ebook img

On the q-Extensions of the Bernoulli and Euler Numbers, Related Identities and Lerch Zeta Function PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the q-Extensions of the Bernoulli and Euler Numbers, Related Identities and Lerch Zeta Function

ON THE q-EXTENSIONS OF THE BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND LERCH ZETA FUNCTION 9 0 0 TAEKYUNKIM,YOUNG-HEEKIM,ANDKYUNG-WONHWANG 2 n a Abstract Recently, λ-Bernoulli and λ-Euler numbers are studied in [5, 10]. The purpose J of this paper is to present a systematic study of some families of the q-extensions of the λ- 2 Bernoulliandtheλ-Eulernumbersbyusingthebosonicp-adicq-integralandthefermionicp-adic q-integral. The investigation of these λ-q-Bernoulli and λ-q-Euler numbers leads to interesting ] T identitiesrelatedtotheseobjects. Theresultsofthepresentpapercoverearlierresultsconcerning N q-Bernoulliandq-Euler numbers. Byusing derivative operator to the generating functions of λ- q-Bernoulliandλ-q-Eulernumbers,wegivetheq-extensionsofLerchzetafunction. . h t 2000 Mathematics Subject Classification : 11S80, 11B68? a m Key words and phrases : λ-Bernoulli numbers, λ-Euler numbers, p-adic q-integral, Lerch [ zetafunction 1 1. Introduction, Definitions and Notations v 9 Throughout this paper, the symbols Z ,Q ,C and C denote the ring of p-adic 4 p p p rationalintegers,thefieldofp-adicrationalnumbers,thecomplexnumberfieldand 2 0 the completion of algebraic closure of Qp, respectively. Let N be the set of natural . numbers. 1 0 Thesymbolq canbetreatedasacomplexnumber,q ∈C,orasap-adicnumber, 9 q ∈ Cp. If q ∈ C, then we always assume that |q| < 1. If q ∈ Cp, then we 0 usually assume that |1−q| < 1. Here |·| stands for the p-adic absolute value p p v: in Cp with |p|p = 1p. The q-basic natural numbers are defined by [n]q = 11−−qqn = Xi 1+q+q2 +···+qn−1 (n ∈ N) and [n]−q = 1−1(+−qq)n. In this paper, we use the r notation a 1−qx 1−(−q)x [x] = and [x] = , see [1-19]. q 1−q −q 1+q Hence lim[x] =x for any x with |x| ≤1 in the present p-adic case. q p q→1 Forx∈Z ,wesaythatg isauniformlydifferentiablefunctionatapointa∈Z , p p andwrite g ∈UD(Z ),the setofuniformlydifferentiable function, ifthe difference p quotients g(y)−g(x) F (x,y)= g y−x have a limit l=g′(a) as (x,y)→(a,a). For f ∈UD(Z ), the q- deformed bosonic p p-adic integral is defined as pN−1 qx (1) I (f)= f(x)dµ (x)= lim f(x) , see [1-19], q Z q N→∞ [pN]q Z p x=0 X 1 2 TAEKYUNKIM,YOUNG-HEEKIM,ANDKYUNG-WONHWANG and the q-deformed fermonic p-adic integral is defined by pN−1 (−q)x I (f)= f(x)dµ (x)= lim f(x) , (see [1-19]). −q ZZp −q N→∞x=0 [pN]−q X For n∈N, let f (x)=f(x+n). Then n n−1 (2) qnI (f )=(−1)nI (f)+[2] (−1)n−1−lqlf(l). −q n −q q l=0 X The classicalBernoullipolynomials B (x) and the Euler polynomialsE (x) are n n defined as t ∞ tn 2ext ∞ tn (3) ext = B (x) and = E (x) . et−1 n n! et+1 n n! x=0 x=0 X X The Bernoulli numbers B and the Euler numbers E are defined as B = B (0) n n n n and E =E (0), (see [1-19]). n n From (1), we note that q−1 (4) qI (f )=I (f)+(q−1)f(0)+ f′(0), q 1 q logq for f (x)=f(x+1). By (4), we see that I (f )=I (f)+f′(0), (see [7]). 1 1 1 1 Let u be algebraic in C (or C). Then the Frobenius-Euler polynomials are p defined as 1−u ∞ tn (5) ext = H (u,x) , (see [5]). et−u n n! n=0 X In case x=0, H (u,0)=H (u), which are called the Frobenius Euler numbers. n n Let Cpn be the cyclic group consisting of all pn-th roots of unity in Cp for any n ≥ 0 and Tp be the direct limit of Cpn with respect to the natural morphisms, hence Tp is the union of all Cpn with discrete topology. For λ∈T with λ6=1, if we use (4), then we have p t (6) etxλxdµ (x)= . Z 1 λet−1 Z p From (6), the λ−Bernoulli numbers are defined as t ∞ tn (7) =eB(λ)t = B (λ) , (see [5]) λet−1 n n! n=0 X with the usual convention of replacing Bi(λ) by B (λ). Thus, B (λ) can be deter- i k mined inductively by 1, if k =1, (8) λ(B(λ)+1)k−B (λ)= k (0, if k >1, (see [5]). By the definition of the Frobenius-Euler numbers, we see that t ∞ 1 (m+1)H (λ−1) (9) = · m tm+1, ( see [7]). λet−1 (m+1)! λ−1 m=0 X 3 For m≥1 and λ6=1, we have m (10) B (λ)= xmλxdµ (x)= H (λ−1), (see [5]). m Z 1 λ−1 m−1 Z p We can also easily see that λxdµ (x)=0 and Z 1 p tλx R ∞ tn etx= lim = lim xmλxdµ (x)λx. m→∞ λet−1 n!m→∞ Z 1 λ∈XCpm nX=0 λ∈XCpmZ p Consequently, we have 1 xn = B (1)+ H (λ−1)λx n λ−1 n−1 λX∈Tp λ6=1 B (λ) = B (1)+ n λx, ( see [5]). n n λX∈Tp λ6=1 From (6) and (8), we note that 1 2λ B (λ)=0, B (λ)= , B (λ)=− , ··· . 0 1 λ−1 2 (λ−1)2 The Genocchi numbers are defined by the generating function 2t ∞ tn = G . et+1 nn! n=0 X These numbers satisfy the relation G = 0,G = 1,G = G = ··· = G = 0, 0 1 3 5 2k+1 and the even coefficients are G =2(1−2n)B . n n For λ∈C with |λ|<1, by (2), we have p 2 (11) λxextdµ (x)= . Z −1 λet+1 Z p By (11), we define the λ-Euler numbers as follows : ∞ 2 E (λ) (12) = n tn, (see [7,9,10]). λet+1 n! n=0 X Note that E (λ)= 2 H (−λ−1). n λ+1 n From (12), we can easily derive 2 (13) xnλxdµ (x)=E (λ)= H (−λ−1). Z −1 n λ+1 n Z p The λ-Genocchi numbers are also defined as 2t ∞ tn t xnλxdµ (x)= = G (x) . Z −1 λet+1 n n! Z p n=0 X Thus, we have G (λ)=0, G (λ)= 2 , ··· , E (λ)= Gn+1(λ). 0 1 λ+1 n n+1 Inthispaper,westudy theq-extensionofλ-Bernoullinumberandλ-Eulernum- bers related to Lerch zeta function. The purpose of this paper is to present a systematicstudy ofsomefamilies ofthe q-extensionofthe λ-Bernoulliandλ-Euler numbersbyusingthebosonicp-adicq-integralandtheferminionicp-adicq-integral. 