ebook img

P-spline ANOVA-type interaction models - for spatio-temporal PDF

28 Pages·2008·1.76 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview P-spline ANOVA-type interaction models - for spatio-temporal

P-spline ANOVA-type interaction models for spatio-temporal smoothing Dae-Jin Lee(cid:63) and Mar´ıa Durb´an Universidad Carlos III de Madrid Department of Statistics IWSM Utrecht 2008 D.-J.LeeandM.Durban (UC3M) ’P-splineANOVA-typemodels’ IWSM2008 1/26 Outline 1 Motivation 2 Penalized splines for Spatio-Temporal data 3 ANOVA-Type Interaction Models 4 Application to O pollution in Europe 3 5 Conclusions D.-J.LeeandM.Durban (UC3M) ’P-splineANOVA-typemodels’ IWSM2008 2/26 1. Motivation • Air pollution • Enviromental policies • Monitoring networks: (cid:73) European Environmental Agency (EEA) (cid:73) EMEP project (European Monitoring and Evaluation Programme) • Ozone (O ) is currently one of the air pollutants of most concern in 3 Europe. D.-J.LeeandM.Durban (UC3M) ’P-splineANOVA-typemodels’ IWSM2008 3/26 Monitoring stations across Europe l 65 l l l l 60 l l l l l 55 ll l lll l l l l 50 l l l ll l l lllll l lllll l 45 l l l l 40 l l −5 0 5 10 15 20 25 sampleof45monitoringstations Monitoringstation D.-J.LeeandM.Durban (UC3M) ’P-splineANOVA-typemodels’ IWSM2008 4/26 O time series plot for selected locations 3 (cid:73) Seasonal pattern: Spain Finland 140 FUrKance 120 100 O3 80 60 40 20 1999 2000 2001 2002 2003 2004 2005 time D.-J.LeeandM.Durban (UC3M) ’P-splineANOVA-typemodels’ IWSM2008 5/26 O3 level from 01/2004 to 12/2005 Playanimation ene.99 222000 444000 666000 888000 111000000 111222000 D.-J.LeeandM.Durban (UC3M) ’P-splineANOVA-typemodels’ IWSM2008 6/26 1. Motivation (cid:73) Spatio-temporal data • Response variable, y ijt (cid:73) measured over geographical locations, s=(x,x ), with i,j =1,..,n i j (cid:73) and over time periods, x , for t =1,....,T t • ISSUE: huge amount of data available (cid:73) e.g. : Environmental data, epidemiologic studies, disease mapping applications, ... • Smoothing techniques: (cid:73) Study spatial and temporal trends. (cid:73) Space and time interactions. (cid:73) “Penalized Splines” (Eilers and Marx, 1996). D.-J.LeeandM.Durban (UC3M) ’P-splineANOVA-typemodels’ IWSM2008 7/26 2. Penalized splines (cid:73) “The flexible smoother” • Methodology: (cid:73) Given the data (x,y ), i =1,...,n. i i (cid:73) Fit a sum of local basis functions: f(x)=Bθ i (cid:73) Minimize the Penalized Sum of Squares: (cid:107)y −f(x)(cid:107)2+Penalty i i (cid:73) The Penalty controls the smoothness of the fit. (cid:88) Smoothing parameter: λ (cid:88) Apply a discrete penalty over coefficients θ, e.g. in 1d: P=λD(cid:48)D where D is a difference matrix acting on θ. D.-J.LeeandM.Durban (UC3M) ’P-splineANOVA-typemodels’ IWSM2008 8/26 2. Penalized splines (cid:73) “The flexible smoother” • For array data (Currie et al., 2006): (cid:73) Generalized Linear Array Methods (GLAM): f(x ,...,x )=Bθ 1 d (cid:73) where B is the Kronecker product of d B-splines basis: B=B ⊗B ⊗....⊗B 1 2 d (cid:73) Efficient Algorithms for smoothing on multidimensional grids (e.g. mortality data, images, etc...). (cid:73) Easy representation as a Mixed Model: f(x ,...,x )=Xβ+Zα 1 d D.-J.LeeandM.Durban (UC3M) ’P-splineANOVA-typemodels’ IWSM2008 9/26 2. Penalized splines (cid:73) Example of GLAM: • 3d-case: f(x ,x ,x )=Bθ 1 2 3 • Basis: B=B ⊗B ⊗B 1 2 3 (cid:73) θ can be expressed as a 3d-array A={θ} of dim. c ×c ×c ijk 1 2 3 θ θ (cid:116)(cid:116)la(cid:116)y(cid:116)e(cid:116)r1,(cid:116).(cid:116)..(cid:116),c(cid:116)3(1,1,c3) (cid:115)(cid:115)(cid:115)(cid:115)(cid:115)(cid:115)(cid:115)(cid:115)(cid:115)(1,c2,c3) θ columns θ (1,1,1) 1,...,c2 (1,c2,1) rows 1,...,c1 θ(c1,1,c3) (cid:115)(cid:115)(cid:115)(cid:115)(cid:115)(cid:115)(cid:115)(cid:115)θ(cid:115)(c1,c2,c3) θ θ (c1,1,1) (c1,c2,1) D.-J.LeeandM.Durban (UC3M) ’P-splineANOVA-typemodels’ IWSM2008 10/26

Description:
P-spline ANOVA-type interaction models for spatio-temporal smoothing. Dae-Jin Lee⋆ and Mar´ıa Durbán. Universidad Carlos III de Madrid. Department of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.