ebook img

Pairing mechanism for high temperature superconductivity in the cuprates: what can we learn from the two-dimensional t-J model? PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pairing mechanism for high temperature superconductivity in the cuprates: what can we learn from the two-dimensional t-J model?

Pairingmechanism forhigh temperature superconductivity inthecuprates: whatcanwelearn from the two-dimensional t− J model? Huan-Qiang Zhou1 1Centre for Modern Physics and Department of Physics, Chongqing University, Chongqing 400044, The People’s Republic of China Morethantwentyyearshavepassedsincehightemperaturesuperconductivityinthecopperoxides(cuprates) wasdiscoveredbyJ.G.BednorzandK.A.Mu¨llerin1986[1]. Althoughintensetheoreticalandexperimental 0 effortshavebeendevotedtotheinvestigationofthisfascinatingclassofmaterials,thepairingmechanismre- 1 sponsibleforunprecedented hightransitiontemperaturesT remainselusive. Theoretically, thedifficultylies c 0 inthefactthatthisclassofmaterials,asdopedMott-Hubbardinsulators[2],involvestrongelectroniccorrela- 2 tions,whichrendersconventionaltheoreticalapproachesunreliable. Recentprogressinnumericalsimulations n ofstronglycorrelatedelectronsystemsinthecontextoftensornetworkrepresentations[3,4]makesitpossible a togetaccesstoinformationencodedintheground-statewavefunctionsofthetwo-dimensionalt−Jmodel-a J minimalmodel,aswidelybelieved,tounderstandelectronicpropertiesofdopedMott-Hubbardinsulators[5– 9 8]. Inthisregard, anintriguingquestioniswhetheror notthetwo-dimensional t−J modelholdsthekeyto 1 understandinghightemperaturesuperconductivityinthecuprates.Asitturnsout,suchakeyliesinasupercon- ductingstatewithmixedspin-singletd+s−waveandspin-triplet p (p )-wavesymmetriesinthepresenceof x y ] ananti-ferromagneticbackground[9].Here,thed+s-wavecomponentinthespin-singletchannelbreaksU(1) n symmetryinthechargesector,whereasboththeanti-ferromagneticorderandthespin-tripletp (p )-wavecom- o x y ponentbreaksSU(2)symmetryinthespinsector. Therefore,fourgaplessGoldstonemodesoccur. However, c evenifweresorttotheKosterlitz-Thoulesstransition[10],onlythed+s-wavesuperconductingcomponentsur- - r vivesthermalfluctuations. ThisturnsthreegaplessGoldstonemodes,arisingfromSU(2)symmetrybreaking, p intotwo degenerate soft modes, withtwicethe spin-triplet p (p )-wave superconducting energy gap as their u x y characteristicenergyscale: oneisaspin-tripletmodeobservedasaspinresonancemodeininelasticneutron s . scattering,theotherisaspin-singletmodeobservedasaA1gpeakinelectronicRamanscattering.Thescenario at allowsustopredictthatpairingisofd+s-wavesymmetry, withthetwodegenerate softmodesasthelong- m soughtkeyingredientsindeterminingthetransitiontemperatureTc,thusofferingapossiblewaytoresolvethe controversyregardingtheelusivemechanismforhightemperaturesuperconductivityinthecuprates. - d n PACSnumbers:74.20.