4 TAEKYUNKIM,YOUNG-HEEKIM,ANDKYUNG-WONHWANG Theinvestigationoftheseλ-q-Bernoulliandλ-q-Eulernumbersleadstointeresting identities related to these objects. The results of the present paper cover earlier results concerning q-Bernoulli and q-Euler numbers. By using derivative operator to the generating functions of λ-q-Bernoulli and λ-q-Euler numbers, we can give the q-extension of Lerch zeta function. 2. q-extension of λ-Bernoulli numbers and polynomials For λ∈T , let us consider the q-extension of λ-Bernoulli numbers as follows. p (14) β (λ)= λx[x]kdµ (x). k,q q q Z Z p From (14), we note that pN−1 1 β (λ) = lim λx[x]kqx k,q N→∞[pN]q q x=0 X pN−1 k 1 k 1 = lim (λq)x( (−1)lqlx) N→∞[pN]q x=0 l=0(cid:18)l(cid:19) (1−q)k X X 1−q k k 1−(λql+1)pN = (−1)l (1−q)k l 1−λql+1 l=0(cid:18) (cid:19) X k 1 k l+1 = (−1)l . (1−q)k−1 l 1−λql+1 l=0(cid:18) (cid:19) X Therefore, we obtain the following theorem. Theorem 1. For k ∈N∪{0} and λ∈T , we have p k 1 k l+1 β (λ)= (−1)l . k,q (1−q)k−1 l 1−λql+1 l=0(cid:18) (cid:19) X Let F(t,λ:q) be the generating functions of β (λ) with n,q ∞ tn F(t,λ:q)= β (λ) . n,q n! n=0 X 5 Then we have ∞ tn F(t,λ:q) = β (λ) = λxe[x]qtdµ (x) n,q n! Z q n=0 Z p X ∞ tn = λx[x]ndµ (x) Z q q n! n=0Z p X ∞ 1 k k ∞ tk (15) = { (−1)l(l+1) λmq(l+1)m} (1−q)k−1 l k! k=0 l=0(cid:18) (cid:19) m=0 X X X ∞ 1 ∞ k k tk = λm (−1)l(l+1)q(l+1)m (1−q)k−1 l k! k=0 m=0 l=0(cid:18) (cid:19) X X X ∞ 1 ∞ k k tk = qmλm l (−1)lqlm (1−q)k−1 l k! k=0 m=0 l=0 (cid:18) (cid:19) X X X ∞ 1 ∞ k k tk + qmλm (−1)lqlm . (1−q)k−1 l k! k=0 m=0 l=0(cid:18) (cid:19) X X X Since l k =k k−1 , the first term of the last equation in (15) equals l l−1 (cid:0) (cid:1) (cid:0) (cid:1) ∞ ∞ 1 k k−1 tk qmλm{ (−1)lqlm} (1−q)k−1 l−1 (k−1)! m=0 k=0 l=1(cid:18) (cid:19) X X X ∞ ∞ 1 k−1 k−1 tk (16) =− q2mλm{ (−1)lqlm} (1−q)k−1 l (k−1)! m=0 k=1 l=0(cid:18) (cid:19) X X X ∞ ∞ tk ∞ =−t q2mλm [m]k =−t q2mλme[m]qt. qk! m=0 k=0 m=0 X X X The second term of the last equation in (15) equals ∞ 1 ∞ tk qmλm(1−qm)k (1−q)k−1 k! k=0 m=0 X X ∞ ∞ tk ∞ (17) =(1−q) qmλm [m]k =(1−q) qmλme[m]qt. qk! m=0 k=0 m=0 X X X From (15), (16) and (17), we obtain the following proposition. Proposition 2. Let F(t,λ:q)= ∞ β (λ)tn . Then we have n=0 n,q n! P ∞ ∞ F(t,λ:q)=−t q2mλme[m]qt+(1−q) qmλme[m]qt. m=0 m=0 X X 6 TAEKYUNKIM,YOUNG-HEEKIM,ANDKYUNG-WONHWANG Since q2m =qm{[m] (q−1)+1}, it follows that q dkF (t,λ:q) β (λ) = q | k,q (dt)k t=0 ∞ ∞ = −k q2mλm[m]k−1+(1−q) qmλm[m]k q q m=0 m=0 X X ∞ ∞ ∞ = −k(q−1) qmλm[m]k−k qmλm[m]k−1+(1−q) qmλm[m]k q q q m=0 m=0 m=0 X X X ∞ ∞ = (1−q)(k+1) qmλm[m]k−k qmλm[m]k−1. q q m=0 m=0 X X Therefore, we obtain the