Observing giant panda habitat and forage abundance from space Wang, Tiejun Promotors: Prof. Dr. A.K. Skidmore Professor of Vegetation and Agriculture Landuse Survey International Institute for Geo-Information Science and Earth Observation (ITC) Enschede, the Netherlands & Wageningen University Wageningen, the Netherlands Prof. Dr. H.H.T. Prins Professor of Resource Ecology Wageningen University Wageningen, the Netherlands Co-Promotor: Dr. A. G. Toxopeus Assistant professor International Institute for Geo-Information Science and Earth Observation (ITC) Enschede, the Netherlands Examining Committee: Prof. Dr. F.J.J.M. Bongers Wageningen University, Wageningen, the Netherlands Prof. Dr. K.E. Giller Wageningen University, Wageningen, the Netherlands Prof. Dr. R. de Wulf Ghent University, Ghent, Belgium Prof. Dr. H.G. Jones University of Dundee, Dundee, Scotland, UK This research is carried out within the C.T. de Wit Graduate School for Production Ecology and Resource Conservation (PE&RC) in Wageningen University, the Netherlands Observing giant panda habitat and forage abundance from space Wang, Tiejun Thesis To fulfil the requirements for the degree of Doctor on the authority of the Rector Magnificus of Wageningen University Prof. Dr. M.J. Kropff to be publicly defended on Thursday 25 June, 2009 at 15:00 hrs in the auditorium at ITC, Enschede, The Netherlands Observing Giant Panda Habitat and Forage Abundance from Space 2009 Wang, Tiejun Cover Photograph: Dr. Eveline Dungl Cover design: Yali Si ISBN: 978-90-8585-418-0 International Institute for Geo-information Science & Earth Observation (ITC), Enschede, the Netherlands ITC Dissertation Number: 162 Table of contents Summary ....................................................................................................................... iii Acknowledgements .................................................................................................... vii Chapter 1 ........................................................................................................................ 1 General introduction Chapter 2 ...................................................................................................................... 11 Understorey bamboo discrimination using a winter image Tiejun Wang, Andrew K. Skidmore, Albertus G. Toxopeus and Xuehua Liu 2009. Photogrammetric Engineering & Remote Sensing, 75 (1):37-47 Chapter 3 ...................................................................................................................... 35 Improved understorey bamboo cover mapping using a novel hybrid neural network and expert system Tiejun Wang, Andrew K. Skidmore and Albertus G. Toxopeus. 2009. International Journal of Remote Sensing, 30 (4):965-981 Chapter 4 ...................................................................................................................... 57 Displaying remotely sensed vegetation dynamics along natural gradients for ecological studies Pieter S.A. Beck, Tiejun Wang, Andrew K. Skidmore and Xuehua Liu. 2008. International Journal of Remote Sensing, 29 (14): 4277-4283 Chapter 5 ...................................................................................................................... 69 Altitudinal migration of sympatric giant panda and golden takin in relation to plant phenology and bamboo abundance Tiejun Wang, Andrew K. Skidmore, Zhigao Zeng, Pieter S.A. Beck, Yali Si, Yanling Song, Xuehua Liu and Herbert H.T. Prins. Submitted Chapter 6 ...................................................................................................................... 91 Characterizing the spatial distribution of giant pandas in the fragmented forest landscape Tiejun Wang, Xinping Ye, Andrew K. Skidmore and Albertus G. Toxopeus. Submitted Chapter 7 .................................................................................................................... 115 Synthesis Author’s biography ................................................................................................... 125 ITC Dissertation list ................................................................................................... 127 PE&RC PhD Education Certificate .......................................................................... 