-z,74.20.Mn,74.20.Rp o c [ Imagine if we would have been able to solve a model etersareindependentofsitesonthelattice. system describing dopedMott-Hubbardinsulators on a two- Now let us switch on thermal fluctuations. Suppose we 1 dimensionalsquarelattice,whoseground-statewavefunction restrict ourselves to a strict two dimensional system. Then, v 8 isasuperconductingstatewithmixedspin-singletd+s−wave eveniftheKosterlitz-Thoulesstransition[10]isinvoked,only 5 andspin-tripletp (p )−wavesymmetriesinthepresenceofan spin-singletd+s-wavesuperconductingcomponentsurvives x y 3 anti-ferromagneticbackground,withtheorderparametersfor thermal fluctuations. However, the non-abelian SU(2) sym- 3 the s-wave, d-wave, and p (p )-wave superconductingcom- metry is not allowed to be broken at any finite tempera- . x y 1 ponents, together with the anti-ferromagnetic order parame- ture [11, 12]. This immediately implies that the Goldstone 0 ter, shown in Fig. 1, in a properdoping range. Note that ∆ modes arising from the spontaneous symmetry breaking of 0 d and ∆ are, respectively, the spin-singlet d-wave and s-wave SU(2) in the spin sector have to be turned into degenerate 1 s : superconducting energy gaps, whereas ∆p is the spin-triplet softmodes,withtwicethespin-tripletpx(py)-wavesupercon- v p (p )-wave superconducting energy gap and N is the anti- ductingenergygapastheircharacteristicenergyscale: oneis i x y X ferromagneticNe´elorderparameter. A fewpeculiarfeatures aspin-tripletmodeassociatedwiththeanti-ferromagneticor- r of this state are: (i) Both the 90 degree (four-fold) rotation der,withthemomentumtransfer(π,π),andtheotherisaspin- a symmetryandthetranslationsymmetryunderone-siteshifts singletmodeassociatedwiththespin-triplet p (p )-wavesu- x y are spontaneously broken on the square lattice. (ii) Spin- perconductingcomponent,withthemomentumtransfer(0,0). rotation symmetry SU(2) is spontaneously broken, due to Ontheotherhand,thereisnothingtopreventfromthebreak- the simultaneousoccurrenceof boththe p (p )−wave super- ingofthediscretefour-foldrotationsymmetryonthesquare x y conductingcomponentandtheanti-ferromagneticorder. (iii) lattice. Actually,thisbrokensymmetrynotonlymanifestsit- U(1)symmetryinthechargesectorisspontaneouslybroken, selfintheadmixtureofasmalls-wavecomponenttothedom- due to pairing in both spin-singlet and spin-triplet channels. inantd-wavesuperconductingstate(seeFig.1,leftpanel),but Here, we emphasize that the symmetry mixing of the spin- also protectsthe spin-singletsoftmodethat is unidirectional singletandspin-tripletchannelsarisesfromthespin-rotation asitarisesfromthep (p )-wavesuperconductingcomponent. x y symmetrybreaking,simplybecausespinisnotagoodquan- Our argument leads to a scenario that, at any finite tem- tumnumber. (iv)Allsuperconductingcomponentsarehomo- perature, the pairing is of d + s-wave symmetry, with two geneous,inthesensethattheirsuperconductingorderparam- degeneratesoftmodesactingasthe keyingredientsin deter- 2 mining the transition temperature Tc. Actually, two distinct 2∆ 2∆ ewniethrgtyhesccaolensv2en∆t∗ioannadlEsurepsearcreonindvuocltvoerds:,i2n∆a∗marairskeesdfrcoomntrtahset 2∆ 2∆ds ∆∆/sd 2∆ 2∆p* anti-ferromagneticNe´elorderparameterN, whichisrespon- δ sibleforpairing,withitscouplingstrengthdecreasingalmost linearly with doping, whereas E = 2∆ , which is respon- res p sible for condensation. Therefore, E must scale with the δ δ res superconductingtransition temperature T , i.e., E ∼ k T , c res B