ebook img

On the Markov inequality in the $L_2$-norm with the Gegenbauer weight PDF

0.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the Markov inequality in the $L_2$-norm with the Gegenbauer weight

L On the Markov inequality in the 2-norm with the Gegenbauer weight 7 G.Nikolov, A.Shadrin 1 0 2 n Abstract a J Letwλ(t):=(1−t2)λ−1/2,whereλ>−21,betheGegenbauerweightfunction,letk·kwλ be 6 theassociatedL2-norm, 1 1/2 2 2 kfk = |f(x)| w (x)dx , wλ (cid:26)Z−1 λ (cid:27) ] A anddenotebyPnthespaceofalgebraicpolynomialsofdegree≤n.Westudythebestconstant C cn(λ)intheMarkovinequalityinthisnorm . kp′k ≤c (λ)kp k , p ∈P , h n wλ n n wλ n n t a namelytheconstant m kp′k c (λ):= sup n wλ . [ n pn∈Pn kpnkwλ 1 WederiveexplicitlowerandupperboundsfortheMarkovconstantcn(λ),whicharevalidfor v allnandλ. 2 MSC2010:41A17 8 6 Keywordsandphrases:Markovtypeinequalities,Gegenbauerpolynomials,matrixnorms 7 0 . 1 Introduction 1 0 7 Letw (t) := (1 t2)λ 1/2,whereλ > 1,betheGegenbauerweightfunction, let bethe 1 λ − − −2 k·kwλ associatedL -norm, : 2 v 1 1/2 i f = f(x)2w (x)dx , X k kwλ | | λ (cid:26)Z−1 (cid:27) r a anddenoteby n thespaceofalgebraicpolynomialsofdegree n. Inthispaper,westudythe P ≤ bestconstantc (λ)intheMarkovinequalityinthisnorm n kp′nkwλ ≤cn(λ)kpnkwλ, pn ∈Pn, (1.1) namelytheconstant p c (λ):= sup k ′nkwλ . n p pn∈Pn k nkwλ Our goal is to derive good and explicit lower and upper bounds for the Markov constant c (λ) n whicharevalidforallnandλ,i.e.,tofindconstantsc(n,λ)andc(n,λ)suchthat c(n,λ) c (λ) c(n,λ), n ≤ ≤ withasmallratio c(n,λ). c(n,λ) 1 Itisknownthat,forafixedλ,c (λ)growslike (n2),andthattheasymptoticvalue n O c (λ) n c (λ):= lim ∗ n n2 →∞ isequalto1/(2j2λ−3),withjν beingthefirstpositivezerooftheBesselfunctionJν,see[2,Thms. 4 1.1–1.3],wherebyitcanbeshownthatc (λ)behaveslike (λ 1). Thereisalsoanumberofmore − ∗ O preciseresults. Forλ= 12 (theconstantweightw21 ≡1),itfollowsfromtheSchmidtresult[4]that 1 3 1 1 (n+ )2 c ( ) (n+2)2. π 2 ≤ n 2 ≤ π Forλ=0,1(theChebyshevweightsw (x)= 1 andw (x)=√1 x2,respectively),Nikolov 0 √1 x2 1 − [3]provedthat − 0.472135n2 c (0) 0.478849(n+2)2, n ≤ ≤ (1.2) 5 0.248549n2 c (1) 0.256861(n+ )2. n 2 ≤ ≤ In[1],weobtainedanupperboundvalidforallnandλ, (n+1)(n+2λ+1) c (λ) , (1.3) n ≤ 2√2λ+1 however,thealreadymentionedasymptoticsc (λ)= (λ 1)showsthatthisresultisnotoptimal. − ∗ O The main result of this paper is lower and upper bounds for c (λ) which are uniform with n respecttonandλ. Theyshow,inparticular,that 1 [c (λ)]2 n(n+2λ)3. n ≍ λ2 Forn=1,2theexactvaluesoftheMarkovconstantareeasilycomputable: 4(2+λ)(2+2λ) [c (λ)]2 =2(1+λ), [c (λ)]2 = . (1.4) 1 2 2λ+1 Therefore,weconsiderbelowthecasen 3. Ourmainresultis ≥ Theorem1.1 Forallλ> 1 andn 3,thebestconstantc (λ)intheMarkovinequality −2 ≥ n kp′nkwλ ≤cn(λ)kpnkwλ, pn ∈Pn, admitstheestimates 1 n2(n+λ)2 n(n+2λ+2)3 < [c (λ)]2 < , λ 2; (1.5) n 4(λ+1)(λ+2) (λ+2)(λ+3) ≥ (n+λ)2(n+2λ′)2 < [c (λ)]2 < (n+λ+λ′′+2)4, λ> 1, (1.6) n 2 (2λ+1)(2λ+5) 2(2λ+1)√2λ+5 − whereλ =min 0,λ , λ =max 0,λ . ′ ′′ { } { } Asaconsequence,wecanspecifythefollowingboundsfortheasymptoticvaluec (λ): ∗ Corollary1.2 For any λ > 1, theasymptotic Markov constant c (λ) = lim n 2c (λ) satisfies the −2 ∗ n − n inequalities →∞ 1 , 1 <λ λ , 1 2(2λ+1)√2λ+5 −2 ≤ ∗ <[c (λ)]2 < (2λ+1)(2λ+5) ∗  1 , λ>λ∗, (λ+2)(λ+3) whereλ∗ 25.  ≈ 2 Thelowerboundin(1.5)followsfromthatin(1.6)andislessaccurate,weputitinthisform tomakethecomparisonbetweenthetwoboundsin(1.5)moreobvious. Theupperboundin(1.6)doesnothavetherightorder (n4/λ2)in λ (forλfixed),however O thisboundservesnotonlyforthecase 1 < λ < 2,butforafixedλ [2,λ ]andn n (λ)itis −2 ∈ ∗ ≥ 0 alsobetterthantheonein(1.5). Inthenextcorollary,wesetλ = 0,1intheupperestimate(1.6),andthatimprovestheupper estimatesin(1.2)forthe Chebyshevweights. Whencoupledwiththelower estimatefrom(1.2), thisgivesrathertightbounds. Corollary1.3 FortheChebyshevweightsw (x)= 1 andw (x)=√1 x2,wehave 0 √1 x2 1 − − 0.472135n2 c (0) 0.472871(n+2)2, n ≤ ≤ 0.248549n2 c (1) 0.250987(n+4)2. n ≤ ≤ Thelower andupperestimatesin(1.5)havedifferentorderswith respecttoλ. Howeverwe cangetaperfectmatchwithslightlylessaccurateconstants. Theorem1.4 Forallλ 7andn 3,thebestconstantc (λ)intheMarkovinequalitysatisfies n ≥ ≥ 1 n(n+2λ)3 n(n+2λ)3 [c (λ)]2 . (1.7) 16 λ2 ≤ n ≤ λ2 Corollary1.5 FortheMarkovconstantc (λ)wehavethefollowingasymptoticestimates: n c (λ) i) √n lim n √3n; ≤λ √2λ ≤ →∞ 1 3 ii) (n )(n 1) lim c (λ) 2√2λ+1 (n+ )2. 2 n 2 − − ≤λ 1 · ≤ →−2 Partii)followsfrom(1.6).Thoughparti)doesnotformallyfollowfromTheorem1.4,itfollows fromapartofitsproof. Letusdescribebrieflyhowtheseresultsareobtained. Itiswell-knownthatthesquaredbestconstantintheMarkovinequalityintheL -normwith 2 arbitrary(andpossiblydifferent)weightsforpandp isequaltothelargesteigenvalueofacertain ′ positivedefinitematrix,inourcasewehave [c (λ)]2 =µ (B ), (1.8) n max n wherethematrixB isspecifiedinSect.2. Weobtainthenlowerandupperboundsforµ (B ) n max n usingthreevaluesassociatedwiththematrixB anditseigenvalues(µ )(notethatµ >0): n