported in Figs. 2e,f. Remarkably, for both spectra, the best fittings have been obtained by us- ing ∆ = 3.0 meV, consistently with the average value ex- IV. ROLEOFTHEINTERGRAINCOUPLING tractedfromtheothercurvesinFigs. 2a–d. Weobservethat, inthismodel,twomoreparametersareneeded,namelythere- To complete our discussion about the spectra measuredat sistanceR andthecriticalcurrentI oftheJosephsonjunc- J J lowtemperatures,wenowaddresstheanalysisoftheconduc- tion.However,thechoiceofthesetwoparametersisnotcom- pletelyarbitrary,sincetheconditionR +R = R has J PC NN tobefulfilled,whereR isthemeasurednormalresistance NN tip N I andtheproductRJIJ necessarilyresultslowerthan∆21. Insomecases,ithasbeenpointedoutthatdipsinthecon- ductance spectra can be related to the presence of intergrain VPC junctions17,18,andforsakeofcompleteness,wehaveapplied grain S ourmodelalso to the spectra of Figs. 2 a–d. We notice that N/I Vmeasured for different junctions, the effect of the intergrain coupling V J results more or less evident, depending on ratio R /R . grain S For the conductances shown in Figs. 2a–c this effeJct tuPrCns outto benegligible,however,some improvementofthe the- oreticalfitting is obtainedin the case of Fig. 2d (see dashed FIG.3: (Color online) Intergrain coupling effect inpolycrystalline line). Remarkably,bythislastfittingwehavefoundthesame samples. ThemeasuredvoltageVmeasuredisthesumoftwoterms: valueofthesuperconductingenergygappreviouslyinferred, VPC, the voltage drops between tipand sample, the N/S PC junc- ∆ = 2.8meV, with a ΓDynes/∆ ratio less than 3% and tion,andVJ,thevoltagedropsbetweentwosuperconductinggrains, R /R =0.05. formingtheS/I/SJosephsonjunction. J PC 5 V. TEMPERATUREDEPENDENCEOFTHE 2.0 CONDUCTANCESPECTRA T To achieve informationon the temperature dependenceof thesuperconductingenergygapintheRu-1212system,inthis 1.0 4.4K section we analyze the temperature behavior of the conduc- 4.7K tancespectrumshowninFig. 2d. Indeed,thisPCARjunction resultedtobeverystablefortemperaturevariations. 5.0K InFig.4weshowtheconductancecharacteristicsmeasured 5.6K in the temperaturerange4.2K ≤ T < 35K. We firstly no- tice that the ZBCP decreases for increasing temperatureand m 6.3K disappearsat aboutT ≃ 30K, that we estimate as the local or N 7.9K criticaltemperatureTl ofthesuperconductingRu-1212grain V c d in contact with the Pt-Ir tip, consistently with the resistivity I/ 10.4K measurements11. Thisfactprovidesfurtherevidencethatthe d ZBCPisaconsequenceofthesuperconductingnatureofRu- 13.7K 1212andisnotduetospuriouseffectslikeinelastictunneling 17.5K via localized magneticmomentsin the barrierregion22. The experimentaldataforeachtemperaturearethencomparedto 21.8K the theoretical fittings calculated by using the d-wave modi- 22.5K fiedBTKmodelwithasmallcontributionofJosephsonjunc- tioninseries. Forallthecurves,wefixedthestrengthofthe 28.2K barrier and the angle α to the values obtained at the lowest 33.8K temperature. Theresultingtemperaturedependenceofthesuperconduct- -15 -10 -5 0 5 10 15 ing energy gap ∆(T) is reported in Fig. 5, where vertical V(mV) bars indicate the errors in the gap amplitude evaluation, that FIG. 4: (Color online) Temperature evolution of the conductance increasewhenapproachingthecriticaltemperature. Contrar- spectrum of Fig. 2c from T = 4.2K to up the critical tempera- ily to what expected for BCS superconductors, we observe ture(dots). Thesolidlinesarethetheoreticalfittingsobtainedbya thattheenergygap,atlowtemperatures,decreasesrapidlyfor