c withk beingtheBoltzmannconstant[seeFig.1,rightpanel]. FIG. 1: (color online) The doping dependence of the order pa- B Similarly, 2∆∗ scales as 2∆∗ ∼ k T∗, with T∗ being the so- rameters for a model system describing doped Mott-Hubbard in- B calledpseudogaptemperature[13,14]. Inaddition,onemay sulators on a two-dimensional square lattice, whose ground-state expect that E < 2∆ , simply due to the fact that the pre- wave function is a superconducting state with mixed spin-singlet res d d+s−waveandspin-tripletp (p )−wavesymmetriesinthepresence dominant d-wave superconductingcomponentsurvives ther- x y ofananti-ferromagneticbackground, withtheorderparametersfor mal fluctuations. Considering that both the superconducting the s-wave,d-wave,and p (p )-wavesuperconductingcomponents, gap∆d andthetransitiontemperatureTc characterizethesu- togetherwiththeanti-ferroxmaygneticorderparameterN. Leftpanel: perconductivity,theyshouldtrackeachotherintheentiredop- Thesuperconductinggaps∆ and∆ forthespin-singletd-waveand d s ingrange, implying∆d ∼ kBTc. Infact, forthe t− J model, s-wavecomponentsasafunctionofdopingδ,withtheirratio∆s/∆d aolulorwsismuuslattoioenstiinmdaicteateasutnhiavteErsraesl c≈oe1ffi.2c5i∆endt[κ9].≈T5h.3is7inintuthrne sahnodwEnreisn=th2e∆inpsfeot.rRthieghatnptia-nfeerlr:oTmhaegenneetircgyorsdcearleasn2d∆th∗e∼spkBinT-t∗ri∼plNet p (p )−wavesuperconductingorderasafunctionofdopingδ,with scalingrelation: E =κk T . x y res B c Nbeingtheanti-ferromagneticorder,andk theBoltzmannconstant. B Notethatthetwodistinctenergyscalesintheunderdoped Acrossover fromtheBose-Einsteincondensation (BEC)regimeto regimearesplitofffromonesingleenergyscaleinthe(heav- theBardeen-Cooper-Schrieffer (BCS)regimeoccurs, whenthetwo ily) overdoped regime. This naturally results in a crossover energy scales merge into one single energy scale in the (heavily) from the Bose-Einstein condensation (BEC) regime to the overdoped regime. Note that, in general, Eres < 2∆d. Indeed, Bardeen-Cooper-Schrieffer (BCS) regime, as conjectured in Eres ≈1.25∆d,aspredictedfromthetwo-dimensionalt−Jmodel.In addition,E scaleswiththesuperconductingtransitiontemperature Ref.[15],whichinturnisessentiallyequivalenttothephase res T : E ∼k T fluctuation picture proposed by Emery and Kivelson [16]. c res B c However, there is an importantdifference: the superconduc- tivityweakensintheheavilyunderdopedregime,notonlybe- causeofthelossofphasecoherence,butalsobecauseofthe (heavily)overdopedregimeasaconsequenceoftheevolution decreaseofthesuperconductinggap∆ withunderdoping. of the Fermiarcs in the underdopedregimeto a large Fermi d surface in the (heavily) overdopedregime [30, 31]. We em- Nowafundamentalquestioniswhetherornotsucha sce- phasizethatthepseudogapneartheantinodalregiondoesnot narioisreallyrelevanttothehighT problem. Thisbringsus c characterize a precursor to the superconducting state, in the tothephenomenologyofthehightemperaturecupratesuper- conductors. sensethatthepseudogapsmoothlyevolvesintothesupercon- First, let us focus on the two distinct energy scales 2∆∗ ducting gap at Tc [13, 30, 31]. Instead, it coexists with the superconductinggap of the d + s-wave symmetry in the su- and