i i a)thetrace tr(B ):= b = µ ; n ii i b)themax-norm X X B =max b ; n ij k k∞ i | | j X c)theFrobeniusnorm B 2 := b 2 =tr(B BT)= µ2. k nkF | ij| n n i i,j X X Clearly,wehave i) µ tr(B ), ii) µ B , iii) µ B , (1.9) max n max n max n F ≤ ≤k k∞ ≤k k 3 andgenerallyµ B ,where isanymatrixnorm. Theupperestimate(1.3)citedfrom max n [1]isexactlythefirs≤tinkequka∗lityµ k·kt∗r(B ),andaswenoted,thisestimateisnotoptimal. The max n ≤ betterupperbounds(1.5)-(1.6)inTheorem1.1areobtainedfrom(1.9.ii)and(1.9.iii),respectively. Forthelowerboundsweusetheinequalities µ2 B 2 i′) µmax ≥ Pµii = tkr(BnknF), ii′) µmax(Bn)≥miaxbii. (1.10) Inequality (i’) givesthe lower ePstimates in (1.5)-(1.6),and combination of (i’) and (ii’) yields the lowerboundin(1.7). The paper is organised as follows. In Sect.2, following our previous studies [1], we give an explicit form of the matrix B appearingin (1.8). Sects.2-4 contain some auxiliary inequalities. n In Sect.5, we find anupper bound for the max-norm B , and in Sect.6 we give both lower n and upper estimates for the Frobinuis norm B . Fkinalkl∞y, in Sect.7 we prove the upper and n F k k thelowerestimatesinTheorems1.1-1.4usinginequalities(1.9)-(1.10)andrelation(1.8). Herewe haveusedtheexpressionfortr(B )andfordiagonalelementsb foundin[1]. n ii The formulas for the trace, the max-norm and the Frobenius norm of a matrix are straight- forwardonce thematrixelementsareknown, sothemaintechnicalissuesare,firstly, infinding reasonableupperandlowerboundsfortheentriesofthematrixB = (b )whichareexpressed n ij initiallyintermsoftheGammafunctionΓ,and,secondly,infindingreasonableestimatesfortheir sums. ThefirstissueisdealtwithinSect.3,whereweshowthat b fσ(j) , f (x)=xα1(x+ λ)α2(x+λ)α3, jk α 2 ≍ f (k) τ and the second one in Sect.4, where we give elementarybut effectiveupper andlower bounds fortheintegralsofthetype x f(t)dt, f(x)=(x+γ )α1(x+γ )α2 (x+γ )αr. 1 2 r ··· Zx0 2 Preliminaries Inthissection,wequotearesultobtainedearlierin[1],whichequatetheMarkovconstantc (λ) n withthelargesteigenvalueofaspecificmatrixB . n Definition2.1 Forn N,setm:= n+1 anddefinesymmetricpositivedefinitematricesA ,A Rm m withentriesa∈anda give⌊n2by⌋ m m ∈ × kj kj e min(k,j) min(k,j) e a := α2 β β , a := α2 β β , (2.1) kj i k j kj i k j (cid:16) Xi=1 (cid:17) (cid:16) Xi=1 (cid:17) e e e e sothat α2β2 α2β β α2β β α2β β 1 1 1 1 2 1 1 3 ··· 1 1 m α2β β 2 α2 β2 2 α2 β β 2 α2 β β  1 1 2 i=1 i 2 i=1 i 2 3 ··· i=1 i 2 m Am :=α21β1β3 (cid:16)P2i=1α2i (cid:17)β2β3 (cid:16)P 3i=1α(cid:17)2i