ebook img

Numerical Analysis of Surface Chemistry in High-Enthalpy Flows PDF

19 Pages·2015·1.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Numerical Analysis of Surface Chemistry in High-Enthalpy Flows

JOURNALOFTHERMOPHYSICSANDHEATTRANSFER Vol.29,No.4,October–December2015 Numerical Analysis of Surface Chemistry in High-Enthalpy Flows AbhilashaAnna∗andIainD.Boyd† UniversityofMichigan,AnnArbor,Michigan48109 DOI:10.2514/1.T4530 Theeffectsofsurface-chemistryprocessesofagraphitesampleexposedtoasubsonichigh-enthalpynitrogenflow areinvestigatedusingacoupledcomputationalfluid-dynamics/surface-chemistrymodel.Theresultsobtainedare assessedfortheaccuracyofthemodelusingexperimentaldatafromtestsconductedina30kWinductivelycoupled plasmatorchfacilityattheUniversityofVermont.Significantdiscrepanciesareobservedbetweenthecomputational andexperimentalresults.Therefore,astudyisperformedtodeterminesensitivitiesofflowandsurfaceparametersto variationsintestinginputconditions,aswellasphysicalmodelingparameters.Measurementsoftheabsolutenumber 0 densityarerequiredtodrawfirmconclusionsaboutthesurface-chemistrymodels,aswellasthesurfacereactions 53 involved. 4 T 1. 14/ Nomenclature ν00 = productstoichiometriccoefficientforspecieskin 5 ki aa.org | DOI: 10.2 ECDEaEkkdR ==== Jcdee∕onnifmneefrrucoggeslyyinotbnrbaaactrrirooriieenefrrfoifcoffiorgeraandstEsosloepfryesp–cptiRieeocsindie,kes,Ja∕mlkm,romeolc∕l2om∕ms3bination, ww__kki == mrppmerraooooclldd∕∕tuuimmoccntt22ii∕∕ooissnn, rraattee ooffspspeceiceiseskkininallreraecatciotinonsi,, p://arc.ai hK == stopteaclinesumenbtehralopfys,pJe∕ckiges γYΓk === rimmeaapcsistniofgrneamcetfiefonicntieflnucxyofgasspeciesk,m2∕s 17 | htt KKgnb == tnoutmalbneurmobfesrpseocifegsaisnsbpuelckiepshasenb θns;k = fsruarcftaicoenpohfaascetinvsesitesoccupiedbyspecieskon 4, 20 Kns;na = pnhuamsbeenrsofspeciesinactivesitesetnaonsurface ρ = density,kg∕m3 er 1 k = Boltzmannconstant σ = Stefan–Boltzmannconstant,W∕m2∕K−4 cemb kBfi,kbi = forward and backward reaction rates for ΦΦns == accotnivceenstirtaetidoennsoiftyspoencsieusrfkacoenpshuarsfeacnes,pmhaosle∕mns2, er on De Mm_k == rmmeaoacslastirowbnleoiiwghintgofrsapteecideusek,tkog∕smurofalce reactions, χkns;k = mmoolle∕mfr2actionofspeciesk Cent b kg∕m2∕s χnb;k = molefractionofbulkspecieskinbulkphasenb dt N = totalnumberofphases a erst Nnb = numberofbulkspecies Subscripts ud N ,N ,N = numberofgas,surface,andbulkphases D g s b b = bulkphase n - Nns;a = numberofactivesitesetsinsurfacephasens e = emptysite chiga PNR == npuremssbuerreo,fPasurfacereactions g = gasphase University of Mi qqRqcduoifnfv ==== tcduoointfniafvuvlesehricsevtaaeivlthegfelahuasextac,ftolWunflxs∕u,txmaWn,2tW∕,mJ∕∕m2m2ol∕K nnnstrabs ===== nnnstruuuuarmmmnfsabbblcaeeeetrrripoooohnfffaaabsslucu-ertrliofkvateacptehsioiaptnseheasaslseensergymode d by ri;ns = rmeaocl∕timon2∕fslux ofreactionionsurfacephasens, ve = vibrational-electronicenergymode e w = wallvalue oad S,S0 = stickingcoefficient ∞ = referencefreestreamconditions nl T = translational-rotationaltemperature,K w Do νki = net stoichiometric coefficient for species k in reactioni ν = sum of the stoichiometric coefficients of all I. Introduction s surfacereactants HYPERSONICvehiclesexperienceheatingduringhigh-speed ν(cid:2) = thermalspeedofgas-phasespeciesk,m∕s k flightthroughtheatmospherethatcauseveryhightemperatures ν0 = reactant stoichiometriccoefficientfor speciesk ki ontheirsurface.Whenavehicleorprobeenterstheatmosphereof inreactioni anyplanetathypersonicspeeds,abowshockisformedinitsfront. Thekineticenergyofthehypersonicflowisconvertedintointernal energyofthegasthatcreates veryhightemperatures intheshock Received 9 July 2014; revision received 4 March 2015; accepted for layer [1]. These temperatures are high enough to excite thevibra- publication6March2015;publishedonline24April2015.Copyright©2015 tionalenergymodewithinthemolecules,aswellascausedissocia- bytheAmericanInstituteofAeronauticsandAstronautics,Inc.Allrights tion chemistry. Therefore, such vehicles use a thermal protection reserved.Copiesofthispapermaybemadeforpersonalorinternaluse,on system(TPS)thatprovidesinsulationfromthesevereaerodynamic condition that the copier pay the $10.00 per-copy fee to the Copyright heating encountered during hypersonic flight through a planetary ClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923;include atmosphere. The TPS is a single point-of-failure system, as the thecode1533-6808/15and$10.00incorrespondencewiththeCCC. prolongedexposuretohightemperaturecancausethematerialsto *Postdoctoral Research Fellow, Department of Aerospace Engineering. fail[2,3].TheneedtodesignareliableTPSnecessitatesgoodunder- MemberAIAA. †JamesE.KnottProfessor,DepartmentofAerospaceEngineering.Fellow standingofthephysicalandchemicalprocessesthatdeterminethe AIAA. aerothermalheatingenvironment. 653 654 ANNAANDBOYD Dependingontheheatingencounteredduringhypersonicflight, II. TechnicalApproach an ablative or nonablative TPS may be used [3]. Nonablative or Computationalfluiddynamicmodelscanbeusedforsimulating reusablematerials(e.g.,ceramictilesusedonthespaceshuttlewitha environmentsthatcannotbestudiedinanexperimentaltestfacility. peakheating[4]of60W∕cm2)areusedwherethereentryconditions Thesemodelscanbeusedforaccuratelypredictingtheaerothermal arerelativelymild.Inadditiontotheentryvelocity,theheatingisalso environmentofthevehicleTPSduringentry,butthesemodelscanbe dependentonthe entry flight-path anglethat is determined bythe usedtoperformsuchanalysisonlyaftertheyhavebeenvalidatedfor trajectoryofthevehicle[5].AnablativeTPSisusedwhererelatively physicalaccuracybycomparisonwithexperimentalmeasurements. highheatingratesaregeneratedduringreentry(e.g.,theheatshield Bothcomputationalandexperimentalmethodscanbeusedcollec- for the Stardust mission with a peak heating [6] of 942W∕cm2). tivelytounderstandthephysicalandchemicalprocessesthatdeter- Ablative TPS materials accommodate high heating rates and heat mine the aerodynamic heating of a probe or hypersonic vehicle loads through phase change and mass loss. The ablative material duringitsentryintoaplanetaryatmosphere. absorbstheheatandleavesthehypersonicvehicleasthematerialis Thissectiondescribestheexperimentalandcomputationaltech- consumed and ablates away. It is designed to slowly recess in a