E . Physically, the two distinct energy scales mea- res perconductingstate. More likely, a precursorpairing occurs sure, respectively, the pairing strength and the coherence of thesuperfluidcondensate. Thisnaturallyleadsto twodiffer- inthenodalregion[32],withitsonsettemperaturelowerthan T∗, but above T , which may be identified with the Nernst entphases: oneischaracterizedbyincoherentpairing,which c regime[33, 34]. As observed, the superconductinggapnear may be identified with the pseudogapphase; the other is as- the nodes scales as k T [29]. This makes a strong case for sociated with the emergenceof a coherentcondensateof su- B c our argument, if one takes into account the smallness of the perconductingpairs,whichmaybeidentifiedwiththesuper- conductingphaseofd+ s-wave symmetry[see Fig.2]. Evi- s-wave superconductinggap. On the other hand, ample evi- dencehasbeenaccumulated,overtheyears,fortheuniversal denceforthetwodistinctenergyscaleswasreportedinangle- scalingrelationE = κ k T ,validforbothsoftmodes,i.e., resolved photoemission spectra [17–20], electronic Raman res B c thespin-tripletresonancemodeininelasticneutronscattering spectra [21–24], scanning tunneling microscopy [25], c-axis experiments[35–41]andthespin-singletmodeobservedasa conductivity[26],Andreevreflection[27],magneticpenetra- A peakinelectronicRamanscattering[21,42–46],respec- tiondepth[28],andotherprobes(forareview,see,Ref.[29]. 1g tively. The experimentally determined κ is around 6, quite Actually,thesestudiesindicatethatthegapneartheantinodal closetoourtheoreticalestimate. Thispresentsapossibleres- region, which is identified as the pseudogap, does not scale olutionto the mysterious A problem[42]: the A modeis with T in the underdopedregime, whereas the gap near the 1g 1g c a charge collective mode as a bound state of (quasiparticle) nodal region may be identified as the superconductingorder parameterinthecuprates[17–23]. Thisidentificationoffersa singletpairsoriginatingfromthefluctuating px(py)-wavesu- perconductingorder. naturalexplanationwhythe twodistinctenergyscalesin the underdopedregimemergeintoonesingleenergyscaleinthe Second, is the pairing symmetry really of d + s-wave na- 3 if the stripe states (for reviews, see, e.g., Ref. [63–66]) were nottouchedupon. Surprisingly,astripe-likestate,i.e.,astate with charge and spin density wave order, coexisting with a spin-tripletp (p )−wavesuperconductingstate,doesoccuras x y T agroundstateinthet−Jmodelfordopingsuptoδ≈0.18[9], N * with J/t = 0.4. Again, all symmetries, including the four- T T PG foldrotationandtranslationlatticesymmetry,SU(2)spinro- tationandU(1)chargesymmetry,arespontaneouslybroken. AF Asimilarlineofreasoningyieldsthat,onlythechargedensity T wave order survives thermal fluctuations, with the concomi- C SC tantoccurrenceofthesoftmodes: theyarisefromtheSU(2) symmetry breaking of the spin density wave order and the δ spin-triplet p (p )−wave superconducting order, with twice x y the spin-triplet p (p )-wave superconducting energy gap as x y their characteristic energyscale. Althoughit remains uncer- FIG.2: (coloronline)Aschematicphasediagramofthehole-doped tain whether or not such a commensurate