ebook img

Opportunistic Mobile Social Networks PDF

534 Pages·2014·21.706 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Opportunistic Mobile Social Networks

Opportunistic Mobile Social Networks TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Opportunistic Mobile Social Networks Edited by Jie Wu and Yunsheng Wang CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20140603 International Standard Book Number-13: 978-1-4665-9495-1 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Dedication Toourparents,ZengchangWu,YeyiShao,KemingWang,andYingyanWang TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Contents Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix AbouttheEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxxiii Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxv 1 Social-CommunicationCompositeNetworks . . . . . . . . . . . . . . 1 PrithwishBasu,BenBaumer,AmotzBar-Noy,andChi-KinChau 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 CompositeGraphModels . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 MetricsonCompositeGraphs . . . . . . . . . . . . . . . . 5 1.3 CompositeStretchAnalysis . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 TheoreticalResults . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 CompositeStretchofSomeSpecialGraphs . . . . . . . . . 10 1.3.3 Averagevs.Worst-CaseAnalysis . . . . . . . . . . . . . . 13 1.4 CompositeBroadcastTime . . . . . . . . . . . . . . . . . . . . . . 14 1.5 CompositeBetweennessCentrality . . . . . . . . . . . . . . . . . 17 1.5.1 ConstrainedCompositeLoadonPathGraphs . . . . . . . . 17 1.5.2 CompositeCentralityinManhattanGridNetworks . . . . . 17 1.6 MulticastinCompositeNetworks . . . . . . . . . . . . . . . . . . 18 1.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6.2 Hierarchy-CompliantMulticast . . . . . . . . . . . . . . . 20 1.6.3 AlgorithmsforH-CompliantMulticast . . . . . . . . . . . 21 vii viii (cid:4) Contents 1.7 Simulation-BasedEvaluation . . . . . . . . . . . . . . . . . . . . 24 1.7.1 ChainofCommand . . . . . . . . . . . . . . . . . . . . . . 24 1.7.1.1 EvaluationofBasicCompositeNetworkMetrics . 28 1.7.1.2 EvaluationofCompositeNetworkMulticast . . . 30 1.7.2 Friend-of-a-Friend(FOAF) . . . . . . . . . . . . . . . . . . 31 1.8 ConclusionandDiscussion . . . . . . . . . . . . . . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 RecentAdvancesinInformationDiffusionandInfluenceMaximization ofComplexSocialNetworks . . . . . . . . . . . . . . . . . . . . . . . 37 HuiyuanZhang,SubhankarMishra,andMyT.Thai 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 SocialInfluenceandInfluenceMaximization . . . . . . . . . . . . 40 2.4 InformationDiffusionModels . . . . . . . . . . . . . . . . . . . . 42 2.4.1 ThresholdModels . . . . . . . . . . . . . . . . . . . . . . 43 2.4.1.1 LinearThresholdModel . . . . . . . . . . . . . . 44 2.4.1.2 TheMajorityThresholdModel . . . . . . . . . . 45 2.4.1.3 TheSmallThresholdModel . . . . . . . . . . . . 45 2.4.1.4 TheUnanimousThresholdModel . . . . . . . . . 45 2.4.1.5 OtherExtensions . . . . . . . . . . . . . . . . . 46 2.4.2 CascadingModel . . . . . . . . . . . . . . . . . . . . . . . 46 2.4.2.1 IndependentCascadingModel . . . . . . . . . . 46 2.4.2.2 DecreasingCascadingModel . . . . . . . . . . . 47 2.4.2.3 Independent Cascading Model with Negative Opinion . . . . . . . . . . . . . . . . . . . . . . 47 2.4.3 GeneralizedThresholdandCascadeModels . . . . . . . . . 47 2.4.4 EpidemicModel . . . . . . . . . . . . . . . . . . . . . . . 48 2.4.4.1 SIRModel . . . . . . . . . . . . . . . . . . . . . 49 2.4.4.2 SISModel . . . . . . . . . . . . . . . . . . . . . 50 2.4.4.3 SIRSModel . . . . . . . . . . . . . . . . . . . . 50 2.4.5 CompetitiveInfluenceDiffusionModels . . . . . . . . . . . 50 2.4.5.1 Distance-BasedModel. . . . . . . . . . . . . . . 51 2.4.5.2 WavePropagationModel . . . . . . . . . . . . . 51 2.4.5.3 Weight-ProportionalThresholdModel . . . . . . 52 2.4.5.4 SeparatedThresholdModel . . . . . . . . . . . . 53 2.5 InfluenceMaximizationandApproximationAlgorithms . . . . . . 53 2.5.1 InfluenceMaximization . . . . . . . . . . . . . . . . . . . 53 2.5.2 ApproximationAlgorithm . . . . . . . . . . . . . . . . . . 55 2.5.2.1 GreedyAlgorithm . . . . . . . . . . . . . . . . . 55 2.5.2.2 CELFSelectionAlgorithm . . . . . . . . . . . . 56 2.5.2.3 CELF++Algorithm . . . . . . . . . . . . . . . . 57 2.5.2.4 SPMandSP1M . . . . . . . . . . . . . . . . . . 59 2.5.2.5 MaximumInfluencePaths . . . . . . . . . . . . . 59 2.5.2.6 SIMPATH . . . . . . . . . . . . . . . . . . . . . 61 Contents (cid:4) ix 2.5.2.7 VirAds . . . . . . . . . . . . . . . . . . . . . . . 63 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3 CharacterizingLinkConnectivityinOpportunisticNetworks . . . . . 71 Chul-HoLeeandDoYoungEun 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2 Mobility-InducedLink-LevelMetricsandNetworkPerformance . . 73 3.2.1 MathematicalDefinitions . . . . . . . . . . . . . . . . . . . 74 3.2.2 TheStatusQuoforMobility-InducedLink-LevelDynamics 74 3.3 Impact of User Availability on Link-Level Dynamics: Model and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3.2 UserAvailabilityComesintoPicture. . . . . . . . . . . . . 80 3.3.3 AnalysisofLink-LevelDynamics . . . . . . . . . . . . . . 81 3.3.3.1 Transfer-TimeDistributionandMeanInter-transfer Time . . . . . . . . . . . . . . . . . . . . . . . . 81 3.3.3.2 Inter-transferTimeDistribution . . . . . . . . . . 83 3.4 Impact of User Availability on Link-Level Dynamics: Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.5 DiscussionandConclusion . . . . . . . . . . . . . . . . . . . . . . 91 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4 Discovering and Predicting Temporal Patterns of WiFi-Interactive So- cialPopulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 XiangLi,Yi-QingZhang,andAthanasiosV.Vasilakos 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3 PairwiseInteractivePatternsofTemporalContactsandReachability 104 4.4 Concurrent Interactive Patterns of Event Interactions and Temporal TransmissionGraphs . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.5 TemporalDegreesandHubs:RankingandPredictio . . . . . . . . 112 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5 BehavioralandStructuralAnalysisofMobileCloudOpportunisticNet- works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Anh-DungNguyen,PatrickSenac,andMichelDiaz 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.2 UnderstandingandModelingOpportunisticNetworks . . . . . . . 126 5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.2 RelatedWorks . . . . . . . . . . . . . . . . . . . . . . . . 127 5.2.3 CharacterizingandModelingHumanMobility . . . . . . . 128 5.2.3.1 STEPS . . . . . . . . . . . . . . . . . . . . . . . 129 5.2.3.2 TheUnderlyingMarkovChain . . . . . . . . . . 130

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.