niquesthatareusedtostudythegas–surfaceinteractionsthatoccur controlledmanner.AnablativeTPShasbeenusedformostplanetary onavehiclesurfaceduringitsentryintoaplanetaryatmosphere.The entry probes and high-velocity Earth atmosphere reentry vehicles, sectionfirstprovidesabriefdescriptionoftheexperimentalfacilityat includingStardust,theMarsScienceLaboratory,Apollo,etc.Abla- theUniversityofVermont,followedbyanoverviewoftheCFDcode 0 tive TPS materials are usually of two types, viz., pyrolyzing and usedinthisworkalong,withthedescriptionofgas–surfaceinterac- 3 45 nonpyrolyzing ablators. Pyrolyzing ablators (also referred to as tionmodelsimplementedinthecode. T 1. charringablators)arereinforcedcompositesthathavepolymerresins 4/ 1 as binders. An example of a charring TPS material is phenolic- 5 A. ExperimentalFacility 2 10. impregnatedcarbonablator. Experimental tests were conducted by Professor Doug Fletcher OI: Nonpyrolyzingablators(alsoreferredtoasnoncharringablators) and his graduate students in a 30 kWinductively coupled plasma D arethosethatwithstandheatbylosingmassonlybysurfaceablation g | and mechanical erosion [7,8]. Examples of noncharring TPS torchfacilityattheUniversityofVermont[9,10].Laserdiagnostic a.or materialsarecarbon–carbonandsilica.Veryhightemperaturesinthe instrumentation that employs a laser-induced fluorescence (LIF) http://arc.aia smshuaortfceakrcieala,lyrceearcnomamcabtyiancsaaautisocenattaholefymsdtiosaslneodcc,uiailfaterddsispbseooccuiienasdtetaodryda-tilosasmyoescridasitpfefe.ucTsieehsetomTtPhaSye tvndeauecrsmhiconrbuiiebqsreufdsleoetwnhissepiitfaniaerscastimalalitleteytddeiarfsnfaetdsruettchenhecthalfosnacitcqraiaultniietosysnl.astthLiiaonItFntaahirlesetefcumlaospepwdaefbritaeloetludoro.befTtaahmniindseassespexuceprtceiiionreings- 17 | occur,whichincreasestheconvectiveheatingtothesurface.Thus,a mentaldatathatwillbecomparedtothenumericalresults. 0 lesscatalyticsurfaceisdesirabletominimizethisadditionalheating. 4, 2 Also,whenthevehiclesurfaceisheated,thesurfacematerialmay TheICPtorchfacilityisdesignedtotestscaledmaterialsamplesin 1 high-enthalpygasflowsforsimulationofplanetaryentryandEarth ber chemicallyreactwiththeboundary-layergases,leadingtosurface atmospherereentrytrajectoryheatingconditions.Itisconfiguredfor m recessionasaresultofsurfacematerialconsumption.Thesechemical ce operation with subsonic flow to simulate postshock conditions of De reactionscanbeendothermic(vaporization,sublimation)orexother- high-enthalpyflightforastagnationpointgeometry.Thefacilitytest er on mCaicta(loyxciidtyatioofn,annitraabtiloatniv)eanTdPwSillmafafteecrtiathleannedthseuartfiancget-opathrteicsiuprafaticneg. conditionscanbeextrapolatedtoflightconditionsbymatchingthree nt parameters at the edge of the boundary layer, i.e., the flight total dt Ce rheeaacttiinognsotfhtahtelevaedhtioclseursfuarcfeacree.ceTshseiorenfaorree,kedyetfaaicletodrssttuhdaiteismopfacthtethsee enthalpy, the stagnation pressure, and the velocity gradient. The dersta interactionsthatoccurbetweenthesurfaceandtheatmospheregas mpeertfhoormdoeldoguyndiesrkthneowasnsumasptlioocnalofhleoactaltrtahnesrfmerocshimemuilcaatiloenquainlidbriis- Du arerequiredfortheaccuratepredictionofaerothermalheatingofthe um.Itisdiscussedindetailin[11–13].Thestagnationpointheatflux n - vehicleTPSandincharacterizingTPSmaterials. intheflightisequaltothatingroundtestsiftheseparametersare higa The major objective of this work is to investigate surface- matched[14]. Mic chemistryprocessesusingacoupledcomputationalfluid-dynamics/ Thefacilityprimarilycomprisesthepowersupplyunit,gasinjec- of surface-chemistrymodelandassesstheaccuracyofthemodelusing tion system, and plasma test chamber. The gas-injection system versity ethxepecroimmpenuttaaltiodnataal.aSnidgneixfipcearnimtdenistcarlerpeasnucltise.sTahreeroefbosreer,vaendobtheetwreoebn- pqruoavrtizdecsotnhfeinneimtreongtentugbaeswatheroreomhottemniptreorgaetunrepltahsamt eanitsergseinnetorattehde Uni jectiveistounderstandthesensitivitiesofflowandsurfaceparam- throughaninducedRFmagneticfieldcreatedbyahelicalloadcoil. by eterstovariationsintestinginputconditions.Asensitivitystudyis Thehotnitrogenplasmathenflowsoutofthequartztubefromthe ed performed to understand the effects of various inputs, as well as topintothetestchamberoftheICPfacilitywherethesampleistested. d oa physicalmodelingparametersonthesubsonichigh-enthalpynitro- Thetestchamberisconstructedfromstainlesssteel,andthetorch wnl genflowintheboundarylayerinfrontofagraphitesampleandits locations with the highest heat loads are actively cooled with a o D surfaceproperties. closed-loop water system. The test sample is installed in a brass The layout of this paper is as follows. The paper comprises six sampleholder,andthebackspacesideofthesampleiswatercooled. sections,withtheIntroductionbeingSec.I.SectionIIoutlinesthe For this investigation, experimental results from graphite samples technicalapproachusedinthiswork.Itdescribestheexperimental testedinthenitrogenplasmastreamareused.Thetestsamplesare andcomputationaltechniquesthatareusedtostudythegas–surface constructedfromDFP2-gradegraphite,fabricatedbyPocoGraphite, interactions that occur on a vehicle surface during its entry into a Inc.[15].Mostablativeheatshieldsaredesignedfromcarbon-based planetary atmosphere. Section III presents a description of the matrix materials impregnated with low-temperature phase change numericalboundaryconditionsusedinthecode.SectionIVpresents polymerresinsthatpyrolyze,leavingacarbon-richcharlayer.Since adescriptionofthenumericalsetupusedinthisstudy. thecarbonlayercontinuestointeractwiththeboundary-layergases, SectionVpresentstheresultsobtainedfromthenumericalsimu- reactionsbetweenthislayerandthegas-phaseparticlesareofim- lations of the experimental configuration performed using the menseinterest,andthereforegraphiteisusedforthisstudy.Graphite computationalfluiddynamics(CFD)codeLeMANSandtheircom- is noncharring, and therefore pyrolysis gases are not produced. parison with the experimental data. The results obtained from the Figure1showsaphotographofthegraphitesampleduringexposure analysisperformedforsensitivityofboundary-layerflowparameters tothenitrogenplasmainthetestchamberoftheICPtorchfacility. andsurfacepropertiestodifferentchemicalcompositionsattheinlet The test sample is a 25-mm-diam