following theorem. Theorem 3. For k ∈N∪{0} and λ∈T , we have p ∞ ∞ β (λ)=(1−q)(k+1) qmλm[m]k−k qmλm[m]k−1. k,q q q m=0 m=0 X X Now we consider another q-extension of λ-Bernoulli numbers as follows. (18) B (λ)= q−xλx[x]ndµ (x). n,q q q Z Z p From (18), we can derive B (λ) = q−xλx[x]ndµ (x) n,q q q Z Z p n 1 n = q−x(−1)lλxqlxdµ (x) (1−q)n l Z q l=0(cid:18) (cid:19)Z p X n 1 n l = (−1)l . (1−q)n−1 l 1−λql l=0(cid:18) (cid:19) X Thus, we obtain the following theorem. Theorem 4. For n∈N∪{0} and λ∈T , we have p n 1 n l B (λ)= (−1)l . n,q (1−q)n−1 l 1−λql l=0(cid:18) (cid:19) X Let F∗(t,λ:q) be the generating functions of B (λ) with n,q ∞ tn F∗(t,λ:q)= B (λ) . n,q n! n=0 X 7 Then we have ∞ tn F∗(t,λ:q) = B (λ) = q−xλxe[x]qtdµ (x) n,q n! Z q n=0 Z p X ∞ tn = { q−xλx[x]ndµ (x)} Z q q n! n=0 Z p X ∞ 1 n n l tn = { (−1)l } (1−q)n−1 l 1−λql n! n=0 l=0(cid:18) (cid:19) X X ∞ 1 n n ∞ tn = { (−1)ll λmqlm} (1−q)n−1 l n! n=0 l=0(cid:18) (cid:19) m=0 X X X ∞ ∞ n n n−1 tn = λm{ (−1)lqlm} (1−q)n−1 l−1 n! m=0 n=1 l=1(cid:18) (cid:19) X X X ∞ ∞ n tn = − λmqm (1−qm)n−1 (1−q)n−1 n! m=0 n=1 X X ∞ ∞ (1−qm)ntn+1 = − λmqm (1−q)n n! m=0 n=0 X X ∞ = −t λmqme[m]qt. m=0 X Therefore we obtain the following lemma. Lemma 5. Let F∗(t,λ:q)= ∞ B (λ)tn . Then we have n=0 n,q n! ∞ P F∗(t,λ:q)=−t λmqme[m]qt. m=0 X We also have dkF (t,λ:q) ∞ B (λ)= q | =−k qmλm[m]k−1. k,q (dt)k t=0 q m=0 X Therefore we obtain the following theorem. Theorem 6. For k ∈N∪{0} and λ∈T , we have p ∞ B (λ)=−k qmλm[m]k−1. k,q q m=0 X 3. q-extension of λ-Euler numbers and polynomials In this section, we assume that p is an odd prime number and λ ∈ C with p |1 − λ| < 1. By using the fermionic p-adic q-integral on Z , we consider the p p q-extensions of λ-Euler numbers as follows. For n∈N∪{0}, we define the q−extension of λ-Euler numbers as (19) E (λ)= q−xλx[x]ndµ (x). n,q q −q Z Z p 8 TAEKYUNKIM,YOUNG-HEEKIM,ANDKYUNG-WONHWANG From (19), we note that E (λ) = q−xλx[x]ndµ (x) n,q q −q Z Z p pN−1 1+q = lim (−1)x[x]nλx N→∞ 1+qpN q x=0 X [2] 1 n n 1+qpNλpN = q (−1)l lim 2 (1−q)n l N→∞ 1+qlλ l=0(cid:18) (cid:19) X n [2] 1 n 2 = q (−1)l 2 (1−q)n l 1+qlλ l=0(cid:18) (cid:19) X n [2] n 1 = q (−1)l . (1−q)n l 1+qlλ l=0(cid:18) (cid:19) X Therefore we obtain the following theorem. Theorem 7. For n∈N∪{0}, we have n [2] n 1 E (λ)= q (−1)l . n,q (1−q)n l 1+qlλ l=0(cid:18) (cid:19) X Let g(t,λ:q) be the generating function of E (λ) with n,q ∞ tn g(t,λ:q)= E (λ) . n,q n! n=0 X Then we have ∞ tn g(t,λ:q) = E (λ) = q−xλxe[x]qtdµ (x) n,q n! Z −q n=0 Z p X ∞ tn = { q−xλx[x]ndµ (x)} Z q −q n! n=0 Z p X ∞ 1 n n 1 tn = [2] { (−1)l } q (1−q)n l 1+λql n! n=0 l=0(cid:18) (cid:19) X X ∞ 1 n n ∞ tn = [2] (−1)l{ (−1)mλmqlm} q (1−q)n l n! n=0 l=0(cid:18) (cid:19) m=0 X X X ∞ ∞ 1 n n tn = [2] (−1)mλm (−1)lqlm q (1−q)n l n! m=0 n=0 l=0(cid:18) (cid:19) X X X ∞ ∞ tn = [2] (−1)mλm [m]n q q n! m=0 n=0 X X ∞ = [2] (−1)mλme[m]qt. q m=0 X Thus, we have the following lemma. 