β32 ··· (cid:16)P3i=1α2i(cid:17)β3βm , (2.2)  ... (cid:16)P ... (cid:17) (cid:16)P ... (cid:17) ... (cid:16)P ... (cid:17)      α2β β 2 α2 β β 3 α3 β β m α2 β2   1 1 m i=1 i 2 m i=1 i 3 m ··· i=1 i m   (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17)  P P P 4 withthesameoutlookforA . Thenumbersα ,β andα ,β aregivenby m k k k k 1 eαk :=(2k−1+λ)h2k−1, βek :=eh2k ; (2.3) 1 α :=(2k 2+λ)h , β := , (2.4) k 2k 2 k h − − 2k−1 where e e Γ(i+2λ) h2 :=h2 := . (2.5) i i,λ (i+λ)Γ(i+1) Notethat αk =αk 1 , βk =βk 1 . (2.6) −2 −2 Definition2.2 Forn∈N,set e e 4A , n=2m; B := m (2.7) n  4A , n=2m 1.  m − Theorem2.3([1],Theorem3.2) Letcn(λ)beethebestconstantintheMarkovinequality(1.1).Then [c (λ)]2 =µ (B ), n max n whereµ (B )isthelargesteigenvalueofthematrixB . max n n Remark2.4 AppearanceoftwomatricesA andA reflectsthefactthattheextremepolynomial m m p fortheMarkovinequalitywithanevenweightfunctionw(x) = w( x)iseitheroddoreven. n − Thelatterisarelativelysimpleconclusion,whatisenotobviousthoughiswhetherp isofdegree n ebxactlynandnotn 1. In[1],weprovedthatfortheGegenbauerweightswλ, − b µ (A )<µ (A )<µ (A ) max m max m max m+1 andthisimpliesthatdegpn =n,heence[cn(λ)]2 isthelargesteeigenvalueofAm orAm forn=2m orn=2m 1,respectively. − b e We finish this section by simplifying the expressions for a and thus for the matrix A as kj m follows. From(2.1),wederive min(k,j) βk β2 j α2 , j <k, a := α2 β β = βj j i=1 i kj (cid:16) Xi=1 i(cid:17) k j  ββkj (cid:0)βk2Pki=1α2i(cid:1), j >k, (cid:0) P (cid:1) sothat  j βk a , j <k, a =β2 α2, a = βj jj (2.8) jj j i kj  βj a , j >k. Xi=1  βk kk Respectively,  a β2a β3a βma 11 β1 11 β1 11 ··· β1 11 β2a a β3a βma  β1 11 22 β2 22 ··· β2 22 A =β3a β3a a βma  . m β1 11 β2 22 33 ··· β3 33  ... ... ... ... ...    ββm1 a11 ββm2 a22 ββm3 a33 ··· amm  Note thatA and A areembedded. An analogous representationand embedding hold for m m+1 A . m e 5 a β 3 Estimates for and k kk β j WewillneedupperandlowerestimatesfortheelementsofmatricesA andA ,namely m m k βk a , j <k, e a =β2 α2, a = βj jj kk k i kj  βj a , j >k. Xi=1  βk kk Wefoundexpressionfora anda in[1,Lemmas2.1(ii)and2.2(ii)],thosearequotedinPropo- kk kk sition3.1,andinthissectionweobtaininequalitiesfortheratios βk. βj e Proposition3.1([1]) Thefollowingidentitieshold: k (i) a :=β2 α2 = c f (k), (3.1) kk k i 0 0 i=1 X k 1 (ii) a :=β2 α2 = c f (k ), (3.2) kk k i 0 0 − 2 i=1 X e e e where 4 λ c := , f (x):=x(x+ )(x+λ). 0 0 2 2λ+1 Proposition3.2 Letj,k N,j <k. Thenthecoefficientsβ in(2.3)satisfythefollowingrelations: k ∈ (i) If 1 <λ 0 or λ 1,then −2 ≤ ≥ j 2λ 2 β2 j+λ 2λ 2 − k − . (3.3) k ≤ β2 ≤ k+λ j (cid:16) (cid:17) (cid:16) (cid:17) (ii) If 0<λ 1,then ≤ j 2λ 2 β2 j+λ 2λ 2 − k − . (3.4) k ≥ β2 ≥ k+λ j (cid:16) (cid:17) (cid:16) (cid:17) Proof. Denotetheleft-hand,themiddleandtheright-handsidetermsin(3.3)-(3.4)byℓ(λ),m(λ) andr(λ),respectively.Fromdefinitions(2.3)and(2.5)wehave β2 Γ(2j+2λ) Γ(2k+2λ) 1 m(λ):= k = − , (3.5) β2 (2j+λ)Γ(2j+1) (2k+λ)Γ(2k+1) j (cid:16) (cid:17) andusingthefunctionalequationΓ(t+1)=tΓ(t)weseethat k 2, λ=0, m(λ)= j ℓ(λ)=m(λ)=r(λ), λ=0,1. (3.6)  ⇒ (cid:0) 1(cid:1), λ=1,  Weshallproveinequalities(3.3)-(3.4)forthelogarithmsofthevaluesinvolved. 1) Let us start with the proof of the left-hand side inequalities in (3.3)-(3.4). Consider the differenceofthelogarithmsofthemiddleandtheleft-handsideterms, j g(λ):=logm(λ) logℓ(λ)=logm(λ) (2λ 2)log − − − k Weneedtoprovethatg(λ) 0forλ [0,1]andthatg(λ) > 0otherwise. Sinceg(0) = g(1) = 0 ≤ ∈ by(3.6),itsufficestoshowthatg (λ)>0forallλ> 1,i.e.,that[logm(λ)] >0. ′′ −2 ′′ 6 From(3.5),wehave 2j+λ Γ(2j+1) logm(λ)=logΓ(2j+2λ) logΓ(2k+2λ) log log , − − 2k+λ − Γ(2k+1) therefore,usingthedigammafunctionψ(t):=Γ(t)/Γ(t),weobtain ′ 1 1 [logm(λ)] =2 ψ(2j+2λ) ψ(2k+2λ) . ′ − − 2j+λ − 2k+λ (cid:2) (cid:3) h i FromtheequationΓ(t+1)=tΓ(t)itfollowsthatψ(t+1)=ψ(t)+1/t,andthelatterimplies 2k 1 − 1 1 1 [logm(λ)]′ = 2 , (3.7) − i+2λ − 2j+λ − 2k+λ iX=2j h i whence 2k 1 − 1 1 1 [logm(λ)] =4 + >0, ′′ (i+2λ)2 (2j+λ)2 − (2k+λ)2 iX=2j h i andthatprovestheleft-handinequalitiesin(3.3)-(3.4). 2)Weapproachinthesamewaytotheproofoftheright-hand inequalitiesin(3.3)and(3.4), bytakingthedifferenceofthelogarithmsofthemiddleandtheright-handterms, j+λ h(λ):=logm(λ) logr(λ)=logm(λ) (2λ 2)log . (3.8) − − − k+λ Weneedtoshowthath(λ) 0forλ [0,1]andthath(λ) < 0otherwise. Sinceh(0) = h(1) = 0 ≥ ∈ by(3.6),itsufficestoshowthath(λ)<0forλ>1andthath (λ)<0forλ ( 1,1]. ′ ′′ ∈ −2 2a)Letusshowthath(λ) 0forλ 1. From(3.8)using(3.7),weobtain ′ ≤ ≥ 2k 1 − 1 1 1 j+λ 1 1 h′(λ)= 2 2log (2λ 2) . (3.9) − i+2λ − 2j+λ − 2k+λ − k+λ − − j+λ − k+λ iX=2j h i h i Forthesum,sincethefunctionf(x)=(x+2λ) 1isdecreasing,wehave − 2k−1 1 2k 1 j+λ 2 < 2 dx=2 log , − i+2λ − x+2λ k+λ i=2j Z2j X hence 1 1 1 1 h′(λ)< (2λ 2) , (3.10) − 2j+λ − 2k+λ − − j+λ − k+λ h i h i andforλ>1andj <k,theright-handsideisnegative. Thus,h(λ)<0forλ>1. ′ 2b)Next,weprovethatifλ ( 1,1],thenh (λ)<0. From(3.9),wederive ∈ −2 ′′ 2k 1 − 1 1 1 h′′(λ) = 4 + (3.11) (i+2λ)2 (2j+λ)2 − (2k+λ)2 