graphite sample mounted at a oftheinductivelycoupledplasma(ICP)torchexitarealsopresented, distanceof90mmfromthequartztubeexit. in addition to the effects of including the conduction within the Thequantitiesmeasuredarethesurfaceheatflux,surfacetemper- sample wall in the calculations. The paper ends with conclusions ature,relativenitrogenatomnumberdensity,andtranslationaltem- inSec.VI. peratureinthereactingboundarylayerabovethegraphitesurface. ANNAANDBOYD 655 of all species are described by a single temperature T [20]. The ve production and consumption rates of species are modeled using a finite rate chemistry model developed by Martin and Boyd [21], alongwithPark’stwo-temperaturemodel[22],toaccountforthermal nonequilibriumeffectsonthereactionrates. The set of partial differential equations is solved using a finite volumemethodonunstructuredgrids.Theinviscidfluxesacrosscell facesarediscretizedusingamodifiedformoftheSteger–Warmingflux vector splitting scheme[23], which islessdissipative and produces betterresultsinboundarylayersthantheiroriginalscheme.Theviscous terms are calculated using a centered scheme. Time integration is performedusingapointimplicitoralineimplicitmethod.LeMANSis parallelizedusingMETIS[24],whichpartitionsthecomputationalgrid betweentheprocessorsandthemessagepassageinterfaceprotocolto communicateinformationbetweenprocessors.Turbulentflowscould be simulated for simplegeometries using a zero equation algebraic Baldwin–Lomax turbulence model [25] implemented in LeMANS. 0 53 Themodelisnotusedfornumericalsimulationinthiswork,asthe 4 T flowfield studied has laminar behavior. The freestream Reynolds 1. 4/ numberfortheflowfieldanalyzedinthisworkis295,indicatingthatthe 1 25 flowislaminar.Themixturetransportproperties(i.e.,thecoefficientsof 0. 1 viscosity,thermalconductivity,andmassdiffusion)canbecomputed OI: usingtwomodels.ThefirstmodelusesWilke’ssemiempiricalmixing D g | rule [26], with species viscosities calculated using Blottner et al.’s or model [27]; and the species thermal conductivities are determined aiaa. using Eucken’s relation [28]. The other model uses Gupta et al.’s arc. mixingrule[29],withspeciesviscositiesandthermalconductivities p:// calculatedusingcollisioncross-sectiondata.Detailsonthemodelingof 017 | htt cFoigd.e1LeMExApNerSi)m.entalsetup‡(sectioninboxissimulatedusingtheCFD tdhiemseenesqiounaatlio/anxsiscyamnmbeetrficoufnlodwisnu[s3i0n]g. aLneyMmAiNxtSurceaonfsqimuaudlraitleatetwraols- 2 andtriangles,aswellasthree-dimensionalflowsusinganymixtureof 4, 1 hexahedrals,tetrahedrals, prisms,and pyramids.The code has been ber Thestagnationregionheattransferismeasuredwithacopperslug extensivelyvalidatedforhypersonicflows[30–33]. m ce calorimeter[16].Thecopperslugisidenticalinsizeandshapetothe e D graphitetestsample.Itisexposedtoidenticalfreestreamconditions n III. NumericalBoundaryConditions nter o asasmthpelegsruaprfhaicteesteammppelerawtuhreenisthmeemaseuarseudreumsienngtsaatrweom-caodloe.rTinhferatreesdt A. InletandOutletBoundaryConditions e dt C opticalpyrometerwithatemperaturerangefrom1273to3273K.The InLeMANS,befoerthiswork,theinflowandoutflowboundary dersta enxitproergiemneanttoaml tneustmsbmeredaesunrseitythaendgtarsa-npshlaatsieonfallowtemppreorpaeturtriee)sin(it.he.e, cfloonwdsi,tioanllstwheerveasripaebcliefsiesdhoonullydfboerhspyepceirfsieodnicatfltohwesi.nFfloorwhyapnedrsnoonniec u D reacting boundary layer above the graphite surface using a two- shouldbespecifiedattheoutflowwhentheexitisalsoatsupersonic an - photon laser-induced fluorescence technique. Unfortunately, the speeds.TheflowinthecaseofanICPtorchtestfacilityissubsonicin hig calibratedabsoluteatomnumberdensityvaluesarenotyetavailable. nature. For a subsonic flow, the disturbances propagate upstream c Mi Therefore, the relative nitrogen atom number density is used for againsttheflowdirection,andthisneedstobeaccountedfor.There- of assessingthecomputationalsimulations.Therelativenitrogenatom fore,newinflowandoutflowboundaryconditionsareimplementedfor versity nICumPtbeesrtdcehnasmitbyeirsathnedrtahtieomofictrhoewspavecetdrailslcyhianrtgeegrfalotewdrLeIaFctsoigrn(MalDfoFrRth)e. sfruebessotrneiacmflostwatecoisndfuitliloynssp[e3c4if]i.eFdo.rInthtehissucbosnodniitcioinn,leatllbtohuenvdaarriya,btlhees Uni A MDFR is used to establish absolute species concentration and (i.e.,velocity,density,andtemperature)arespecifiedasinput. ded by terxapnlsalnataitoionnalotefmthpeetreacthunreiqiunethfeorfltohweqinuathnetiItCiePsmtesetacshuaremdbiesrp.Arovdiedteadileidn boFunodratrhye scuobnsdoitniiocnouistleimt bpoleumndeanrtyedcoinndiwtihoinc,hasctoantisctapnrtepssreusrseuries nloa [9,17,18]. The graphite sample mass loss (ablation) rate is also specifiedattheoutlet.Thevelocityanddensityvariablesaresolved w using zeroth-order extrapolation. The specified outlet pressure is o quantifiedfrompre-andposttestmassmeasurements. D usedtocomputethetemperaturevariableusingtheequationofstate. B. NumericalMethod B. WallBoundaryConditions Thenumericalsimulationsinthisworkareconductedusingthe Navier–StokescomputationalfluiddynamicscodeLeMANS[19], Inthesimplestapproach,wallcatalycityeffectsareaccountedfor inLeMANSbychoosinganoncatalyticorasupercatalyticsurfaceas developed at the University of Michigan. It is a general-purpose parallel three-dimensional code that solves the laminar Navier– thespeciesboundarycondition.Thecatalycityofasurfaceingeneral canbeaccountedforbyfourtypesofconditionsatthewallboundary, Stokes equations, including chemical and thermal nonequilibrium as described in Table 1. A supercatalytic boundary condition is effects on unstructured computational grids. The flow is modeled assuming the continuum approximation is valid. The translational androtationalenergymodesofallspeciescanbedescribedbytheir Table1 Speciesboundaryconditions respectivetemperatures,TandT ,inthecode.However,inthiswork, r thetranslationalandrotationalmodesareassumedtobeequilibrated, Boundarycondition Description as these modes usually require relatively few collisions to reach Noncatalytic Norecombinationofatomsonthesurface equilibrium.Therefore,thesemodesforallspeciesaredescribedbya Supercatalytic Atomsthatstrikethesurfacerecombine tothefreestreamgascomposition singletemperatureT .Thevibrationalandelectronicenergymodes tr Fullycatalytic Allatomsthatstrikethesurfacerecombine toformmolecules ¶PersonalconversationwithA.J.Lutz,UniversityofVermont,Mechanical Partiallycatalytic Someatomsreflectandsomerecombine Engineering,Burlington,VT,March2013. 656 ANNAANDBOYD inappropriatefortheflowsthatcomprisedissociatedspeciesatthe XNs NXns;a XNb freestream, as this condition will lead to the same composition K(cid:2)K (cid:3) K (cid:3) K (2) g ns;na nb throughdissociation/recombinationatthewallasinthefreestream, ns(cid:2)1na(cid:2)1 nb(cid:2)1 whichisundesirableforconditionswheretheeffectofrecombination ontheheattransferistobestudied.Inadditiontosurfacecatalysis, ForasystemwithKspeciesandNRsurfacereactions,thegeneral surface participating reactions are required to be included in the formofthesurfacereactionicanbeexpressedas analysis for a thorough understanding of gas–surface interactions. Therefore, a simple binary catalytic recombination model and a XK XK ν0A ⇌ ν00A (3) complex finite rate surface-chemistry model are implemented in ki k ki k LeMANS. k(cid:2)1 k(cid:2)1 where ν0 and ν00 are the respective reactant and product stoi- 1. BinaryCatalyticRecombinationModel chiometrkiiccoeffickiientsforspeciesA .Thenetproductionratew_ of k k Forthesimulationofthefullrangeofcatalycityregimes,froma speciesA isthesumoftheproductionratesfromallsurfacereactions k noncatalyticwalltoafullycatalyticwall,asimplifiedcatalyticatom givenbyEq.(4).Itappliestospeciesinanyphaseatthegas/surface recombination model (i.e., a binary interaction model with full interface: energy accommodation [35]) is implemented in LeMANS. It is a 530 simple model applied to a binary gaseous mixture of atoms and XNR 4/1.T4 mmoaslescfululexsooffththeereslaemvaenstpsepceiceise.sIattitsheimwpallelm.Ietnisteadppblyiebdaalasnacsinpgectihees w_k(cid:2) i(cid:2)1w_ki (4) 51 boundaryconditionbyconsideringafirst-orderrecombinationreac- 2 10. tion for a binary gas at the wall. It only accounts for catalytic wherethereaction-specificproductionratew_kiistheproductofnet OI: homogeneousrecombinationatthesurface. stoichiometriccoefficientνkiandreactionfluxri;nsforreactionion D phasensgivenbytheexpressioninEq.(5): g | or 2. FiniteRateSurface-ChemistryModel aiaa. Thefiniteratesurface-chemistry(FRSC)modelisageneralgas– w_ki(cid:2)νkiri;ns p://arc. seuffrefcatcseoifnsteurrafcatcieoncamtaolydseils[a3s6w–3e8ll].asItscuarnfacbeepuasretdicitpoaitninvgesrteigaactteiotnhse. νki(cid:2)(cid:4)νk0i0−νk0i(cid:5) 17 | htt TMhaecLFeRaSnCetmalo.d[3e7l]dwevaesliomppeldembyenMteadrisnchLaelMl aAnNdSMbaycALelkaann[d3r6y]eatnald. ri;ns(cid:2)kfiYK Xνkk0i−kbiYK Xνkk0i0 (5) 4, 20 [38]. The model can simulate the chemical reactions between the k(cid:2)1 k(cid:2)1 mber 1 hsiymppelrisfoiendicbginasarayndcastualryfaticceaotfomtherevceohmicbleindautiroinngmpoladneeltacrayneonntlryy.bAe wrehacetrieonkfii,arensdpekcbtiivaerely.thXefoisrwthaerdcoanncdenbtarcaktiwonarodfrsepaecctiioesnArateasttfhoer ece usedtostudytheeffectsofsurfacecatalysisforaconstantcatalytic surfaceand,foreachphaske,itcanbedescribedas k D n efficiencyappliedtoabinarygaseousmixtureofatomsandmole- Gasphase: o er cules.TheFRSCmodelcanbeappliedtomultiplegaseousspecies Cent and can account for different surface reactions, such as particle X (cid:2)C (cid:2)χ P (6a) dt adsorption/desorption,therecombinationofanatomofthegaswith k k kRT dersta abninaattoiomnaodfstworobeaddsoonrbtehdeawtoamlls[Ealtetyh–eRwidalela(lL(aEn-gRm)ureira–cHtioinns]h,erlewcoomod- Surfacephase: u an - D rneiatrcidtiaotnio),naannddroexaicdtaiotinosn)l.eTadhienFgRtoSCsumrfoadceelriescbeassseiodnon(et.hge.,ccoanrcbeopnt Xk(cid:2)Φns;k(cid:2)θns;kΦns (6b) g chi of simulating surface chemical reactions by competing finite rate Bulkphase: Mi processes.Itaccountsforcatalyticheterogeneousrecombinationat niversity of tehnevItisrcuoornfmamcpeerni.stes.sEtharceheeennvviirroonnmmeennttsc,avniczo.,ngsaiss,tsoufrofanceeo,ramndobreu“lkph(saosleids”) The forward reaction rateXfkor(cid:2)eaχcnhb;ksurface reaction type can(6bce) y U thatcorrespondtoadistinctphysicalregionoftherespectiveenviron- specifiedbyanArrheniusfunctionorusingakinetic-basedformula- ed b ment.Thegasenvironmentisasinglephase(Ng(cid:2)1)thatcontains tionforspecificprocesseslikeadsorption,Eley–Ridealrecombina- ad gas-phasespecies. tion,andLangmuir–Hinshelwoodrecombination.TheFRSCmodel o wnl The surface environment can consist of multiple phases repre- canaccountforcompetingfiniterateprocessesunderagivensetof Do sentedbynsrangingfromonetothetotalnumberofsurfacephases experimentalconditionsandprovidesaneffectivereactionefficiency Ns.EachsurfacephaseoccupiesafractionΩnsofthetotalsurface. for a gas-phase reactant consumed in a surface reaction process. Eachsurfacephasecancomprisemultiplesetsofactivesitesrepre- For this study, the FRSC model is used to simulate a constant sentedbynarangingfromonetothetotalnumberofactivesitesfor reaction efficiency by using the appropriate choice of reaction eachphaseNns;a.EachactivesitesethasasitedensityΦns;na.Allthe typesandparameters.Thegas–surfaceinteractionprocessesstudied surfacereactionstakeplaceatactivesites.Similarly,thebulkenvi- aretherecombinationofnitrogenatomstomoleculesatthesurface ronmentcanconsistofmultiplephases(nb(cid:2)1; :::;Nb),wherenb duetocatalysisandthecarbonnitridationreactionwherenitrogen isthenumberofbulkphases.Eachphaseoccupiesavolumefraction atoms react with the surface carbon to form gaseous CN. The vnb ofthebulkandcontainsauniquesetofspeciesKnb.Thetotal surface reaction types considered are adsorption and Eley–Rideal numberofphasesNis recombination to emulate a constant reaction efficiency for these processes.TheE-Rmechanisminvolvesthereactionofagas-phase specieswithanadsorbedspeciestoformagas-phaseproduct.The N(cid:2)1(cid:3)N (cid:3)N (1) s b surface reaction for an adsorption process for a particle A can be representedby Thetotalnumberofspeciesisthesummationofgas,surface,and bulkphasespeciesgivenbyEq.(2).Inthisformulation,aparticular A(cid:3)(cid:4)s(cid:5)→A(cid:4)s(cid:5) speciesisconsideredadifferentspeciesifitisingasphaseorina particular active site in a surface phase or in a bulk phase. The where(s)isanemptyactivesite,andA(cid:4)s(cid:5)isanadsorbedparticle.The descriptionofallthevariablesisprovidedinthenomenclature: forwardreactionfluxforanadsorptionprocessistheproductofthe ANNAANDBOYD 657 stickingcoefficientS ,theimpingementfluxΓ ofspeciesAonthe AB(cid:3)(cid:4)s(cid:5)→A(cid:3)B(cid:4)s(cid:5) (12b) 0 A surface,andthefractionθ ofavailableactivesitesthatareempty: s;e TheE-Rreactioncanalsobeusedtorepresentaprocesswherea rf (cid:2)SΓAθs;e (7) gas-phasespeciesimpingesonthesurfaceandreactswiththesurface. An example is shown in Eq. (13), where the gas-phase species A wherethestickingcoefficientis impingesonthesurfaceandreactswiththebulkphasespeciesB on b thesurface: (cid:2)−E (cid:3) S(cid:2)S0 exp RTad A(cid:3)(cid:4)s(cid:5)(cid:3)Bb →AB(cid:3)(cid:4)s(cid:5) (13) ThestickingoradsorptioncoefficientS isthefractionofthegas- Thisequationisusedtoemulatethecarbonnitridationreaction. 0 phasespeciesthathitsthesurfaceandbecomesadsorbed. Thespeciesmassfractionatthewalliscalculatedbybalancingthe Theimpingementfluxisgivenby mass flux of the relevant species, taking the consumption and productionatthewallintoaccountasshowninEq.(14): ν(cid:2) 0 ΓA(cid:2) 4ACA (8) −ρwDk∂∂Ynk(cid:7)(cid:7)(cid:7)(cid:7) (cid:3)ρwvwYk;w (cid:2)Mkw_k (14) 3 w 45 wherethethermalvelocityofspeciesAis T 1. Here,thefirstterm 4/ s(cid:4)(cid:4)(cid:4)(cid:4)(cid:4)(cid:4)(cid:4)(cid:4)(cid:4)(cid:4)(cid:4)(cid:4) 51 8RuT DOI: 10.2 ν(cid:2)A(cid:2) πMA −ρwDk∂∂Ynk(cid:7)(cid:7)(cid:7)(cid:7)w g | andthefractionofavailableemptyactivesitesis or represents diffusion of the gas-phase species, the second term aa. Φ ρ v Y representsthemassfluxofspeciesblownfromthesurface p://arc.ai θs;e(cid:2) Φss;e oinwrtcoowgnassku;pwmhpatsieo,naonfdstpheectieersmfroomntshuerrfiagchetrMeakcwt_ioknrse.pIrnesthenetssepcroonddutcetrimon, 7 | htt Theforwardreactionrateforanadsorptionprocessisexpressedby ρrewavcwtioinsst(hee.gm.,oasxsidbaltoiowni,nngitrriadtaetimo_nb,aantdthseubsluimrfaatcieond)u.Tehteovseulorfcaictye 1 thefollowing: 4, 20 oftheblowingmassisvw.Itisgivenbythefollowingexpression: cember 1 kf (cid:2)(cid:5)4νΦ(cid:2)Aνss(cid:6)S0 exp(cid:2)−REuaTd(cid:3) (9) m_b (cid:2)ρwvw(cid:2)−XNnb XKnb Mkw_k (15) e D nb(cid:2)1k(cid:2)1 n The surface reaction for an Eley–Rideal recombination of a o er particleAwithanadsorbedparticleB(cid:4)s(cid:5)canberepresentedby nt e C C. HeatFluxattheWall adt A(cid:3)B(cid:4)s(cid:5)→AB(cid:3)(cid:4)s(cid:5) Heattransfertothesurfaceiscomposedofconvectiveheatfluxand Michigan - Duderst iopmfroTpacvihenaesgisleafimobsrletewhneaatcrfpdltruivoxredeΓusaAcicttteoiosoffnsthtphaefetlcuaiEexrlseeAyfoo–corRcnuiatdpnheieeaEdslulrbeeryyfaa–cactRdieois,dnoaenreabdfleftidhcreeisecpfnorecamcycibteγisioEnnBRa,tθ:itsoh;Bne hhrtdioeeivftaaefattutihsffolieluonuaxnaxtldfhmilsueuoaexcdtoteofimslsu,dpmxaiofesofsswudesadeeirlloeelondafmsoacodfcoducsneepovletreeodcdciittnehiuosgesnitvntooidgbtuhrFaaeeotmiutsooruoniredatfhrlai’fecmsieetold.radaTwfenoh,.sreTlamanchtiodeooncfnsvoapFenlecivcctaeikinvec’dess- ersity of rf (cid:2)γERΓAθs;B lisawuAs[er3ad9d]fi.oartivtheeebqausielilbinrieumresbuoltusnadnadrypcaortnodfititohne,saesnsshitoivwitnyinstuEdqy..(1T6h)e, Univ wheretheEley–Ridealreactionefficiencyis walltemperatureTwissetbythisboundaryconditionwithemissivity oaded by γER (cid:2)γ0 exp(cid:2)−RETER(cid:3) ϵforgraphitesetto0.83q[15](cid:3): q (cid:2)σεT4 (16) nl conv diff w w o D andthefractionofavailableactivesitesis Thecontributionofconductiveheattransferisalsoevaluatedby usingthematerialresponsecodeMOPARdevelopedattheUniver- Φ θ (cid:2) s;B (10) sityofMichigan[40,41].MOPARiscoupledtoLeMANSandcan s;B Φ s modelheatconductionwithinthematerial.Theenergybalanceatthe surfaceiscalculatedusingtheboundaryconditionshowninEq.(17): The forward reaction rate for an Eley–Rideal recombination processisexpressedbythefollowing: q (cid:2)q (cid:3)q −ϵσ(cid:4)T4 −T4 (cid:5) (17) cond conv diff w res kf (cid:2)(cid:5)4νΦ(cid:2)Aνss(cid:6)γ0 exp(cid:2)−REuETR(cid:3) (11) wsimheurleatiTorness bisegtihnewciothnstthaentcornesveerrvgoeidr ftleomwpfieerladtusroel.utTiohneocbotuaipnleedd fromLeMANS.LeMANSfirstcallsMOPAR,andaninitialq is cond Thebackwardreactionrateforbothprocessesiszero,asboththe calculatedbasedonthetotalheatfluxfromLeMANS(i.e.,initialheat thermaldesorptionanddissociationwithapartialadsorptionprocess flux)fromEq.(17).MOPARthenrunsforauser-definedtime,and [shownbyEq.(12)]arenotconsideredinthiswork: thewalltemperatureiscalculated.MOPARpassesthiswalltemper- Thermaldesorption: aturevaluetoLeMANS,andthenthefluidequationsaresolvedfora user-defined number of iterations. The temperature along thewall A(cid:4)s(cid:5)→A(cid:3)(cid:4)s(cid:5) (12a) remains constant during this computation. MOPAR is then called again,andtheupdatedvaluealongwiththeinitialvalueofconductive Dissociationwithpartialadsorption: heatfluxareusedastemporalboundaryconditionstosolvethetime- 658 ANNAANDBOYD Table2 Freestreamandwallboundary Adsorption(E (cid:2)0 J∕mol) ad conditions Parameter Value N(cid:3)(cid:4)s(cid:5)!kf1N(cid:4)s(cid:5) (18a) Massflowrate,kg∕s 0.82×10−3 Velocity,m∕s 136 Eley–Ridealrecombination(E (cid:2)0 J∕mol) TemperatureT∞,K 7000 ER Pressure,kPa 21.3 WalltemperatureTwall,K 1598 N(cid:3)N(cid:4)s(cid:5)!kf2N (cid:3)(cid:4)s(cid:5) (18b) 2 Thesecondsetofsurfacereactions[showninEq.(19)]takesinto accurateenergyequation.Theprocessisrepeateduntilaconverged accountthenitrogenatomrecombinationonthewallduetosurface steady-state solution is obtained. In this study, the criterion for catalysisalongwiththecarbonnitridationreactionwherethecarbon convergence is when the wall temperature values are the same fromthesurfacereactswiththeimpingingnitrogenatoms.TheEley– betweenfinalandpreviouscallsofMOPAR. Rideal recombination reaction is used to represent the process of carbon nitridation. In these reactions, k , k , and k are the f1 f2 f3 respectiveforwardreactionrates: 4530 IV. NumericalSetup Adsorption(Ead (cid:2)0 J∕mol) T 1. Thetestconditions[i.e.,facilityinlet(ICPtorchexit)conditions] 514/ andthegraphitesamplewalltemperaturesimulatedbyLeMANSare N(cid:3)(cid:4)s(cid:5)!kf1N(cid:4)s(cid:5) (19a) 2 0. basedontheexperimentsconductedattheUniversityofVermontin 1 OI: order to compare the computational results with the experimental Eley–Ridelrecombination(E (cid:2)0 J∕mol) D measurements.Thesimulationsareperformedfortheexperimental ad g | conditions that are shown in Table 2. The boundary conditions c.aiaa.or