9 ∞ Lemma 8. Let g(t,λ:q)= E (λ)tn. Then we have n,q n! n=0 P ∞ (20) g(t,λ:q)=[2] (−1)mλme[m]qt. q m=0 X By (20), we can also consider the λ-q-Genocchi numbers as follows. ∞ ∞ tn (21) t q−xλxe[x]qtdµ (x)=[2] t (−1)mλme[m]qt = G (λ) . Z −q q n,q n! Z p m=0 n=0 X X From (21), we note that G (λ)=0 and 0,q G (λ) q−xλx[x]ndµ (x)= n+1,q . Z q −q n+1 Z p Thus, we see that G (λ) E (λ)= q−xλx[x]ndµ (x)= n+1,q . n,q Z q −q n+1 Z p Hence n−1 n n−1 1 G (λ)=[2] (−1)l , n,q q(1−q)n−1 l 1+qlλ l=0(cid:18) (cid:19) X where n=1,2,3, ···. Indeed, [2] G (λ) = q , 1,q 1+λ 1 2[2] 1 1 [2] 2 2 G (λ) = q (−1)l = q ( − ) 2,q 1−q l 1+qlλ 1−q 1+λ 1+qλ l=0(cid:18) (cid:19) X λ = −2[2] ( ). q (1+λ)(1+qλ) Now, we consider the q-extension of λ-Euler polynomials as follows. (22) E (λ,x)= q−yλy[x+y]ndµ (y). n,q q −q Z Z p From (22), we can easily derive n [2] n 1 E (λ,x)= q (−1)lqlx . n,q (1−q)n l 1+qlλ l=0(cid:18) (cid:19) X ∞ Let g(x,λ:q)= E (λ,x)tn. Then we have n,q n! n=0 P ∞ tn g(x,λ:q) = En,q(λ,x)n! = Z q−yλye[x+y]tqdµ−q(y) n=0 Z p X ∞ [2] n n ∞ tn = q (−1)lqlx( (−1)mqmlλm) (1−q)n l n! n=0 l=0(cid:18) (cid:19) m=0 X X X ∞ = [2] (−1)mλme[m+x]qt. q m=0 X 10 TAEKYUNKIM,YOUNG-HEEKIM,ANDKYUNG-WONHWANG It follows that dn(g(x,λ:g)) ∞ E (λ,x)= | =[2] (−1)mλm[m+x]n. n,q (dt)n t=0 q q m=0 X Then we obtain the following theorem. Theorem 9. For n∈N∪{0}, we have ∞ E (λ,x)=[2] (−1)mλm[m+x]n. n,q q q m=0 X By the same method, we consider the λ-q-Genocchi polynomials as follows. ∞ (23) t q−xλxe[x+y]qtdµ (x) = [2] t (−1)mλme[m+x]qt −q q Z Z p m=0 X ∞ tn = G (λ,x) . n,q n! n=0 X By (23), we see G (λ,x) (24) E (λ,x)= q−yλy[x+y]ndµ (y)= n+1,q n,q Z q −q n+1 Z p and G (λ,x)=0. From the definition of λ-q-Euler polynomials, we derive 0,q E (λ,x) = q−yλy[x+y]ndµ (y) n,q q −q Z Z p n n (25) = [x]n−lqlx q−yλy[y]ldµ (y) l q q −q Z l=0(cid:18) (cid:19) Z p X d−1 [2] x+a = q [d]n (−1)aλa q−dyλdy[ +y]n dµ (y,) [2]qd q a=0 ZZp d qd −q X for d∈N with d≡1( mod 2). By (25), we see that n n E (λ,x)= = [x]n−lqlxE (λ,x) n,q l q l,q l=0(cid:18) (cid:19) X d−1 [2] x+a = q [d]n (−1)aλaE (λd, ). [2] q n,qd d qd a=0 X It is easy to see that qI (f )+I (f)=[2] f(0), −q 1 −q q where f (x)=f(x+1). Thus, we have 1 q q−y−1λy+1[x+1+y]ndµ (y)+ q−yλy[x+y]ndµ (y)=[2] [x]n. q −q q −q q q Z Z Z p Z p Therefore, we obtain the following theorem. Theorem 10. For n∈N∪{0}, we have λE (λ,x+1)+E (λ,x)=[2] [x]n. n,q n,q q q By Theorem 10 and (24), we have the following result.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.