iX=2j h i 1 1 1 1 4 +(2λ 2) . (3.12) − j+λ − k+λ − (j+λ)2 − (k+λ)2 h i h i Thefirsttermintheright-handsideisestimatedasfollows 2k 1 2k − 1 1 1 1 4 = 4 + (i+2λ)2 (i+2λ)2 (j+λ)2 − (k+λ)2 iX=2j i=X2j+1 h i 1 1 1 1 < 2 + , j+λ − k+λ (j+λ)2 − (k+λ)2 h i h i 7 whereforthesumwehaveusedtheinequality 2k (i+2λ) 2 < 2k(x+2λ) 2dx. i=2j+1 − 2j − 1 Next,forλ∈(−21,1]andx≥ 2 thefunctionfP(x)=(2x+λ)−2−(xR+λ)−2isincreasing,hence forthesecondtermin(3.11)wehave 1 1 1 1 < . (2j+λ)2 − (2k+λ)2 (j+λ)2 − (k+λ)2 h i h i Substitutingtheaboveupperboundsintheexpression(3.11)-(3.12)forh (λ),weobtain ′′ 1 1 1 1 2(k j)(kj λ2) h′′(λ)< 2 +2λ = − − <0, (3.13) − j+λ − k+λ (j+λ)2 − (k+λ)2 − (j+λ)2(k+λ)2 h i h i since1 j <kandλ ( 1,1]. (cid:3) ≤ ∈ −2 Proposition3.3 Letj,k N,j <k. Thenthecoefficientsβ in(2.4)satisfythefollowingrelations. k ∈ (i) If 1 <λ 0 or λ 1,then −2 ≤ ≥ e j 1 2λ 2 β2 j 1 +λ 2λ 2 − 2 − k − 2 − . (3.14) k 1 ≤ β2 ≤ k 1 +λ (cid:16) − 2(cid:17) ej (cid:16) − 2 (cid:17) (ii) If 0<λ 1,then e ≤ j 1 2λ 2 β2 j 1 +λ 2λ 2 − 2 − k − 2 − . (3.15) k 1 ≥ β2 ≥ k 1 +λ (cid:16) − 2(cid:17) ej (cid:16) − 2 (cid:17) e Proof. Byequality(2.6),wehave β =β , β =β . j j 1 k k 1 −2 −2 Thenalltherelationsthroughout(3e.5)-(3.13)remainevalidwiththesubstitution 1 1 j j , k k . 2 2 → − → − Theonlyexceptionisinequality(3.13)whichfailsforj =1,k =2,andλ [√3,1],sincethefactor ∈ 2 (k 1)(j 1) λ2 isnotpositivethen. − 2 − 2 − Let us prove that h(λ) 0 in this case as well. Since h(1) = 0, it is sufficient to prove that (cid:2) (cid:3) ≥ h(λ)<0forλ [√3,1]andj =1,k =2. Wehave ′ ∈ 2 e e e h′(λ) =h′(λ) j,k j 1,k 1 (cid:12) (cid:12) −2 −2 e (cid:12) (cid:12) sosubstitutingj = 1,k = 3 into(3.10),w(cid:12)efindthat(cid:12)forλ [3,1] [√3,1] 2 2 ∈ 4 ⊃ 2 1 1 1 1 h(λ) =h(λ) < (2λ 2) ′ 1,2 ′ 1,3 − 1+λ − 3+λ − − 1 +λ − 3 +λ (cid:12) (cid:12)2 2 h i h2 2 i e (cid:12) (cid:12) 1 1 1 1 1 (cid:12) (cid:12) + ≤ − 1+λ − 3+λ 2 1 +λ − 3 +λ h i h2 2 i 2 2 = + <0. −(1+λ)(3+λ) (1+2λ)(3+2λ) 8 4 Three lemmas In the next two sections, we deal with lower and upper estimates for the sums ℓ f(j), in j=1 particular for f = F , where F ,F are given in (4.1) below. For that purpose, we need the ν 1 2 P followingthreelemmas. Weusethefollowingnotation: ℓ ℓ 1 ′′ 1 − 1 f(i)= f(1)+ f(i)+ f(ℓ). 2 2 i=1 i=2 X X Lemma4.1 Foraconvexintegrandf,wehave ℓ ℓ+1 ℓ ℓ 2 ′′ f(i) f(x)dx, f(i) f(x)dx. Xi=1 ≤Z21 Xi=1 ≥Z1 Proof. Theinequalitiesrevealwell-knownpropertiesofthemidpointandthetrapezoidalquadra- tureformulasrelativetothecorrespondingintegrals. (cid:3) Lemma4.2 Forλ> 1,thefunctions −2 λ λ F (x)=x2λ(x+ )2(x+λ)2, F (x)=x2(x+ )2(x+λ)2λ (4.1) 1 2 2 2 areconvexon[1, )andincreasingon[1, ). 