acsosnifgingeudraftoiornthiseussiemdufloartiaolnlssiamreulsahtioownns.iTnhFeitge.st2c.hAanmabxeirswymalmliestsriect N(cid:3)N(cid:4)s(cid:5)!kf2N2(cid:3)(cid:4)s(cid:5) (19b) http://ar aTshaenteosntcsaatmalpylteicwwalallilswseitthtoanairsaodtihaetirvmeaelqwuaillilbtreimumpebroatuunrdeaorfy3c0o0ndKi-. Eley–Ridelrecombination(Ead (cid:2)0 J∕mol) 017 | tsitoang,naantidonthepoFiRntSiCsmalosodeslhioswapnpwliehderoenltyhetohtehaitswfluaxll.aInndadthdeitisounr,fathcee N(cid:3)(cid:4)s(cid:5)(cid:3)C !kf3CN(cid:3)(cid:4)s(cid:5) (19c) 2 b 4, temperaturearemeasured.Thegridisgeneratedusingthecommer- 1 er cialmeshgenerationsoftwarePointwise[42].Gridindependenceis b m achievedforaflowinthermalequilibriumusingagridwith22,000 e ec quadrilateralcells.ApictureofthegridisshowninFig.3. D n The gas–surface interaction processes studied are the recombi- o er nationofnitrogenatomstomoleculesatthesurfaceduetocatalysis ent andcarbonnitridationwherenitrogenatomsreactwiththesurface C dt carbontoformgaseousCN.Carbonnitridationisstudiedassample a erst masslossisobservedintheexperiment,andresultsforthesurface ud recessionarereportedintheworkbyLutzetal.[9,43]Therefore,two D an - smeotsdeolf.Tsuhrefafcirestrseeatctiisotnhseasruerftaackeerneaicnttioonac[schoouwntnuinsinEgq.th(1e8F)]RtShaCt g chi accountsonlyforthenitrogenatomrecombinationonthewalldueto Mi surfacecatalysis.Here,agaseousnitrogenatomisadsorbedontoan y of availableactivesiteonthesurfacethroughanadsorptionreaction. ersit Then,anothernitrogenatomfromthegasphaserecombineswiththe niv adsorbed nitrogen atom to form a gaseous nitrogen molecule and U leavestheactivesite.Inthesereactions,k andk aretherespective d by forwardreactionrates: f1 f2 Fig.3 Computationalgrid. e d a o nl w o D Fig.2 Boundaryconditions. ANNAANDBOYD 659 Allthetestcasesareinvestigatedusingaconstantreactionefficien- Table3 Testcases cyγ.Theeffectivereactionefficiencyforagas-phasereactantcon- Catalytic Carbonnitridation Effectivereaction sumed in a surface reaction process is the net result of competing Case efficiencyγ efficiencyγ efficiencyγ finite rate processes. An analytic expression for constant reaction N CN efficiency γ is derived for both the surface reaction set shown in 2 0 0 0 2 0.07 0 0.07 Eq.(18)aswellasforEq.(19). 3 0.07 0.005 0.0725 The constant reaction efficiency γ for a gas-phase reactant k is 4 1 0 1 definedasthefractionofcollisionsthatitexperiences,withthesur- faceresultinginitslossfromthegas-phaseenvironment: −w_ Fortheanalysiswhereonlycatalyticnitrogenatomrecombination γ(cid:2) Γ k (20) atthesurfaceisconsidered,thegasmixtureiscomposedofatomic k andmolecularnitrogen,andonlyEq.(26)isused.Fortheanalysis wherew_ isgivenbyEq.(4),andΓ istheimpingementfluxgivenby where both catalytic nitrogen atom recombination and carbon ni- k k Eq.(8).Thenegativeproductionratew_ representstheconsumption tridation reaction at the surface is considered, the gas mixture is k ofthegas-phasereactantatthewall.Theconstantreactionefficiency composed of atomic nitrogen, molecular nitrogen, atomic carbon, γforthesurfacereactionsinEq.(18)canbecalculatedusingEq.(4), andtheCNmolecule,anditusesbothEqs.(26)and(27). 530 Eq.(6),andEq.(8)as Thetestcasesconsideredinthisstudytodeterminetheeffectsof T4 gas–surfaceinteractionprocessesareshowninTable3.Thecatalytic org | DOI: 10.2514/1. equTahteinsgurEfqac.γe(4(cid:2)c)otn−oΓcwze_NenNrtoraftioγorn(cid:2)stoekfaftd1hyCe-NsatdΦa(cid:4)stνs(cid:2)oe;Nercb∕(cid:3)oe4nd(cid:5)kdCNfit2NiCaotnNosmΦasss;Nisobtained(2b1y) acevγMnofCafaNldniuccdieiLisiset[enis4soaece4nntyt]te[ofoo4qoffo5urnγn]ap.iNelutIrtrft(cid:2)ooeoigsrc0e0aa.on0.r0bfb0au7to5atlonliibynm.saeTcssbdaheaγtedfasNrevlooydaimntsliuocsaaenewvtfcaoaatolonrlmulc.ezeapTexrdarhbperoeoietsefrnpooirmamnnrrietaitbinrnaeinetdltaoldwaylntlbeiyccoeyaanndttDaaeedlltrfyyaeiftvttiriiacmeccirfeiwwrnanonaaecmlldydll c.aiaa. w_N(cid:4)s(cid:5)(cid:2)0 kf1CNΦs;e−kf2CNΦs;N(cid:2)0 Φs(cid:2)Φs;e(cid:3)Φs;N (22) anrictrjoegtetnestasndperrefsourmltsedfrofomrcpohmenpoultiact-iiomnparlesginmauteladticoanrsb.oInt sahbolautlodrbine p://ar Substitutingfork andk fromEqs.(9)and(11), notedthatγCNisdependentonthetypeofcarbonusedaswellasthe htt f1 f2 experimentalconditions. 17 | Φ S Case1representsawallwherenosurfacechemistryisaccounted 20 ⇒Φ (cid:2) s 0 forandistreatedasnoncatalytic.Thesurfacechemistryforcases2 14, s;N S0(cid:3)γ0 and4isdefinedbythereactionsshowninEq.(18)and,forcase3,itis er definedbyEq.(19).Theeffectivereactionefficiencyγforcases2and emb SolvingEqs.(21)and(22),thenetconstantreactionefficiencyγis 4iscalculatedusingEq.(23)and,forcase3,Eq.(25)isused. ec givenby D n dt Center o γ(cid:2)S20S(cid:3)0γγ00 (23) The comparisons of coVm.putRatieosnualltsresults with the measured udersta EqT.(h1e9)cocnanstabnetcraelcauctliaotendeuffsiicnigenEcqy.(γ4)f,oErqt.h(e6)s,uarnfadceEqr.e(a8c)tiaosns in efoxrpearllimteesnttacladseastaiasrtehperremseonctheedmhiecrael.Tnohneefqlouwilipbhriyusmicsflmowod.eTlhcehromseon- Michigan - D γ(cid:2)kf1CNΦs;e(cid:3)kf2(cid:4)Cν(cid:2)NN∕Φ4s(cid:5);NCN(cid:3)kf3CNΦs;eχb1;c (24) cta[h1hne8ed]mfirtnohicitataaettlifronlaonotewanloeiqfmsuciohinldeitbemhsreiiuacrmrameloramceshlesaeuaxmnmastieictodahnlatnoatrobebnoecethoqenuqvsiuilibiidlbriearbriteruiaodmtn.eTadfloh.rreIetttlhraisaexnasfslhtolioaowwtnifonianenilanddl versity of phTashee.SboullvkipnhgaEsqess.u(r2f4a)ceancdon(2c2en),ttrhaetionnetχcbo1n;cstiasnotnreeafcotrioansienfgfilceiebnuclyk ctthiooenndfsa.itcTiiolhinteys.fliAonwleutan(tiif.teoh.re,mtihnveleeqtlouocafirttthyze,tttueebsmetpceehxraiatm)tuibrseesr,piasencndiofidneeudnnisinfitoytrhmepr.soTifmhilueerlaea--t ni γisgivenby U fore,astudyisperformedtoassesstheeffectsofdifferentinletpro- y d b 2S γ (cid:3)γ γ files(i.e.,uniformandnonuniform)onthespeciesconcentrationand de γ(cid:2) 0 0 CN 0 (25) temperaturegradientsnearthematerialsurface,aswellasontheheat nloa S0(cid:3)γ0 transfertothematerialsurface.Itisconcludedthatthenonuniform ow inletprofiledoesnotsignificantlyaffectthesolution.Theresultsfor D Thereactionefficiencyγ0forsurfacecatalysis,alsoreferredtoas thestudyarediscussedin[18,46].Anassumptionofchemicalequi- catalyticefficiencyofnitrogenatoms,isdenotedbyγN.Itisdefined libriumofthenitrogengasmixtureattheICPtorchexitisusedto astheratioofthefluxofnitrogenatomsthatrecombineonthesurface calculateitscompositioninthesesimulations,asexperimentaldataat