stripe-like state is high temperature cuprate superconductors plotted as a function of an artifact of our choice of the unit cell for the tensor net- temperatureT andholedopingδ. Here, SC,PG,andAFstandfor work representation of quantum states, an important lesson thesuperconducting, pseudogap, andanti-ferromagneticphases,re- wehavelearnedfromoursimulationisthat, thet− J model spectively. T ,T∗,andT represent,respectively,thesuperconduct- c N exhibitsastrongtendencytowardsastripestateintheunder- ingtransitiontemperature,thepseudogaptemperature,andtheanti- doped regime, consistent with the density matrix renormal- ferromagnetic Ne´el temperature. In our scenario, the PG phase is characterizedbyincoherentpreformedpairs,withapseudogapopen- izationgroup[67]foramorerealisticstripepatternatdoping ing near the anti-nodal region, leaving the remnant gapless Fermi 1/8 and J/t = 0.35. From this we conclude that (i) static arcsnear thenodes inthemomentum space. Inaddition, thefour- charge density wave order is compatible with the supercon- foldrotationsymmetryandthetranslationsymmetryarebrokenon ductivity,soitspossibleroleisdeservedtobeexploredinthe thesquarelattice. Superconducivityoccurs,whenlongrangephase formationof the pseudogap; (ii) static spin density wave or- coherencedevelopsatTc. derisdetrimentaltothed+s-wavesuperconductivity,because nod+ s-wave superconductingcomponentcoexistswith the charge and spin density order in the ground state; (iii) fluc- ture? Many theoretical proposals, mainly based on the res- tuatingspindensitywaveorder,togetherwiththefluctuating onating valence bond scenario [2], predicted a pure d-wave spin-triplet p (p )−wavesuperconductingorder,equallywell x y superconductivityinthecuprates[6,47–49]. Althoughavari- account for the Bose-Einstein condensation in our scenario. etyofexperimentshavedemonstratedapredominantd-wave Therefore,the fluctuatingstripe orderis intrinsic to many, if gap [50–52], strong evidence points to an admixture of an notall,familiesofthehightemperaturecupratesuperconduc- s-wave component to the dominant d-wave superconductiv- tors. ity in muon spin rotation studies [53, 54], electronic Raman Fourth,doesourpredictionaboutthespontaneousbreaking measurements[55], angle-resolvedelectron tunnelingexper- of the four-fold rotation symmetry and the translation sym- iments [56], and neutron crystal-field spectroscopy experi- metryunderone-siteshifts in thepseudogapphase represent ments [57]. In addition, a universal scaling relation of the aphysicalreality? Inourscenario,thePGphaseischaracter- superfluiddensity,ρ (0),atabsolutezero,withtheproductof s ized by incoherentpreformedpairs, which occur in the anti- the dc conductivity σ (T ), measured at T , and the transi- dc c c nodal regime in the momentum space, leaving the remnant tion temperature T , indicates that a pure d-wave supercon- c gaplessFermiarcsinthenodalregime. Inaddition,thefour- ductivityisrealizedinthecuprates[58]. Thisscalingrelation foldrotationsymmetryandthetranslationsymmetryarebro- may be regardedas a modified form of the Uemura relation ken on the square lattice. In the superconductingphase, the between the superfluid density ρ (0) and the transition tem- s four-fold rotation symmetry breaking manifests itself in the peratureT [59,60],whichworksreasonablywellintheun- c admixture of an s-wave component to the dominant d-wave derdoped regime. However, a significant deviation from the state. Inthepseudophase,thebrokensymmetryprotectsthe scalingrelationwassubsequentlyobserved[61],withasalient spin-singletsoft mode that is unidirectionalas it arises from featurethatthedeviationincreaseswithdoping. Thisfeature the p (p )-wave superconductingfluctuations, as well as the x y stronglysuggeststhatthediscrepancyshouldbeaccountedfor fluctuatingspindensityorderandpossiblystatic chargeden- by removing an extra contribution from the s-wave compo- sity order. One may expect that measurable physical effects nentinthecontextofthed+s-wavepairingsymmetry. This arise from the coupling of electrons with the unidirectional issue has been addressed recently [62], thus supporting our spin-singletsoftmode. Indeed,alargein-planeanisotropyof scenario. theNernsteffectinYBa Cu O wasreportedthatsetsinex- 2 3 y Third, any theory regarding the underlying mechanism of actlyatthepseudogaptemperatureT∗[68]. Thisbrokenfour- high temperature superconductivity would not be complete, fold rotation symmetry was also detected by resistivity [69] 4 andinelasticneutronscattering[70–72]atlowdoping,andby (2006). scanningtunnelingspectroscopy[73,74]atlowtemperature, [9] S.-H.Li,Q.-Q.Shi,andH.-Q.Zhou,arXiv:1001.3343. withoutaclearconnectiontothepseudogaptemperatureT∗. [10] J.M.KosterlitzandJ.D.Thouless,J.Phys.C6,1181(1973). [11] P.C.Hohenberg,Phys.Rev.158,383(1967). Fifth, what is the real bosonic glue for high temperature [12] N.D.MerminandH.Wagner,Phys.Rev.Lett.17,1133(1966). superconductivity in the cuprates? Many researchers have [13] H.Ding,T.Yokoya,J.C.Campuzano,T.Takahashi,M.Rande- suggested various candidates, such as the spin resonance ria,M.R.Norman,T.Mochiku,K.Hadowaki,andJ.Giapintza- mode [75, 76], the spin fluctuation spectrum [77–81], the kis,Nature382,51(1996). phononspectrum[82,83],amoderesponsibleforthedipob- [14] A.G. Loeser, Z.-X. Shen, D.S. Dessau, D.S. Marshall, C.H. Park,P.Fournier,andA.Kapitulnik,Science273,325(1996). servedin angle-resolvedphotoemissionspectra[84], andthe [15] Y.J.Uemura,Procedingsoftheinternationalworkshoponpo- anti-ferromagneticfluctuations[85,86],asapossiblebosonic larons and biporalons in high-T superconductors and related c glue. However, our scenario unveils that the spin resonance materials, ed. E. Salje, A.S. Alexandrov, and Y. Liang, Cam- and the Raman A1g modes play an analogous role to a ro- bridgeUniversityPress(1995),453. toninthesuperfluid4He,incontrasttotheconventionallow- [16] V.J.EmeryandS.A.Kivelson,Nature374,434(1995). temperature superconductorswith phonon-mediatedpairing. [17] K.Tanaka,etal.,Science314,1910(2006). This strongly suggests that, there is no bosonic glue to pair [18] T. Kondo, T. Takeuchi, A. Kaminski, S. Tsuda, and S. Shin, Phys.Rev.Lett.98,267004(2007). electronsinthecuprates,asadvocatedbyAnderson[87].That [19] W.S. Lee, I.M. Vishik, K. Tanaka, D.H. Lu, T. Sasagawa, N. is, pairingis an emergentphenomena;itis resultedfromthe Nagaosa, T.P.Devereaux, Z.Hussain, andZ.-X.Shen, Nature many-body correlations in a doped Mott-Hubbard insulator: 450,81(2007). boththed-waveandtheextendeds-wavepairingsarerealized [20] T.Yoshida,etal.,Phys.Rev.Lett.103,037004(2009). toavoidstrongon-siteCoulombrepulsion. Here, weremark [21] Y. Gallais, A. Sacuto, P.Bourges, Y. Sidis, A. Forget, andD. thatthespin resonanceandtheRaman A modeshavebeen Colson,Phys.Rev.Lett.88,177401(2002). 1g suggestedbyUemura[88]toberotonanalogues,byinvoking [22] M.LeTacon,A.Sacuto,A.Georges,G.Kotliar,Y.Gallais,D. Colson,andA.Forget,Nat.Phys.2,537(2006). softmodesinthespinandchargechannelsinanincommen- [23] W.Guyard,A.Sacuto,M.Cazayous,Y.Gallais,M.LeTacon, suratestripestate(seealsoRef.[89]foranalternativeexpla- D.Colson,andA.Forget,Phys.Rev.Lett.101,097003(2008). nation). In this sense, our scenario unlocksthe secret of the [24] W.Guyard,M.LeTacon,M.Cazayous,A.Sacuto,Y.Gallais, yet-to-be-achievedsolid, as an analogueof the solid 4He, in A.Georges,D.Colson,andA.Forget,Phys.Rev.B77,024524 thecuprates. (2008). [25] M.C. Boyer, W.D. Wise, K. Chatterjee, M. Yi, K. Kondo, T. Inclosing,letusdiscussapossiblecandidateofthemodel Takeuchi,H.Ikuta,andE.W.Hudson,Nat.Phys.3,802(2007). systemthatisabletoreproduceallthefeaturesneededtoad- [26] Y. Li, D.Munzar, A.V.Boris, P.Yordanov, J.Chaloupka, Th. dress the high T problem, as mentionedat the beginningof c Wilf, C.T. Lin, B. Keimer, and C. Bernhard, Phys. Rev. Lett. thetext. Withthefactinmindthatthetwo-dimensionalt−J 100,177004(2008). modeldoesexhibitad+s-wavesuperconductingstateanda [27] G.Deustcher,Nature397,410(1999). stripe-like state in a certain doing range for a physically re- [28] C.Panagopoulos,J.R.Cooper,andT.Xiang,Phys.Rev.B57, alistic parameter regime [9], we speculate that, most likely, 13422(1998). an extension of the t− J model to include the next-nearest- [29] S.Hu¨fner, M.A.Hossain, A.Damascelli, andG.A.Sawatzky, Rep.Prog.Phys.71,062501(2008). neighborandthethird-nearest-neighborhoppingterms,which [30] T.TimuskandB.Statt,Rep.Prog.Phys.62,61(1999). areknowntobesignificantinthecuprates,willdothejob. [31] M.R. Norman, D. Pines, and C. Kallin, Adv. Phys. 54, 715 We thank Sam Young Cho, Sheng-Hao Li, Bo Li, Qian- (2005). Qian Shi, Hong-Lei Wang, Zu-Jian Ying and Jian-Hui Zhao [32] W.S.Lee,etal.,Nature450,81(2007). [33] Z.A.Xu,etal.,Nature406,486(2000). forusefulandstimulatingdiscussions.Thisworkissupported [34] Y.Wang,etal.,Phys.Rev.Lett.95,247002(2005). in partbythe NationalNaturalScienceFoundationofChina [35] H.F.Fong,etal.,Phys.Rev.Lett.75,316(1995). (GrantNos: 10774197and10874252). [36] P.C.Dai,etal.,Phys.Rev.Lett.77,5425(1996). [37] H.F.Fong,etal.,Phys.Rev.Lett.78,713(1997). [38] H.F.Fong,etal.,Nature398,588(1999). [39] H.He,etal.Phys.Rev.Lett.86,1610(2001). [40] H.He,etal.Science295,1045(2002). [1] J.G.BednorzandK.A.Mu¨ller,Z.Phys.B64,189(1986). [41] S.D.Wilson,etal.,Nature442,014523(2008). [2] P.W.Anderson,Science235,1196(1987). [42] T.P.DevereauxandR.Hack,Rev.Mod.Phys.79,175(2007). [3] Q.-Q. Shi, S.-H. Li, J.-H. Zhao, and H.