2 ∞ ∞ Proof. 1)Forλ 1,allthefactorsofF ,F in(4.1)areconvex,positiveandincreasingon[0, ), 1 2 ≥ ∞ hencethestatement. 2)Forλ [0,1]thefunctions ∈ u (x):=xλ(x+λ), u (x):=x(x+λ)λ 1 2 are non-negative and increasing on [0, ). Further, u is convex on [0, ), because it can be 2 ∞ ∞ writtenintheform u (x)=(x+λ)λ+1 λ(x+λ)λ, 2 − wherebothtermsareconvexforλ [0,1],whereasu isconvexon[1, ]because ∈ 1 2 ∞ 1 1 u′1′(x)=[xλ+1+λxλ]′′ =λxλ−2 (λ+1)x+λ(λ−1) >λxλ−2 x− 4 ≥0, x≥ 2. h i h i Therefore,bothF (x) = [u (x)]2(x+ λ)2 andF (x) = [u (x)]2(x+ λ)2 areconvexon[1, )and 1 1 2 2 2 2 2 ∞ increasingon(0, ). ∞ 3)Letλ ( 1,0]. Then ∈ −2 u′1(x)=xλ−1 (λ+1)x+λ2 >0, x>0, h i and u (x)=(x+λ)λ 1 (λ+1)(x+λ) λ2 (x+λ)λ 1 (λ+1)2 λ2 >0, x 1, ′2 − − ≥ − − ≥ h i h i henceF andF areincreasingon[1, ). Further,thefunction 1 2 ∞ λ 3λ λ2 v (x):=xλ(x+ )(x+λ)=xλ+2+ xλ 1+ xλ 1 2 2 − 2 9 is convex for x > 0 because all the terms are convex for λ ( 1,0], hence F (x) = [v (x)]2 is ∈ −2 1 1 convexwheneverv isnonnegative,i.e.,forx> λ,thusforx 1. Finally,for 1 − ≥ 2 λ 3λ λ2 v (x):=x(x+ )(x+λ)λ =yλ+2 yλ+1+ yλ, y =x+λ, 2 2 2 2 − weobtain 3 1 v2′′(x)=yλ−2 (λ+2)(λ+1)y2− 2λ2(λ+1)y+ 2λ3(λ−1) =:yλ−2p2(y), h i anditiseasytocheckthat,forλ ( 1,0],thequadraticpolynomialp hasnorealzeros. Hence, v isconvexandsoisF (x)=[v ∈(x)−]22forx 1. 2 (cid:3) 2 2 2 ≥ 2 Lemma4.3 Let α >0,γ γ γ ,1 i r,andlet i min i max ≤ ≤ ≤ ≤ r f(x):=(x+γ )α1(x+γ )α2 (x+γ )αr, s:= α . 1 2 r i ··· i=1 X Then,forany x>x ,wherex +γ 0,wehave 0 0 min ≥ x 1 x 1 (t+γ )f(t) < f(t)dt< (x+γ )f(x). (4.2) min max s+1h ix0 xZ0 s+1 Proof. Set 1 1 G(x):= (x+γ )f(x), F(x):= (x+γ )f(x). min max s+1 s+1 ItsufficestoshowthatG(t)<f(t)<F (t)forx t x. Wehave ′ ′ 0 ≤ ≤ r r 1 t+γ 1 min G(t)= 1+ α f(t) 1+ α f(t)=f(t), ′ i i s+1 t+γ ≤ s+1 i h Xi=1 i h Xi=1 i andsimilarly s s 1 t+γ 1 F (t)= f(t) 1+ α max 1+ α f(t)=f(t). (cid:3) ′ i i s+1 t+γ ≥ s+1 i h Xi=1 i h Xi=1 i Remark4.4 Wecanrefinetheupperestimateasfollows: x 1 s+1 f(t)dt< [f(x)] s . s+1 Zx0 Indeed, with F(x) := s+11[f(x)]s+s1, it suffices to show that F′(t) ≥ f(t) for every t > x0. We havetheequivalentrelations 1 1 1 s F (t)= f(t) s f (t) f(t) f(t) s , ′ s ′ ≥ ⇔ ≥ f′(t) f(t) (cid:2) (cid:3) (cid:2) (cid:3) andthelatterissimplytheinequalitybetweenthegeometricandharmonicmeans 1 α (x+γ )αi Pαi i . i ≥ αi (cid:16)Y (cid:17) Px+γi P 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.