toformnitrogenmoleculestothetotalfluxofnitrogenatomsthat theexitarenotavailable.Theequilibriumcompositionofthenitro- impingeonthesurface.Aconstantcatalyticefficiencyisachievedby gengasmixtureatthequartztubeexitforthegiventemperatureand settingS0equaltoγ0.Thereactionefficiencyforcarbonnitridation, pressure [9] is calculated using the NASA program Chemical alsoreferredtoascarbonnitridationefficiency,isdenotedbyγCN.Itis EquilibriumwithApplications(CEA)[47]. defined as the ratio of nitrogen atoms reaching the surface and Themaincalculatedparametersanalyzedaretranslationaltemper- combiningwithsurfacecarbonatomstotheratioofthetotalfluxof ature,normalizednitrogenatomdensity,surfaceheatflux,andmass nitrogen atoms that impinge on the surface. It is assumed in this removalrate.Thenormalizednitrogenatomdensityiscalculatedby investigationthatallthecarbonmasslossoccursduetothecarbon scalingthenitrogenatomdensityvalueforeachcasewiththerespec- nitridationreaction. tivevalueatthelocationoftheexperimentallymeasureddataatthe The following dissociation–recombination reactions are consid- largestdistancefromthestagnationpointofthetestsamplealongthe eredintheanalysis: stagnation line. The experimental temperature and normalized nitrogenatomdensityvalueshaveuncertaintiesofabout(cid:6)500Kand N (cid:3)M⇌2N(cid:3)M (26) (cid:6)25%, respectively [48]. The simulation runtime for each case is 2 approximately6husing32processors. InSec.V.A,thebaselineresultsforthecomparisonsofcompu- CN(cid:3)M⇌C(cid:3)N(cid:3)M M(cid:2)N;N2;C;CN (27) tationalresultswiththemeasuredexperimentaldataarepresented.It 660 ANNAANDBOYD 0 3 5 4 T 1. 4/ 1 5 2 0. 1 OI: Fig.4 ComparisonoftranslationaltemperatureandnormalizedN-atomdensityalongthestagnationline. D g | or a. a ai c. ar p:// htt 7 | 1 0 2 4, 1 er b m e c e D n o er nt e C dt a erst d u D n - a g hi c Mi of y ersit Fig.5 Comparisonofwallheatfluxbetweenthecomputationalresults. v ni U y b d isseeninthebaselineresultsthattherearesignificantdiscrepancies chemistryprocesses.Thereisanincreaseinnitrogenatomdensity e ad between the computational and experimentally measured values, (Fig.4b)intheboundarylayerforcase1,whereasitisconsumedfor o wnl which could be explained by a combined effect of various allothercasesduetosurfacechemicalreactions.Thenitrogenatom Do mechanismsthatareaddressedinthisstudy.SectionV.Bpresentsthe loss is due to surface catalysis, i.e., catalytic recombination of results of the sensitivity analysis performed on the ICP torch exit nitrogenatomstomoleculesforcases2and4.Thenitrogenatomloss chemicalcompositiontoevaluateitseffectsontheflowparametersin seenforcase3isthecombinedeffectofsurfacecatalysisaswellas theboundarylayerandthesurfacepropertiesandtheircomparison carbonnitridation.Thenitrogenatomdensityforallcasesexceptcase with the measured experimental data. The results of the study 1showalossofnitrogenatomsintheboundarylayer,asisobserved performedtodeterminetheeffectsofconductionwithinthegraphite intheexperimentalmeasurements. sampleonthesurfacepropertiesarealsopresentedinSec.V.C. Theeffectofsurfacechemistryonthesurfacepropertiesisalso evaluated.Thepropertiesanalyzedarethesurfaceheatfluxandwall A. BaselineResults temperature.ThetotalheatfluxisplottedinFig.5aalongwiththe Thecomparisonsbetweenthenumericalresultsandexperimental diffusiveheatfluxinFig.5b.Anincreaseisseeninthetotalheatflux LIF measurements are presented for translational temperature and forallthecaseswithsurfacereactionsascomparedtothenoncatalytic normalizednitrogenatomdensityinthetestsampleboundarylayer wall.Thisincreaseisexplainedbythecontributionfromdiffusive alongthestagnationstreamline.Thestagnationlineboundary-layer heat flux for the cases with surface reactions, which is zero for a resultsareshownforthetranslationaltemperatureinFig.4aandthe noncatalyticwall. normalized nitrogen atom density in Fig. 4b. There is a rise in Thewalltemperatureforresultsfromdifferentsurface-chemistry temperature(Fig.4a)intheboundarylayerforcaseswheresurface modelsisshowninFig.6a.Case4withafullycatalyticwallhasthe chemistryisincludedascomparedtocase1foranoncatalyticwall. highest,andcase1withnosurfacechemistryhasthelowesttemper- Thecomparisonsbetweencases2,3,and4showthattemperaturein atureatthesurface.Thecarbonmassremovalfluxm_ asaresultof b theboundarylayerarenotsignificantlyaffectedfordifferentsurface- the carbon nitridation reaction for case 3 is also computed and is ANNAANDBOYD 661 0 3 5 4 T 1. 4/ 1 5 2 10. Fig.6 Comparisonoftemperaturefordifferentcasesandmassremovalfluxforcase3. OI: D g | aa.or showninFig.6b.Thetotalmasslossrateiscalculatedfromm_b,as B. SensitivitytoInletChemicalComposition c.ai showninEq.(28): 1. ComparisonBetweenEquilibriumandPowerEqualto13.8Kilowatts http://ar Z resTuhltissosbetacitnioendupsriensgenthtseitnhleetcgoamscpoamrispoonsitpioernfocramlceudlatbeedtwaseseunmitnhge 17 | mass lossrate(cid:2) m_bdA (28) chemicalequilibriumandthatobtainedforaICPtorchflowpower. 0 ThepowerabsorbedbytheflowintheICPtorchisusedtodetermine 2 4, thecompositionofthegasatthetestchamberinlet,i.e.,theICPtorch 1 ember weahcehresumr_fbaciesetlheemmenats,sanredmdoAviasltfhleuxsu[rcfaalcceualareteadofuesiancghEelqe.m(e1n5t).]Tfhoer eaxniet.ffTichieenpcoywfearcitnortheestfilmowateidstthoebper0o.d5u6c.t§oTfhtehevovlotaltgaegeis,1cu0r.3reknVt,aanndd c De stagnationpointheatfluxismeasuredexperimentallyusingaslug thecurrentis2.4Acurrent.Thecalculatedpoweris13.8kW.The nter on cmaeloarsiumreedtefrofrotrhteesctasceonodfiatio0n.8s4sigm∕islamratossthflioswcarsaet.eTahnedhpereastsfulurexoisf falnodwsppoewciefircisenatlhsaolpgyivhengbivyetnhebyprEoqd.u(c2t9o)f.tThheemsapsesciffliocwenrathtealmp_yfloiws Ce 21.3 kPa. A comparison between the experimental and computed dependent on the composition of the mixture given by the mass erstadt vfoarluceassefo3rsistapgrnoavtiidoendpioninTtahbeleat4f.lux,temperature,andmasslossrate fflroawctiTon:ofthegasmixturespeciesYiandtheinlettemperatureofthe d u D Itcanbeseenthatthecomputationalvaluesaremuchhigherthan n - the experimentally measured values. The higher computed values Power(cid:2)m_ Δh a flow Michig csuorufladcebienathttericbaultceudlattoioansh.iAghnearsdsuegmrpeetioonfonfitcrhoegmenicaatloemqufilluibxrituomthoef Δh(cid:2) X YiZ T CpidT(cid:3) X YiΔhfi (29) y of