-Q. Zhou, [43] S.L.Cooper,etal.,Phys.Rev.B38,11934(1988). arXiv:0907.5520. [44] X.K.Chen,Phys.Rev.B48,10530(1993). [4] J.Jordan,R.Oru´s,G.Vidal,F.Verstraete,andJ.I.Cirac,Phys. [45] M.LeTacon,etal.,Phys.Rev.B71,R100504(2005). Rev.Lett.101,250602(2008). [46] T.P.Devereaux,etal.,Phys.Rev.Lett.72,396(1994). [5] F.C.ZhangandT.M.Rice,Phys.Rev.B37,3759(1988). [47] C.Gros,Phys.Rev.B38,931(1988). [6] F.C.Zhang,C.Gros,T.M.Rice,andH.Shiba,Supercond.Sci. [48] G.KotliarandJ.Liu,,Phys.Rev.B38,5142(1988). Tech.1,36(1988). [49] Y. Suzumura, Y. Hasegawa, and H. Fukuyamsa, J. Phys.Soc. [7] X.G.WenandP.A.Lee,Phys.Rev.Lett.76,503(1996). Jpn.57,2768(1988). [8] P.A.Lee,N.Nagaosa,andX.-G.Wen,Rev.Mod.Phys.78,17 [50] D.J.Scalapino,Phys.Rep.250,330(1995). 5 [51] D.J.VanHarlingen,Rev.Mod.Phys.67,515(1995). [68] R.Daou,etal.,arXiv:0909.4430. [52] C.C.TsueiandJ.R.Kirtley,Rev.Mod.Phys.72,969(2000). [69] Y.Ando,etal.,Phys.Rev.Lett.88,137005(2002). [53] R.Khasanov,S.Stra¨ssle,D.DiCastro,T.Masui,S.Miyasaka, [70] C.Stock,etal.,Phys.Rev.B69,014502(2004). S.Tajima,A.Bussmann-Holder,andH.Keller,Phys.Rev.Lett. [71] V.Hinkov,etal.,NaturePhys.3,780(2007). 99,237601(2007). [72] V.Hinkov,etal.,Science319,597(2008). [54] R.Khasanov, A.Shengelaya,A.Maiuradze,F.LaMattina,A. [73] Y.Kohsaka,etal.,Science315,1380(2007). Bussmann-Holder,H.Keller,andK.A.Mu¨ller,Phys.Rev.Lett. [74] Y.Kohsaka,etal.,Nature454,1072(2008). 98,057007(2007). [75] E.DemlerandS.-C.Zhang,Nature396,733(1998). [55] T.Masui,M.Limonov,H.Uchiyama,S.Lee,S.Tajima,andA. [76] J.P.Carbotte,E.Schachinger,andD.N.Basov,Nature401,354 Yamanaka,Phys.Rev.B68,060506(2003). (1999). [56] H.J.H. Smilde, A.A. Golubov, G. Ariando, G. Rijnders, J.M. [77] S.M.Hayden,etal.,Nature429,531(2004). Dekkers, S. Harkema, D.H.A. Blank, H. Rogalla, and H. [78] J.Hwang,T.Timusk,andG.D.Gu,Nature427,714(2004). Hilgenkamp,Phys.Rev.Lett.95,257001(2005). [79] T.Valla,ProceedingsofSPIE5932,593203(2005). [57] A.Furrer,J.Supercond.Nov.Magn.21,1(2008). [80] M.R. Norman and A.V. Chubukov, Phys. Rev. B 73, 140501 [58] C.C.Homes,etal.,Nature430,539(2004). (2006). [59] Y.J.Uemura,etal.,Phys.Rev.Lett.62,2317(1989). [81] T. Dahm, V. Hinkov, S.V. Borisenko, A.A. Kordyuk, V.B. [60] Y.J.Uemura,etal.,Phys.Rev.Lett.66,2665(1991). Zabolotnyy,J.Fink,B.Bu¨chner,D.J.Scalapino,W.Hanke,and [61] J.L. Tallon, J.R. Cooper, S.H. Naqib, and J.W. Loram, Phys. B.Keimer,arXiv:0812.3860. Rev.B73,180504(R)(2006). [82] A.Lanzara,etal.,Nature412,510(2001). [62] H.-Q. Zhou, Z.-J. Ying, M. Cuoco, and C. Noce, [83] X.J.Zhou,etal.,Nature423,398(2003). arXiv:1002.xxxx. [84] J.C.Davis,etal.,Nature452,546(2006). [63] S.A.Kivelson,etal.,Rev.Mod.Phys.75,1201(2003). [85] P.Monthoux,A.V.Balatsky,andD.Pines,Phys.Rev.Lett.67, [64] M.Vojta,Adv.Phys.58,564(2009). 3448(1989). [65] J.M.Tranquada,HandbookofHigh-TemperatureSuperconduc- [86] A.J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 tivity: Theory and Experiment, eds. J.R. Schrieffer and J.S. (1990). Brooks,Springer,Amsterdam(2007),257. [87] P.W.Anderson,Science316,1705(2007). [66] J.Zaanen,PhysicaC317,217(1999). [88] Y.J.Uemura,J.Phys.Condens.Mat.16,S4515(2004). [67] S.R. White and D.J. Scalapino, Phys. Rev. Lett. 80, 1272 [89] J.W.MeiandZ.Y.Weng,arXiv:0909.5567. (1998).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.