modified d-wave BTK model with the energy gap as only free pa- increasing temperatures and goes to zero at Tl in a sublin- c rameter. ear way. We notice that the same temperature evolution for the superconducting energy gap is found trough the d-wave BTK modelwith orwithoutconsideringanyintergrainjunc- tioninseries;remarkably,inthislastcase,thesuperconduct- ingenergygap∆remainstheonlyvaryingparameter.Asim- 3.0 1.0 ilartemperaturedependencehasbeenreportedbyG.A.Um- G GNS(0,T)/GNS(0,T=4.2K) NS marinoetal.23,howevertheseauthorsgivealargerestimation 2.4 0.8 (0 ofthemaximumgapamplitude. ,T V) )/G Fromtheaveragevalueofthesuperconductingenergygap (me11..28 00..46 NS(0,T= ∆pmeurac=thurs2em.8aTlcllmere≃tVha3na0ntKdhe,frpwormeedoitchbteteadimnBeCaasSruarvteiaodlu2leo∆caan/ld(kcaBrlistToiccla)sml ≃taelmle2-r 4.2 thanthevaluesfoundforhigh-Tc cupratesuperconductors24. 0.6 0.2 K) Againwe speculate thatthe simultaneouspresenceofsuper- conducting and magnetic order is an important key for un- 0.0 0.0 derstanding the behavior of the Ru-1212 system. Coexis- 0 5 10 15 20 25 30 35 tence of superconductivity and antiferromagnetism is found T(K) amongcuprates,howeveritiscommonbelievethatferromag- FIG.5:(Coloronline)Temperaturedependenceofthesuperconduct- netism and superconductivityare mutually excludingorders. ingenergygapasinferredfromthetheoreticalfittingsshowninFig. Recently, it has been found that in conventional Supercon- 4. Thesolidlineisaguidefortheeyes. Therighthandscalerefers ductor/Ferromagnetic (S/F) structures, proximity effect give to the temperature evolution of the measured height of the ZBCP risetoanoscillatorybehaviorofthesuperconductingT asa c normalizedtothe4.2Kvalue. function of the thickness of the F layer25,26. There are con- ditionsforwhichachangeofsignoftheorderparameteroc- curs,producingtheπ-junctionphenomenon27. Inadditionto this,adramaticsuppressionoftheamplitudeoftheorderpa- rameterisexpectedforhighT superconductorsinclosecon- c 6 tactwithaferromagneticmaterial28 andvariousexamplesof the other hand, as observed in Muon Spin Rotation (µSR) anomalous temperature behavior are found in the literature. experiments8, they show quite homogeneous ferromagnetic Gaplesssuperconductivitycanbeachieved,thatcaninducea orderbelowT . Aweakinteractionbetweenthetwoorderpa- c sublineartemperaturedependenceofthesuperconductingen- rameters,ferromagnetismintheRuO planesandsupercon- 2 ergygap. IntheRu-1212system,ithasbeenprovedthatthe ductivityintheCuO planes,hasbeensuggestedandrecently 2 RuO planes are conducting, however these do not develop severalexperimentsappeartoconfirmthishypothesis29. De- 2 superconductivityat any temperature29. By means of differ- spiteofthehugeexperimentalandtheoreticaleffortsfocused entexperimentaltechniques,it hasbeeninferredthat a large on the study of the interplay between superconductivityand fractionof the chargecarriersis notcondensedin the super- magnetism, to the best of our knowledge no spectroscopic conductingstateevenatlowtemperatures29.Bothfindingsare studiesinmagneticfieldofthesuperconductingorderparam- consistentwithareducedvalueofthe2∆/(k T )ratiointhis eterinRu-1212havebeenreportedinliteraturesofar. B c compound. In Fig. 6 we show the PCAR spectra measured by apply- In Fig. 5 we also report(righthandscale) the temperature ing an external magnetic field, parallel to the tip, with in- evolutionoftheheightoftheZBCPnormalizedtoitsvalueat tensity H varying from 0T to 2T. The dI/dV vs V curves T = 4.2K. ItisworthtonoticethatG (V = 0,T),asdi- refer to the contact reported in Fig. 2b. A reduction of the NS rectlymeasuredfromtheexperiments,and∆(T),asinferred ZBCPforincreasingmagneticfieldsisobserved,thatinfirst fromthetheoreticalfittings,showasimilarscalingwithtem- approximationcanbereproducedbyaphenomenologicalap- perature. This correspondence is easily verified for Z = 0 proach. Indeed,addressingtheproblemofthemagneticfield incaseofas-wavesuperconductor,howeveritisaquitenew dependenceoftheconductancecharacteristicsisnonconven- resultsinceithasbeenfoundforintermediatebarriersandun- tionalsuperconductors,isaquitedifficulttaskandacomplete conventionalsymmetryofthesuperconductingorderparame- treatmentofPCARspectroscopyinmagneticfieldwouldre- ter. quiretheuseofanappropriatedensityofstatesincalculating theBTK expressionforthe reflectionandtransmissioncoef- ficientsattheN/Sinterface. Dueto thelack ofananalytical model,Miyoshietal.33 presentedatwofluidmodeltorepro- VI. MAGNETICFIELDDEPENDENCEOFTHE ducethe effectof normalvortexcoresin PCAR junctionsin CONDUCTANCESPECTRA conventionalsuperconductors,assumingthatthecontactarea contains multiple randomly distributed individual junctions As we already observed, one of the most interesting fea- (non-Sharvinregime14). These authors propose a simplified tures of the Ru-1212is the coexistenceof the superconduct- expression for the conductance, written as a sum of normal ing phase and magnetic order. Indeed, from Nuclear Mag- andsuperconductingchannels: netic Resonance (NMR)30,31 and magnetization32 measure- ments,ithasbeenfoundthatinthiscompoundrutheniumoc- G (V)=(1−h)G +hG (V) NStot NN NS cursinamixedvalencestateRu4+,Ru5+ withsomehigher Ru5+ concentration. The RuO2 planes, from one side, act where h = H/Hc2 and Hc2 is the critical field. This ap- aschargereservoirforthesuperconductingCuO planes,on proach,however,cannotbe appliedto ourexperimentssince 2 we dealwith policrystalline,unconventionalsuperconductor, exhibitinginternalmagneticordering. In this case, the mag- netic induction B is not simply proportional to the external magneticfieldH andasaconsequencethedensityofvortices 1.25 H=0T 3.0meV) isnotlinearlyrelatedtoH. ( An alternative way to perform a theoretical fitting is ob- 1.20 H=2T 2.9 tainedbyusinganadditionalpairbreakingparametertosim- m ulate the effect due to the magnetic field34,35. In this case, VNor 1.15 2.8 0.0 0.5 1.0 1.5 2.0 the total broadening effect Γ is considered as the sum of d H(T) two terms: Γ = ΓDynes +Γext where ΓDynes is the intrin- dI/ 1.10 sic broadening due to the quasiparticle lifetime, as used in 1.05 thepreviousfittings,whileΓext mimicsthepairbreakingef- fectdue to the externalappliedmagnetic field. The curveat 1.00 H = 0T (see Fig. 2b) has been fitted by using the d-wave modified BTK model with ∆ = 3.0 meV. For increasing 0.95 magneticfieldswekeepconstant,inthenumericalcomputa- -10 -5 0 5 10 tion,thestrengthofthebarrierZ =0.9,theorientationangle V(m V) α=0.51andtheintrinsicΓDynes =0.7meV,whilevarying FIG.6: (Coloronline)Magneticfielddependenceofthenormalized onlytwoparameters:theenergygap∆andthemagneticfield dI/dV vs V characteristics at T = 4.2 K from 0 T to 2 T (dots) effectΓext. Weobservethatthebesttheoreticalfittings(solid forthespectraofFig. 2b. Thefulllinesarethetheoreticalfittings linesinFig. 