129 i ii Summary Giant pandas are obligate bamboo grazers. The bamboos favoured by giant pandas are typical forest understorey plants. Therefore, the availability and abundance of understorey bamboo is a key factor in determining the quantity and quality of giant panda food resources. However, there is little or no information about the spatial distribution or abundance of bamboo underneath the forest canopy, due to the limitations of traditional ground survey and remote sensing classification techniques. In this regard, the development of methods that can predict the understorey bamboo spatial distribution and cover abundance is critical for an improved understanding of the habitat, foraging behaviour and distribution of giant pandas, as well as facilitating an optimal conservation strategy for this endangered species. The objectives of this study were to develop innovative methods in remote sensing and GIS for estimating the giant panda habitat and forage abundance, and to explain the altitudinal migration and the spatial distribution of giant pandas in the fragmented forest landscape. It was concluded that 1) the vegetation indices derived from winter (leaf-off) satellite images can be successfully used to predict the distribution of evergreen understorey bamboo in a deciduous-dominated forest, 2) winter is the optimal season for quantifying the coverage of evergreen understorey bamboo in a mixed temperate forest, regardless of the classification methods used, 3) a higher mapping accuracy for understorey bamboo in a coniferous-dominated forest can be achieved by using an integrated neural network and expert system algorithm, 4) the altitudinal migration patterns of sympatric giant pandas and golden takins are related to satellite-derived plant phenology (a surrogate of food quality) and bamboo abundance (a surrogate of food quantity), 5) the driving force behind the seasonal vertical migration of giant pandas is the occurrence of bamboo shoots and the temperature variation along an altitudinal gradient, 6) the satellite-derived forest patches occupied by giant pandas were significantly larger and more contiguous than patches where giant pandas were not recorded, indicating that giant pandas appear sensitive to patch size and isolation effects associated with forest fragmentation. Overall, the study has been shown the potential of satellite remote sensing to map giant panda habitat and forage (i.e., understorey bamboo) abundance. The results are important for understanding the foraging behaviour and the spatial distribution of giant pandas, as well as the evaluation and modelling of giant panda habitat in order to guide decision-making on giant panda conservation. iii Samenvatting Het hoofdvoedsel van de reuzenpanda is bamboe, normaal gesproken te vinden in de bosondergroei. Daarom is de beschikbaarheid en overvloed van de bamboe hier van groot belang voor het vaststellen van de hoeveelheid en kwaliteit van de voedselreserves. Er is echter nauwelijks informatie beschikbaar over de spatiale verdeling en overvloed van bamboe op de bosvloer; dit is te wijten aan beperkingen van de traditionele kartering en remote sensing classificatietechnieken. Hierop gelet is het ontwikkelen van methoden voor het voorspellen van de bamboeverspreiding in de ondergroei cruciaal voor het beter begrijpen van de habitat, het voedselzoekgedrag en de verspreiding van reuzenpanda’s. De methoden helpen ook bij het ontwikkelen van een optimale beheersstrategie voor deze bedreigde diersoort. Doelen van deze studie zijn het ontwerpen van innovatieve methoden voor het bepalen van de habitat en voedselvoorraad van reuzenpanda’s met behulp van remote sensing en GIS, alsook het vinden van een verklaring voor de hoogte migratie en de spatiale verdeling van de reuzenpanda in gefragmenteerd bos. Geconcludeerd wordt dat 1) de vegetatie indices (satelliet) uit het winterseizoen (bladvrij) met succes kunnen worden gebruikt om de bamboeondergroei ver- deling in loofrijke bossen te voorspellen, 2) het winterseizoen optimaal geschikt is om de bamboe in gematigd, gemengd bos te bepalen ongeacht de classi- ficatiemethode, 3) een grotere karteringnauwkeurigheid kan worden bereikt van ondergroei bamboe in een naaldbos door een algoritme waarin een neuraal netwerk en expertsysteem worden geïntegreerd, 4) de hoogtemigratiepatronen van de sympatrische reuzenpanda en gouden rundergems verband houden met de van de satellietbeelden afgeleide plantfenologie (voedsel kwaliteit) en de bamboe (voedsel kwantiteit), 5) de drijvende kracht achter de seizoensbepaalde hoogtemigratie van de reuzenpanda wordt bepaald door de aanwezigheid van bamboescheuten en de verticale temperatuurgradiënt, 6) satelliet bepaalde stukken bos met panda’s significant groter en minder fragmentarisch zijn dan die zonder, wat op een gevoeligheid voor grootte van de stukken bos en isoleringeffecten door fragmentatie duidt. Algemeen heeft de studie de kracht van remote sensing (satelliet) aangetoond bij het in kaart brengen van de panda habitat en bamboe. De resultaten zijn belangrijk voor begrip van het voedselzoekgedrag en de spatiale verdeling van de reuzenpanda en voor de evaluatie en modellering van de reuzenpanda habitat om te komen tot een beleidsontwikkeling voor milieubeheer van de reuzenpanda. iv To all the rangers who dedicate their life towards the conservation of giant pandas in China v vi
Description: