ebook img

Neumann and Bargmann systems associated with an extension of the coupled KdV hierarchy PDF

8 Pages·0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neumann and Bargmann systems associated with an extension of the coupled KdV hierarchy

Journal of Nonlinear MathematicalPhysics 1999, V.6, N 1, 5–12. Letter Neumann and Bargmann Systems Associated with an Extension of the Coupled KdV Hierarchy Zhimin JIANG 9 9 Department of Mathematics, Shangqiu Teachers College, Shangqiu 476000, China 9 1 Received October 16, 1998; Accepted December 03, 1998 n a Abstract J 1 An eigenvalue problem with a reference function and the corresponding hierarchy of nonlinear evolution equations are proposed. The bi-Hamiltonian structure of the ] I hierarchy is established by using the trace identity. The isospectral problem is non- S linearized as to be finite-dimensional completely integrable systems in Liouville sense . n under Neumann and Bargmann constraints. i l n [ 1 Introduction 1 v A major difficulty in theory of integrable systems is that there is to date no completely 1 0 systematic method for choosing properly an isospectral problem ψx = Mψ so that the 2 zero-curvature representation M −N +[M,N]= 0 is nontrivial. By inserting a reference t x 1 function into AKNS and WKI isospectral problems, we have obtained successfully two 0 9 new hierarchies [1, 2]. 9 The coupled KdV hierarchy associated with the isospectral problem / n 1 1 i l − λ+ u −v n 2 2 : ψx = Mψ, M =   (1.1) v 1 1 i  1 λ− u  X  2 2    r a is discussed by D. Levi, A. Sym and S. Wojciechowsk [3]. The isospectral problem (1.1) has been nonlinearized as finite-dimensional completely integrable systems in Liouville sense [4]. In this paper, we introduce the eigenvalue problem 1 1 − λ+ u −v 2 2 ψx = Mψ, M =  , (1.2) 1 1 f(v) λ− u   2 2     Copyright (cid:13)c 1999 by Z. Jiang 6 Z. Jiang where u and v are two scalar potentials, λ is a constant spectral parameter and f(v) called reference function is an arbitrary smooth function. The bi-Hamiltonian structure of the corresponding hierarchy is established by using the trace identity [5, 6]. Since the reference function f(v) in (1.2) can be chosen arbitrarily, many new hierarchies and their Hamiltonian forms are obtained.When f = (−v)β (β ≥ 0), the isospectral problem (1.2) is nonlinearizedasfinite-dimensionalcompletely integrable sysstemsinLiouvillesenseunder Neumann and Bargmann constraints between the potentials and eigenfunctions. 2 Preliminaries Consider the adjoint representation of (1.2) ∞ a b a b N = MN −NM, N = = i i λ−j (2.1) x c −a c −a i i (cid:18) (cid:19) j=0(cid:18) (cid:19) X which leads to 1 c = b = 0, a = − α (constant), (2.2) 0 0 0 2 c = αf(v), b = −αv, a = 0, (2.3) 1 1 1 c = α(f′(v)v +uf(v)), b = α(v −uv), a = −αvf(v), (2.4) 2 x 2 x 2 a = −∂−1(vc +f(v)b ), (2.5) j j j c f(v) c c 1 = α , j+1 = L j , j = 1,2,..., (2.6) b −v b b 1 j+1 j (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) d where ∂ = , ∂∂−1 = ∂−1∂ =1, dx ∂+u+2f∂−1v 2f∂−1f L = . −2v∂−1v −∂+u−2v∂−1f ! It is easy from (1.2) and (2.1) to calculate that ∂M ∂M ∂M tr N = −a, tr N = a, tr N = −c+f′(v)b. ∂λ ∂u ∂v (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) Noticing