6)satisfactorilyreproduceforanyfieldboththe obtainedasdiscussinthetext.Intheinsetthemagneticfielddepen- heightandtheamplitudeofthemeasuredspectra.Intheinset, denceoftheenergygapisreported. wereportthemagneticfielddependenceofthesuperconduct- 7 pellets. Alltheconductancecurvesatlowtemperaturesshow 1.16 0T a Zero Bias Conductance Peak that decreases for increasing 1.14 1T temperaturesand disappears at the local critical temperature 2T Tl ≃ 30K of the superconductinggrain in contact with the 1.12 2.5T c Pt-Irtip. Thetriangularshapeofallthemeasuredspectrahas 0T field switched off 1.10 beenmodeledby usinga modifiedBTK modelfor a d-wave ) -1 1.08 symmetryofthesuperconductingorderparameter. Thisfind- V( ingsuggestsaclosersimilarityoftheRu-1212systemtothe d 1.06 dI/ high Tc cuprate superconductorsrather than to the magnetic 1.04 ruthenateSr RuO compound. However,theremarkablylow 2 4 valuesoftheenergygap∆=(2.8±0.2)meV andofthera- 1.02 tio2∆/k T ≃2indicatemajordifferencesbetweentheRu- B c 1.00 1212andthehighT cuprates.Wespeculatethatthepresence c 0.98 of ferromagneticorder within the superconductingphase re- -60 -40 -20 0 20 40 60 sultsinaneffectivereductionoftheenergygap.Wehavealso V(mV) demonstratedthat,whendealingwithgranularsamples,inter- FIG.7: Normalized conductance curves for the contact of Fig. 2e grain couplingeffectscan play a predominantrole. In some measuredatT =4.2Kinmagneticfieldupto2.5T.Whenthefield cases,anintergrainJosephsonjunctioninserieswiththepoint isswitchedoff,theoriginalspectraarerecovered. contactjunctionisformed.Takingintoaccountthisfeatureas well,allconductancespectrahavebeenproperlymodeledby consideringa d-wavesymmetryof theorderparameter,with ingenergygap(dots)asextractedfromthetheoreticalfittings. consistentvaluesoftheamplitudeoftheenergygap. TheamplitudeoftheenergygapreduceslinearlyforH upto By fixing all the fitting parameters to their values at the 2Tandby a linearextrapolationofthe data, we findthatthe energy gap disappears at about Hext ≃ 30 T, consistently lowestmeasuredtemperature,andbyvarying∆,thetempera- withtheestimatedcriticalfieldreportedinRef.11. turedependenceoftheenergygaphasbeenextractedfromthe conductancecharacteristicsofaverystablejunction.Wehave Wehavealsostudiedtheeffectofthemagneticfieldonthe foundthattheenergygapexhibitsasub-lineardependencein conductance characteristics of the junctions showing wider temperature. The magnetic field behavior of the spectra has ZBCP, that are formedby two junctionsin series. In Fig. 7 been also studied, showing a linear reduction of the energy we reportthe dI/dV vs V curves measured up to 2.5 T for thecontactsofFig. 2e. Inthiscase,weobservethatthecon- gapforfieldsupto2T,fromwhichacriticalfieldHc2 ∼ 30 T is inferred. We have found that both the superconducting ductance curves dramatically change with the application of featuresandthenormalbackgroundintheconductancespec- the magnetic field. As discussed in the previoussection, the tradonotshowanyhysteresisinmagneticfield. Theseobser- Josephson current due to the intergrain coupling is immedi- vationsseem to suggesta weak couplingbetween the super- atelysuppressedbythemagneticfield,modifyingthespectra conductingandmagneticorderparameter. towardsthe narrower,non-structured,triangularshape ofthe ZBCP.Inadditiontothis,theoscillatorybehavioroftheback- Ouranalysismaybehelpfulforadeeperunderstandingof ground,duetotheintergraincouplingdisappearsinmagnetic themechanismsenablinghightemperaturesuperconductivity, field. Remarkably,forthejunctionsofbothFigs. 