thenitrogengasmixtureattheICPtorchexitisusedinthebaseline i(cid:2)N;N2 298 i(cid:2)N;N2 versit saitmomuliactinointrso.gTehnewspitehcimesoplerefsreancttiionntsheogfa0s.1m5ixatnudre0a.r8e5m,roelsepceucltairvaenlyd. where ni U Theequilibriumgasmixturecompositionisprobablymoredissoci- y nloaded b arnatietterdocgthheaennmatithsotemrycs.oaTmvhapeiolraesbiftolieoremn,iftgohhretafblcuehxleetmsosittchhaaelnlyteursseteadscaitmnintpghleeflsooewfsidmwisuistlohactfiiiaontnietsde. Yi(cid:2)MMavigXi; Mavg(cid:2)i(cid:2)XN;N2XiMi Dow Alowernitrogenatomfluxtothesurfacewouldresultinalower Cpi(cid:2)Cvi(cid:3)Ri mass removal rate. A sensitivity analysis is performed on the ICP C (cid:2)C (cid:3)C (cid:3)C (cid:3)C torchexitchemicalcompositiontoevaluateitseffectsontheflow vi vi;t vi;r vi;vib vi;el parameters in the boundary layer and the surface properties. The C (cid:2)1.5R vi;t i analysisisperformedforcase3toincludetheeffectsoftheinletgas compositiononcarbonmassremoval.Theresultsofthesensitivity Fori(cid:2)N analysisperformedontheICPtorchexitchemicalcompositionare 2 presentedSec.V.B.Aradiativeequilibrium boundaryconditionis (cid:4)θ ∕T (cid:5)2exp(cid:4)θ ∕T (cid:5) used in these simulations where the heat conduction within the C (cid:2)R; C (cid:2)R vib;i vib;i vib;i vib sampleisnotincludedthat,ifaccountedfor,mayaffectthesurface vi;r i vi;vib i (cid:7)exp(cid:4)θvib;i∕Tvib(cid:5)−1(cid:8)2 properties.SectionV.Cpresentstheresultsofthestudyperformedto determinetheeffectsofconductionwithinthesample. Fori(cid:2)N C (cid:2)0; C (cid:2)0 vi;r vi;vib Table4 Stagnationpointvaluesandmasslossrates Fori(cid:2)N,N , q ,W∕cm2 T ,K Masslossrate,mg∕s 2 stag stag CEA 270 2757 2.2 Experiment 40–80 ∼1600 0.2–0.6 §PersonalconversationwithW.Owens,UniversityofVermont,Mechanical Engineering,Burlington,VT,January2013. 662 ANNAANDBOYD (P∞ g (cid:4)θ ∕T (cid:5)2exp(cid:4)−θ ∕T (cid:5) (cid:7)P∞ g θ exp(cid:4)−θ ∕T (cid:5)(cid:8)(cid:7)P∞ g (cid:4)θ ∕T2(cid:5)exp(cid:4)−θ ∕T (cid:5)(cid:8)) Cvi;el (cid:2)Ri j(cid:2)1Pj;∞i egl;j;iexepl(cid:4)−θ ∕Tel;j(cid:5);i el − j(cid:2)1 j;i el;j;i (cid:7)Pel;∞j;i gel exp(cid:4)j−(cid:2)0θ j;i∕Tel;j;(cid:5)i(cid:8)2 el el;j;i el j(cid:2)0 j;i el;j;i el j(cid:2)0 j;i el;j;i el where X is the species mole fraction; and M and M are the along with the constant power of 30 kWin the flow for chemical i i avg individualspeciesandaveragegasmixturemolecularweight,respe- equilibriumcompositionattheinlet.Itcanbeseenthatthepowerin ctively.C isthespecies-specificheatatconstantpressure,R isthe theflowisminimumforthezeronitrogenatommolefraction,i.e.,the pi i speciesgasconstant,andh isthespeciesheatofformation.C is flowisnotdissociated.Theflowpowerincreaseswiththelevelof fi vi thespecies-specificheatatconstantvolume.ThesubscriptsinC , dissociationintheflowandismaximumforfullydissociatedflow vi;t Cvi;r,Cvi;vib,andCvi;el representthetranslational,rotational,vibra- (XN(cid:2)1). The higher the degree of dissociation, the higher the tional,andelectronicspecificheatsatconstantvolume,respectively. power. θ isthespeciescharacteristicvibrationaltemperature.θ and Based on the chemical equilibrium and 13.8 kW inlet compo- vib;i el;j;i g arethecharacteristicelectronictemperatureandthedegeneracy sitions,thetranslationaltemperatureandnormalizednitrogenatom j;i ofthejthenergylevel,respectively[30]. number density profiles along the stagnation line in the boundary The composition of the gas mixture is calculated for 13.8 kW layer areshownin Figs.8aand8b,respectively.Thetranslational 0 powerusingthemassflowrateandinlettemperaturegiveninTable2. temperature in the boundary layer for 13.8 kW power is lower in 53 Thepowerintheflowforchemicalequilibriumcompositionatinlet comparisontotheequilibriuminletcomposition.Thereasonforthis 4 1.T and7000Kinlettemperaturecorrespondsto30kW,whichis100% is that the temperature in the flow decreases with a decrease in 14/ higherthanthecalculatedpower. enthalpy. Enthalpy is directly related to power [Eq. (29)]. Lower OI: 10.25 FigT.h7e,wrehlaetrieonpoowfpeorwiseprlwotittehdtahgeagiansstmthixetnuirterocgoemnpaotsoimtiomnoisleshfroawctnioinn ptShoeewcesef.frIeIicnatntohdfevIfIalIro.ywTinhgleetaredomsoptt-oemrlaoetawunree-rsaqtneudmarppeoepwraeetrurcrienen.tthFageuefrlteohrwerroidrsibpsecretuwssesenieotnendtohinne g | D XNforaconstanttemperatureof7000K[calculatedusingEq.(29)] translationaltemperatureforthechemicalequilibriuminletcomposi- or tion and the experimental values is 16.1%. The root-mean-square a. aia percentageerrorbetweenthetranslationaltemperaturefor13.8kW arc. powerandtheexperimentalvaluesis16.3%. p:// Theequilibriuminletcompositionhasahighernormalizednitro- htt genatomnumberdensityintheboundarylayerincomparisontothe 7 | inletcompositioncalculatedusing13.8kWpower.Theroot-mean- 1 0 2 square percentage error between the normalized nitrogen atom 14, numberdensityforthechemicalequilibriuminletcompositionand ber theexperimentalvaluesis15.2%.Theroot-mean-squarepercentage m e error between the normalized nitrogen atom number density for c e D 13.8kWpowerandtheexperimentalvaluesis10.9%.Thelevelof n o dissociationishigherforchemicalequilibriuminletcompositionas nter compared tothe 13.8kWpowerinlet composition. Therefore,the e C nitrogenatomdensityishigherforthechemicalequilibriumcaseas adt comparedtothe13.8kWpowercase. erst Thetotalheatfluxandtemperatureatthewallforthesecasesare d Du shown in Figs. 9a and 9b, respectively. The mass removal flux is n - showninFig.10. a hig Ascanbeseen,thereisasignificantreductioninheatflux,thewall Mic temperature,andmasslossfor13.8kWpowerincomparisontothe of results of equilibrium inlet composition. The comparison between ersity Fig.7 Plotofpoweragainstnitrogenatommolefraction. tmheensttaalgdnaattaioisnsphooiwnntvinalTuaebslefo5r.tThheetrweoiscaa5s2e%sarleodnugcwtioitnhinthheeeaxtpfleurxi-, v ni U y b d e d a o nl w o D Fig.8 ComparisonoftranslationaltemperatureandnormalizedN-atomdensityalongthestagnationlinefordifferentinletcompositions.

Description:
diffusion coefficient of species k, m2∕s. Ead. = energy barrier for adsorption, J∕mol. EER. = energy barrier for Eley–Rideal recombination,. J∕mol h. = species . for the Stardust mission with a peak heating [6] of 942 W∕cm2). reactions that lead to surface recession are key factors that
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.