the trace identity [5, 6] δ δ ∂ , (−a)= (a,−c+f′(v)b), δu δv ∂λ (cid:18) (cid:19) hence we deduce that δ δ a (1) (2) j+1 , H = G ,G , H = , (2.7) δu δv j j−2 j−2 j (cid:18) (cid:19) (cid:16) (cid:17) where G(1) = a , G(2) = −c +f′(v)b . (2.8) j−2 j j−2 j j Neumann and Bargmann Systems and the Coupled KdV Hierarchy 7 3 The hierarchy and its Hamiltonian structure Let ψ satisfy the isospectral problem (1.2) and the auxiliary problem A B ψ = Nψ, N = , (3.1) t C −A (cid:18) (cid:19) where m−1 m m A = A + a λm−j, B = b λm−j, C = c λm−j. m j j j j=0 j=1 j=1 X X X The compatible condition ψ = ψ between (1.1) and (3.1) gives the zero-curvature xt tx representation M −N +[M,N]= 0, from which we have t x A = w(∂ +u)c +wf′(v)(∂ −u)b , m m m u c c t = θ L m = θ m+1 , (3.2) v 0 b 0 b t m m+1 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) 1 where w = (vf′(v)+f)−1, 2 2∂w −2∂wf′(v) θ = . (3.3) 0 2wv 2wf (cid:18) (cid:19) By (2.6) we know that Eqs.(3.2) are equivalent to the hierarchy of nonlinear evolution equations u αf(v) t = θ Lm , m = 1,2,.... (3.4) v 0 −αv t (cid:18) (cid:19) (cid:18) (cid:19) Let the potentials u and v in (1.2) belong to the Schwartz space S(−∞,+∞) over (−∞,+∞). Noticing (2.5) and (2.8) we get (1) cj = θ Gj−2 , θ = −2wf′(v)∂ −2wf . (3.5) (cid:18) bj (cid:19) 1 G(j2−)2  1 (cid:18) −2w∂ 2wv (cid:19)   Then the recursion relations (2.5), (2.6) and the hierarchy (3.2) can be written as 1 G = − α(1,0)T, G = −α(0,vf′(v)+f)T, G = −α(vf,uf +uvf′(v))T, −2 −1 0 2 KG = JG , (3.6) j−1 j (u ,v )T = JG = KG , (3.7) t t m−1 m−2 where J = θ θ and K =θ Lθ are two skew-symmetric operators, 0 1 0 1 0 −2∂w K K J = , K = 11 12 , −2w∂ 0 K K 21 22 (cid:18) (cid:19) (cid:18) (cid:19) 8 Z. Jiang in which K = −2∂−4∂w(∂f′(v)+f′(v)∂)w∂, 11 K = −2∂wu+4∂w(f′(v)∂v−∂f)w,  12  K21 = −2wu∂ +4w(f∂ −v∂f′(v))w∂,  K = −4w(v∂f +f∂v)w. 22    From (2.7) we obtain the desired bi-Hamiltonian form of (3.7) δ δ ut = J δu H = K δu H . (3.8) v  δ  m+1  δ  m t (cid:18) (cid:19)  δv   δv      4 Nonlinearization of the isospectral problem Let λ and ψ(x) = (q (x),p (x))T be eigenvalue and the associated eigenfunction of (1.2). j j j δλ δλ j j Through direct verification we know that the functional gradient ∇ λ = , (u,v) j δu δv (cid:18) (cid:19) satisfies ∇ λ = q p ,−p2−f′(v)q2 , (4.1) (u,v) j j j j j (cid:0) (cid:1) p2 p2 p2 θ ∇λ = j , L j = λ j (4.2) 1 j −q2 −q2 j −q2 (cid:18) j (cid:19) (cid:18) j (cid:19) (cid:18) j (cid:19) in view of (1.2). Substituting the first expression of (4.2) into the second expression and acting with θ upon once, we have 0 K∇λ = λ J∇λ . (4.3) j j j So, the Lenard operator pair K, J and their gradient series G satisfy the basic conditions j (3.6) and(4.3) given inRefs.[7, 8]forthenonlinearization oftheeigenvalue problem(1.2). Proposition 4.1. When f(v) = (−v)β (β ≥ 0), the isospectral problem (1.2) can be nonlinearized as to be a Neumann system. N In fact, the Neumann constraint G | = ∇λ gives −1 α=1 j j=1 P hq,pi = 0,hp,pi = (β +1)(−v)β +β(−1)β−1hq,qi. (4.4) By differentiating (4.4) with respect to x and using (1.2), we have 1 hΛp,pi hΛq,qi u= +β , β+1 hp,pi hq,qi (4.5)  (cid:18) (cid:19)   v = hq,qi.   Neumann and Bargmann Systems and the Coupled KdV Hierarchy 9 Substituting (4.5) into the equations for the eigenfunctions 1 1 − λ + u −v qjx = 2 j 2 qj , j = 1,...,N, (4.6) p  1 1  p (cid:18) jx (cid:19) (−v)β λ − u (cid:18) j (cid:19) j  2 2    we obtain the Neumann system 1 1 hΛp,pi hΛq,qi q = − Λq−hq,qip+ +β q, x 2 2(β +1) hp,pi hq,qi  (cid:18) (cid:19)  1 1 hΛp,pi hΛq,qi (4.7)  px = Λp+hp,piq− +β p,  2 2(β +1) hp,pi hq,qi  (cid:18) (cid:19)  hp,pi = (−1)βhq,qiβ, hq,pi = 0.     wherep = (p ,...,p )T, q = (q ,...,q )T, Λ = diag(λ ,...,λ ), and h,i stands for the 1 N 1 N 1 N canonical inner product in RN. Proposition 4.2. When f(v) = (−v)β (β ≥ 0), the isospectral problem (1.2) can be nonlinearized as to be a Bargmann system. N In fact, the Bargmann constraint G | = ∇λ gives 0 α=1 j j=1 P 1 − β β − 1 u= hp,pihq,pi β+1 − hq,qihq,pi β+1, β+1 β +1 (4.8)   1  v = −hq,piβ+1. Substituting (4.8) into (4.6), we obtain the finite-dimensional Hamiltonian system 1 1 1 − β qx = − Λq+hq,piβ+1p+ hp,pihq,pi β+1q 2 2(β +1)   − β hq,qihq,pi−β+11q = ∂H,  2(β +1) ∂p   (4.9)   px = 1Λp− 1 hp,pihq,pi−ββ+1p+hq,piββ+1 2 2(β +1)   + β hq,qihq,pi−β+11p = −∂H.  2(β +1) ∂q    The Hamiltonian is  1 1 1 1 β H = − hΛq,pi+ hp,pihq,piβ+1 − hq,qihq,piβ+1. 2 2 2 5 Integrability of the Neumann system The Poisson brackets of two functions in symplectic space (R2N,dp∧dq) are defined as N ∂F ∂G ∂F ∂G (F,G) = − = hF ,G i−hF ,G i. q p p q ∂q ∂p ∂p ∂q j j j j j=1(cid:18) (cid:19) X 10 Z. Jiang The functions defined by (m = 0,1,2,...) 1 1 hΛiq,qi hΛiq,pi F = − hΛm+1q,pi− m 2 2 (cid:12) hΛjp,qi hΛjp,pi (cid:12) i+Xj=m(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) are in involution in pairs (see, [9]). (cid:12) (cid:12) Consider the Moser constraint on the tangent bundle 1 TSN−1 = (p,q) ∈ R2N|F = hq,pi = 0, G = (hp,pi−(−1)βhq,qiβ)= 0 . 2(β +1) (cid:26) (cid:27) Through direct calculations we have (F,F ) = 0, (F,G) = hp,pi, m 1 (F ,G) = − hΛm+1p,pi+(−1)ββhq,qiβ−1hΛm+1q,qi . m 2(β +1) (cid:16) (cid:17) Thus the Lagrangian multipliers are (F ,G) 1 hΛm+1p,pi hq,qiβ−1 µ = m = − +(−1)ββ hΛm+1q,qi . m (F,G) (β+1) hp,pi hp,pi (cid:18) (cid:19) Since F = 0 on the tangent bundle TSN−1, the restriction of the canonical equation of H∗ = F −µ F on TSN−1 is 0 0 qx = F0,p−µ0Fp|TSN−1, ( px = −F0,q +µ0Fq|TSN−1 which is exactly the Neumann system (4.7). Theorem 5.1. The Neumann system (4.7) (TSN−1,dp∧dq|TSN−1,H∗ = F0 −µ0F) is completely integrable in Liouville sense. Proof. Let F∗ = F −µ F, m = 1,...,N −1, then it is easy to verify (F∗,F∗) = 0 on m m m k l TSN−1. Hence {F∗} is an involutive system. m 6 Integrability of the Bargmann system Let N B2 kj Γ = , (6.1) k λ −λ k j jX=1 j6=k where B = p q −p q , we have (see Refs. [9, 10]) kj k j j k Lemma 6.1. hq,pi,p2 = 2p2, hq,pi,q2 = −2q2, (6.2) l l l l (cid:0) (cid:1) (cid:0) (cid:1) Neumann and Bargmann Systems and the Coupled KdV Hierarchy 11 −4B −4B p2,Γ = lk p p , q2,Γ = lk q q , k l λ −λ k l k l λ −λ k l l k l k (6.3) (cid:0) (cid:1) (cid:0) (cid:1) −2B lk (q p ,Γ )= (p q +q p ). k k l k l k l λ −λ l k Lemma 6.2. (Γ ,Γ ) = (hq,pi,Γ ) = (hq,pi,q p )= 0, (6.4) k l l l l p2,p2 = q2,q2 =(q p ,q p ) = 0, (6.5) k l k l k k l l (cid:0)q p ,p(cid:1)2 =(cid:0) 2p p(cid:1)δ , q2,p2 = 4q p δ , q2,p q =2q q δ . (6.6) k k l k l kl k l k l kl k l l k l kl (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) Proposition 6.1. Let 1 1 1 β 1 1 Ek = 2hq,piβ+1p2k − 2hq,piβ+1qk2− 2λkqkpk − 2Γk, the E ,...,E constitute an N-involutive system. 