6,7thepe- anditsinterplaywithmagneticorderinunconventionalsuper- culiarfeaturesofthespectratogetherwiththenormaljunction conductorslikerutheno-cuprates. resistance,arerecoveredwhenthemagneticfieldisswitched off,andnohysteresisisfoundforincreasing/decreasingfields. Acknowledgments VII. CONCLUSIONS The authorsthank Y. Maeno, Y. Tanaka and G. Deutscher WehaveanalyzedthePCARconductancespectraobtained forhelpfuldiscussionsandF.Vicinanzaforthetechnicalsup- insuperconductingRuSr GdCu O (Ru-1212)policrystalline port. 2 2 8 1 A. M. Duif, A. G. M. Jansen and P. Wyder, J. Phys.: Condens. cond-mat/0508044(2005). Matter1,3157(1989). 6 C. Bernhard, J. L. Tallon, E. Bru¨cher and R. K. Kremer, Phys. 2 A.F.Andreev,Zh.Eksp.Teor.Fiz.46,1128(1964). Rev.B61,R14960(2000). 3 G.Deutscher,Rev.Mod.Phys.77,109(2005). 7 J.W.Lynn, B.Keimer, C.Ulrich, C.BernhardandJ.L.Tallon, 4 L.Bauernfeind,W.WidderandH.F.Braun,PhysicaC254,151 Phys.Rev.B61,R14964(2000). (1995). 8 C.Bernhard,J.L.Tallon,Ch.Niedermayer,Th.Blasius,A.Gol- 5 T. Nachtrab, C. Bernhard, C. Lin, D. Koelle and R. Kleiner, nik,E.Bru¨cher,R.K.Kremer,D.R.Noakes,C.E.Stronachand 8 E.J.Ansaldo,Phys.Rev.B59,14099(1999). cond-mat/0309553(2003). 9 G.E.Blonder,M.TinkhamandT.M.Klapwijk,Phys.Rev.B25, 24 Y. Dagan, R. Krupke and G. Deutscher, Phys. Rev. B 62, 146 4515(1982). (2000). 10 S.KashiwayaandY.Tanaka,Rep.Prog.Phys.63,1641(2000). 25 A.I.BuzdinandM.V.Kuprianov,JEPTLett.52,487(1990). 11 C. Attanasio, M. Salvato, R. Ciancio, M. Gombos, S. Pace, S. 26 J.S.Jiang,D.Davidovic,D.H.ReichandC.L.Chien,Phys.Rev. UthayakumarandA.Vecchione,PhysicaC411,126(2004). Lett.74,314(1995). 12 M.Prester,E.Babic´,M.Stubicˇar,andP.Nozar,Phys.Rev.B49, 27 W.Guichard,M.Aprili,O.Bourgeois,T.Kontos,J.Lesueurand 6967(1994). P.Gandit,Phys.Rev.Lett.90,167001(2003). 13 M.R.Cimberle,M.Tropeano,M.Feretti,A.Martinelli,C.Artini, 28 P.S.Luo,H.Wu,F.C.Zhang,C.Cai,X.Y.Qi,X.L.Dong,W. G.A.Costa,Supercond.Sci.Technol.,18,454(2005). Liu, X.F.Duan, B.Xu, L.X.Cao, X. G.Qiu, and B.R.Zhao, 14 Y. Sharvin, Zh. Ekperim. i. Teor. Fiz., 48, 984 (1965) (Soviet Phys.Rev.B71,094502(2005) PhysicsJETP,21,655). 29 M.Pozˇek,A.Dulcˇic´,D.Paar,A.Hamzic´,,M.Basletic´,E.Tafra, 15 R.C.Dynes,V.NarayanamurtiandJ.P.Garno,Phys.Rev.Lett. G. V. M. Williams and S. Kra¨mer, Phys. Rev. B 65, 174514 41,1509(1978). (2002). 16 M.Grajcar,A.Plecenik,P.SeidelandA.Pfuch,Phys.Rev.B51, 30 K. I. Kumagai, S. Takada, and Y. Furukawa, Phys. Rev. B 63, 16185(1995). 180509(R)(2001). 17 L.Shan,H.J.Tao,H.Gao,Z.Z.Li,Z.A.Ren,G.C.Che,andH. 31 Y. Tokunaga, H. Kotegawa, K. Ishida, Y. Kitaoka, H. Takagiwa H.Wen,Phys.Rev.B68,144510(2003). andJ.Akimitsu,Phys.Rev.Lett.86,5767(2001). 18 F.Giubileo,M.Aprili,F.Bobba,S.Piano,A.ScarfatoandA.M. 32 A. Butera, A. Fainstein, E.Winkler and J. TallonPhys. Rev. B Cucolo,cond-mat/0508137(2005),Phys.Rev.B(inpress). 63,054442(2001). 19 P.A.Lee,J.Appl.Phys.42,325(1971). 33 Y. Miyoshi, Y. Bugoslavsky, and L. F. Cohen, Phys. Rev. B 72, 20 T.VanDuzerandC.W.TurnerPrinciplesofSuperconductiveDe- 012502(2005). vicesandCircuits(EdwardArnold,London,1981). 34 Yu.G.Naidyuk,R.Ha¨ussleraandH.v.Lo¨hneysenet, PhysicaB 21 A. Barone and G. Paterno`, Physics and Applications of the 218,122(1996). Josephsoneffect(JohnWiley&Sons,1982). 35 R. S. Gonnelli, D. Daghero, A. Calzolari, G. A. Ummarino, V. 22 A.M.Cucolo,PhysicaC305,85(1998). Dellarocca,V.A.Stepanov,J.Jun,S.M.Kazakov,andJ.Karpin- 23 G. A. Ummarino, A. Calzolai, D. Daghero, R. S. Gonnelli, ski,Phys.Rev.B69100504(R)(2004). V. A. Stepanov, R. Masini and M. R. Cimberle, e–print

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.