1 N Proof. Obviously (E ,E ) = 0 for k = l. Suppose k 6= l, in virtue of (6.4)–(6.6) and the k l property of Poisson bracket in (R2N,dp∧dq), we have 1 1−β 1 1−β 4(Ek,El) = β+1p2khq,piβ+1 hq,pi,p2l + β +1p2lhq,piβ+1 p2k,hq,pi (cid:0) (cid:1) (cid:0) (cid:1) 1 β 1 − β+1p2k hq,pi,ql2 − β+1ql2 p2k,hq,pi −hq,piβ+1 p2k,Γl (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) 1 β 1 −hq,piβ+1 Γk,p2l − β+1qk2 hq,pi,p2l − β +1p2l qk2,hq,pi (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) β β−1 β β−1 + q2hq,piβ+1 hq,pi,q2 + q2hq,piβ+1 q2,hq,pi β+1 k l β +1 l k (cid:0) (cid:1) (cid:0) (cid:1) β β +hq,piβ+1 qk2,Γl +hq,piβ+1 Γk,ql2 +λk(qkpk,Γl)+λl(Γk,qlpl). Substituting (6.2) and (6.3) i(cid:0)nto th(cid:1)e above equa(cid:0)tion yi(cid:1)elds (Ek,El)= 0. Consider a bilinear function Q (ξ,η) on RN: z N ∞ ξ η Q (ξ,η) = h(z−Λ)−1ξ,ηi = k k = z−m−1hΛmξ,ηi. z z−λ k k=1 m=0 X X The generating function of Γ is (see, [9, 10]) k N Qz(q,q) Qz(q,p) Γk = . (cid:12) Qz(p,q) Qz(p,p) (cid:12) z−λk (cid:12) (cid:12) Xk=1 (cid:12) (cid:12) Hence(cid:12)the generating funct(cid:12)ion of Ek is (cid:12) (cid:12) 1 1 1 β 1 hq,piβ+1Qz(p,p)− hq,piβ+1Qz(q,q)− Qz(Λq,p) 2 2 2 (6.7) N 1 Qz(q,q) Qz(q,p) Ek − = . 2(cid:12) Qz(p,q) Qz(p,p) (cid:12) z−λk (cid:12) (cid:12) Xk=1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 12 Z. Jiang Substituting the Laurent expansion of Q and z ∞ (z−λ )−1 = z−m−1λm k k m=0 X in to both sides of (6.7) respectively, we have Proposition 6.2. Let N F = λmE , m = 0,1,2,... m k k k=1 X then 1 1 1 β 1 F0 = hq,piβ+1hp,pi− hq,piβ+1hq,qi− hΛq,pi, 2 2 2 1 1 1 β Fm = hq,piβ+1hΛmp,pi− hq,piβ+1hΛmq,qi 2 2 1 1 m hΛj−1q,qi hΛj−1q,pi − hΛm+1q,pi− . 2 2 (cid:12) hΛm−jp,qi hΛm−jp,pi (cid:12) Xj=1(cid:12) (cid:12) (cid:12) (cid:12) Moreover, (F ,F ) = 0. (cid:12) (cid:12) k l (cid:12) (cid:12) Hence we arrive at the following theorem. Theorem 6.1. The Bargmann system defined by (4.9) is completely integrable in Liouville sense in the symplectic manifold (R2N,dp∧dq). Acknowledgement I am very grateful to Professor Cao Cewen for his guidance. This project is supported by the Natural Science Fundation of China. References [1] Jiang Z.M., Physics Letters A, 1997, V.228, 275–278. [2] Jiang Z.M., Physica A, 1998, V.253, 154–160. [3] LeviD., Sym. A.and Wojciechowsk S., Phys. A: Math. Gen., 1983, V.16, 2423–2432. [4] Cao C.W. and Geng X.G., J. Phys. A: Math. Gen., 1990, V.23, 4117–4125. [5] Tu G.Z., J. Math. Phys., 1989, V.30, 330–338. [6] Tu G.Z., J. Phys. A, 1989, V.22, 2375–2342. [7] Cao C.W. and Geng X.G., in: Nonlinear Physics, Research Reports in Physics, eds. Gu C.H. et al., Springer, Berlin, 1990, 68–78. [8] Cao C.W., Sci. China A, 1990, V.33, 528–536. [9] Moser J., in: Proc. 1983 Beijing Symp. on Diff. Geometry and Diff. Egs., Science Press, Beijing, 1986, 157–229. [10] Cao C.W., Henan Sci.,1987, V.5, 1–10.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.